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Abstract
The “seed and soil” concept has reformed paradigms for cancer treatment in the past decade. Accumulating 
evidence indicates that the intimate crosstalk between cancer cells and stromal cells plays a tremendous role in 
tumor progression. Cancer-associated fibroblasts (CAFs), the largest population of stroma cells, influence 
therapeutic effects through diverse mechanisms. Herein, we summarize the recent advances in the versatile 
functions of CAFs regarding their heterogeneity, and we mainly discuss the pro-tumorigenic functions of CAFs 
which promote tumorigenesis and confer therapeutic resistance to tumors. Targeting CAFs is emerging as one of 
the most appealing strategies in anticancer therapies. The endeavors to target or reprogram the specific subtypes 
of CAFs provide great cancer treatment opportunities, which may provide a better clinical benefit to cancer 
patients.
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INTRODUCTION
Most conventional cancer treatment strategies are based on the special characteristics of tumor cells, such as 
rapid proliferation rate and oncogenic driver mutations in cancer cells. However, few patients experience 
complete responses, and the strength and duration of response to treatments vary widely. Intrinsic or 
acquired resistance developing during the treatment is the central issue in cancer therapies, which often 
leads to tumor progression. Thus, new therapeutic strategies are urgently needed to bypass or overcome 
drug resistance in cancer treatment. Before that, a profound understanding of the mechanism of resistance 
is needed.

The “seed and soil” theory, which Stephen Paget proposed first in 1889, has received widespread attention 
in recent years. Cancer-associated fibroblasts represent the majority of stromal cell populations in the tumor 
microenvironment (TME) and are closely linked with clinical outcomes across multiple cancers including 
colorectal cancer (CRC), pancreatic ductal adenocarcinoma (PDAC), and breast cancer[1-4]. While numerous 
studies have revealed that CAFs play pivotal roles in regulating tumor development and progression via 
various “intermediator messengers” involving extracellular matrix, soluble factors, and metabolites[5-7], 
bench-to-bedside translation remains the bottleneck for researchers to properly target CAFs as an efficient 
antitumor therapy. Thus far, no CAF-specific inhibitors have been approved by the United States Food and 
Drug Administration (FDA), and this might be, at least partially, ascribed to the high heterogeneity of 
CAFs.

Heterogeneity of CAFs origin
CAFs can be derived from various cell populations. Tissue-resident fibroblasts are considered one of the 
most prevalent precursors for CAFs. Soluble factors such as transforming growth factor-β (TGF-β) and 
platelet-derived growth factor (PDGF) derived from neighboring tumor cells have been implicated in de 
novo activation of CAFs[8,9]. Additionally, exosomes (including shuttling cargos such as miRNAs and 
lncRNAs) have also played essential roles in the transformation of normal fibroblasts (NFs) to CAFs. In 
some types of cancers, such as pancreatic and liver cancers, stellate cells are recognized as another critical 
source of CAFs, which have been termed pancreatic stellate cells (PSCs) and hepatic stellate cells (HSCs), 
respectively. Classic TGF-β, PDGF signaling, and vitamin A deficiency have been found to be involved in 
PSC activation[10,11]. Furthermore, a recent work unveiled that stimulation of IGF-1 signaling assisted HSCs 
in acquiring a fibroblast-like phenotype. Mesenchymal stem cells (MSCs) are also one of the most 
commonly studied sources of CAFs. Effectors stimulating transdifferentiation of MSCs to CAFs vary across 
different cancers[12,13]. For instance, the OPN-MZF1-TGF-β axis was able to mediate MSC-CAF 
transformation in breast cancer[14], while TGF-β, as well as CXCL16, participated in the activation of MSCs 
in prostate cancer. Lastly, other types of cells, including epithelial cells, endothelial cells, hematopoietic stem 
cells (HSCs), cancer stem cells, adipocytes, and pericytes, have also been reported to possess the potential to 
transdifferentiate into CAFs. Of note, there is less evidence relating to these origins, which needs further 
investigation[15]. Taken together, the origins of CAFs have not been fully elucidated yet. As distinct 
effectors/signaling pathways contribute to the generation of CAFs, which are related to cancer types or the 
cell types that the CAFs originated from, it would be meaningful to monitor the dynamic origins of CAFs 
more precisely during cancer progression by taking advantage of advanced technologies such as lineage 
tracing and single-cell special analysis.

Functional diversity of CAFs
Similar to the existence of heterogeneity in cellular origins, CAFs exhibit diversity regarding their biological 
characteristics and function, which was firstly corroborated by David A. Tuveson Group[16]. By exploiting in 
vitro 3D co-culture system and in vivo mouse/patient-derived PDAC tissues, they found two distinct 
subtypes of CAFs present in PDAC. One subpopulation of CAFs, located immediately adjacent to 
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neoplastic cells, showed elevated expression of α-SMA and low expression of IL-6 (myCAFs), whereas the 
other, distantly distributed throughout the tumor, had reduced α-SMA expression and elevated production 
of inflammatory factors including IL-6, thus was termed inflammatory CAFs (iCAFs). Intriguingly, these 
two subpopulations of CAFs showed distinct transcriptome profiles related to their characteristics and 
could dynamically change from one state to the other. This study highlighted that various subtypes of CAFs 
rather than one homologous pro-tumoral CAF population may exist in the TME, which can partially 
explain the failure encountered in clinical trials by targeting α-SMA+ CAFs[17,18]. Likewise, the two 
aforementioned CAF populations with distinct α-SMA expression and transcriptomes have also been 
reported in CRC, supporting the findings in PDAC[19]. Moreover, another study from the same group 
further identified a novel population of CAFs with MHC-II and CD74 expression termed antigen-
presenting CAFs (apCAFs). This new subtype of CAFs can directly activate CD4+ T cells in an antigen-
specific fashion, confirming the putative immune-modulatory capacity of CAFs[20]. In accordance, more and 
more in-depth studies have pointed to the functional diversity of these subpopulations of CAFs. For 
example, pharmaceutical inhibition or genetic ablation of Shh signaling, which is involved in driving 
myCAF activation in PDAC, resulted in increased metastasis and decreased animal survival[21,22]. A similar 
phenotype was demonstrated in parallel by another group, which also showed depletion of α-SMA+ 
fibroblasts and led to poorly differentiated tumors and shortened animal survival. More importantly, low 
myCAF content was found to be associated with worse overall survival in human PDAC tumor 
sections[21,23]. Collectively, this evidence strongly supports the tumor-constraining role of myCAFs, which 
should always be kept in mind when considering whether to target CAFs as anticancer therapy. On the 
contrary, accumulating evidence uncovers the pro-tumoral properties of iCAFs. This was not very 
surprising since the key hallmark of iCAFs is secreting inflammatory factors such as IL-6, which have been 
well-studied for their tumor-promoting capability[17]. Recent work from our lab showed that IL-6 secreted 
by CAFs can promote LRG1 expression through STAT3-mediated transactivation, which facilitates 
epithelial-to-mesenchymal transition (EMT) and ultimately leads to liver metastasis in a xenograft mouse 
model of CRC. Since many agents that target individual nodes of the IL-6/STAT3/LRG-1 cascade, including 
IL-6, IL-6R, or JAKs/STAT3, are currently under active investigations as treatments for hematopoietic 
malignancies and solid tumors, this work opens a new and implementable way to mitigate metastasis by 
blocking CAF-tumor cell crosstalk in CRC[24]. Additionally, another seminal study from David A. Tuveson 
Group revealed the underlying molecular mechanism that promotes the diversity of CAFs. They reported 
that IL-1 induced LIF expression and downstream JAK/STAT activation to generate iCAFs. Conversely, 
TGF-β was able to antagonize iCAF generation by downregulating IL-1R expression and promote shifting 
to myCAFs. Consistently, targeting JAK/STAT signaling reduced the number of iCAFs and increased α-
SMA+ myCAFs, indicating a shift from iCAFs to myCAFs. Ultimately, this phenotypic shift within the two 
subpopulations of CAFs led to a dramatic decrease in tumor volume, confirming the opposite function of 
the two CAF subtypes. This study raised a promising strategy to tackle cancer by converting pro-tumoral 
CAFs to tumor-constraining CAFs or selectively depleting tumor-promoting CAFs[25]. The functional 
heterogeneity of cancer-associated fibroblasts in distinct tumors is summarized in detail in Table 1.

With advances in single-cell sequencing and multi-omics approaches, more and more novel CAF subsets 
have been unveiled across different cancers, which have been broadly described elsewhere[18,26]. Hereafter, to 
make the content of this review more clinically relevant, we mainly focus on discussing the CAF 
subpopulations with tumor-promoting properties, thereby possibly being considered as potential targets to 
overcome therapeutic resistance.

Conventional cytotoxic chemotherapies, targeted therapies, and the emerging innovative immune 
checkpoint inhibitors (ICIs) are the mainstays in treating cancer patients. Numerous studies have revealed 
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Table 1. Functional heterogeneity of cancer-associated fibroblasts in distinct tumor types

Cancer types CAF subtypes Characteristic markers Functions References

CD10+/GPR77+ 
CAFs

CD10, GPR77 Chemoresistance, proliferation, 
migration

[34]

dCAFs SCRG1, SOX9, SOX10, etc. [86]

mCAFs Fibulin-1, PDGFRα [86]

BC

vCAFs/cCAFs Nidogen-2 Angiogenesis [86]

CAF-A MMP2, DCN, COL1A2, PDPN, FAP [88]CRC

CAF-B ACTA2, 
TAGLN, PDGFA, LUM

[88]

CAF-D TGF-β1 Invasion, EMT [90]OSCC

CAF-N Hyaluronan Invasion [90]

apCAFsa H2-Aa, H2-Ab1, Cd74, Saa3, Slpi Antigen-present, Immunosuppression [20,58,59]

iCAFsa,b IL6, IL8, PDGFRA, CFD, PLA2G2A, 
HAS1, CXCL2, CCL2, CLU, EMP1, 
LMNA

Immunosuppression, chemoresistance [17,20,91]

myCAFs a,b ACTA2, TAGLN, MMP11, MYL9, 
HOPX, POSTN, TPM1, TPM2

Proliferation, migration, invasion, ECM 
remodeling

[17,20,91,92]

meCAFs Highly active glycolysis Higher risk of metastasis and poor 
prognosis but better response to 
immunotherapy

[93]

PDAC

NetG1+CAFs Netrin G1 Nutritional support 
(glutamate/glutamine metabolism), 
immunosuppression

[74]

PDAC/Oral/CRC/Bladder 
cancers

rCAFs Meflin, BMP-4, Hedgehog, IKKβ Antitumoral effect [21-23,94-98]

BC: Breast cancer; CRC: colorectal cancer; OSCC: oral squamous cell carcinoma; PDAC: pancreatic ductal adenocarcinoma; EMT: epithelial-to-
mesenchymal transition; ECM: extracellular matrix. aThis is also found in BC; bthis is also found in CRC.

the essential roles of CAFs in conferring therapeutic resistance through diverse mechanisms [Figure 1], such 
as remodeling of the extracellular matrix (ECM), maintaining the stemness of cancer stem cells (CSCs), and 
metabolic reprogramming[5-7,27]. More recently, growing evidence also demonstrates the ability of CAFs to 
modulate tumor immunity[15,28].

CAFs promote resistance to chemotherapy 
Chemotherapies are still the main first-line treatment strategies for cancer patients. CAFs are one of the 
most prevalent stromal cell types within the TME across multiple cancers such as CRC and PDAC, and they 
play pivotal roles in regulating the response to chemotherapy. As the major source of extracellular matrix 
(ECM) components, CAFs are considered as a physical barrier to infuluence drug delivery. For instance, 
depletion of CAFs by inhibition of the Hedgehog cellular signaling pathway or administration of 
hyaluronan was able to enhance the delivery of chemotherapy (gemcitabine) in a PDAC mouse model[29,30]. 
Additionally, by upregulation of lysyl oxidase (LOX) or MMPs, CAFs can alter the abundance and 
composition of ECM components, especially collagen, ultimately leading to dysregulated ECM homeostasis 
and resistance to chemotherapy (epirubicin and paclitaxel)[31,32]. Cancer stem cells (CSCs) are a small cell 
population within the bulk tumors that possess self-renewing capability and are largely responsible for 
resistance to chemotherapy. Through the production of cytokines, chemokines, and exosomes (including 
shuttling cargos such as miRNAs, lncRNAs, or cirRNAs), CAFs play a pivotal role in regulating cancer 
stemness and are therefore also a route of therapeutic resistance[33]. A recent study revealed that IL-6 and IL-
8 were secreted by a unique subset of CAFs expressing both CD10 and GPR77 against multiple 
chemotherapeutic interventions (doxorubicin, cyclophosphamide, and paclitaxel and docetaxel and 
cyclophosphamide) in breast and lung cancers. CD10+GPR77+ CAFs constantly secrete IL-6 and IL-8 
through activating the NF-KB signaling pathway, providing a survival niche for cancer stem cells[34]. Our 
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Figure 1. Roles of cancer-associated fibroblasts (CAFs) in cancer drug resistance. CAFs affect almost all cancer treatments, including 
traditional chemotherapy, targeted therapy, and immunotherapy. There are various mechanisms, such as secretion of growth factors, 
production of extracellular vesicles, and metabolites, through which CAFs promote drug resistance. Chemoresistance is enhanced by 
secreted factors from CAFs. Among them, TGF-β2 and IL-6/IL-8 from CD10+GPR77+ CAFs induce GLI2 upregulation and NF-κB 
activation, respectively, to maintain the stemness of cancers. IL-6 and/or IL-8 from CAFs were also found to induce EMT or chromatin 
remodeling in cancer cells. Upon stimulation with cytokines, such as IL-6, IL-8, NRG1, and HGF, the response to targeted therapies can 
be undermined by BRD4 modification, HER3 signaling activation, and MAPK and PI3K/AKT activation. Furthermore, CAFs mitigate 
tumor immunity by polarizing macrophages into the M2 phenotype, suppressing the function of NK and T cells and oncolytic viruses 
through Chi3L1, TGF-β, NetG1, CXCL12, IL-1α/β, and IFN-β1. Although appealing, targeting CAFs remains a big challenge today. The 
efforts to define CAF subtypes and further decipher their functions in the microenvironment may shed light on discovering new 
targeting strategies and provide more benefits to cancer patients. EMT: Epithelial-to-mesenchymal transition; CAF: cancer-associated 
fibroblast.

recent study also demonstrated that hypoxia-induced HIF1α and CAF-derived TGF-β2/Smad signal 
concurrently transactivate the expression of Hedgehog transcription factor GLI2 in cancer stem cells. 
Blockade of GLI2 signal induced by HIF1a and TGFβ2 effectively reverses the CAF-promoted resistance to 
5-FU-based chemotherapy in colorectal cancer. Interestingly, a high level of HIF1α/TGFβ2/GLI2 can predict 
the high risk of recurrence in patients undergoing chemotherapy. This study proposed a potential 
biomarker as well as a potential new strategy to overcome chemoresistance by targeting CAFs signaling[35]. 
Similarly, by directly transferring exosomes as well as its shuttling cargo-miR-92a-3p to cancer cells, CAFs 
contributed to cancer stemness by activating the wnt/β-catenin pathway, which ended in resistance to 
therapy[36]. Of note, CAFs displayed a high basal level of autophagy compared to their counterparts in 
different cancers, such as PDAC, ovarian cancer, and head and neck squamous cell carcinoma (HNSCC), 
and autophagy could be further induced in response to stimuli from the TME[37-39]. It is believed that 
secretory autophagy promotes cancer survival by providing metabolites or other pro-tumoral effectors, 
including cytokines and growth factors in the harsh tumor milieu. It was also reported that the elevated level 
of autophagy in CAFs induced epithelial-to-mesenchymal transition and stemness in tumor cells, thus 
contributing to metastasis and drug resistance. Furthermore, another important role of stress-induced 
autophagy in CAFs was recently reported to regulate exosome release[40,41]. Thus, the involvement of 
autophagy in shaping the TME deserves further attention. Targeting autophagy-related core machinery by 
small molecules might be an effective alternative to deal with chemoresistance caused by CAFs.
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CAFs enhance resistance to targeted therapy 
In addition to chemotherapy, the CAF-derived secretome was also found to mitigate the response to 
targeted therapies. HGF was found to provide an alternative BRAF-independent mechanism for ERK-
MAPK activation to mediate resistance to BRAF-targeted therapies in melanoma[42]. Wnt signaling 
modulated by CAFs has also been implicated in resistance to vemurafenib by attenuating the response of 
melanoma cells to DNA damage[43]. CAF-derived NRG1 confers antiandrogen resistance in prostate cancer 
by activating HER3 signaling[44]. In addition, we recently found that the CAF-derived IL-6/8-JAK2 signaling 
cascade can promote BRD4 phosphorylation[45], a critical epigenetic regulator in the regulation of cancer cell 
stemness. BRD4 phosphorylation induces chromatin remodeling, supporting a tumor-promoting 
transcriptional program and thus leading to BET inhibitor resistance. Given the prominent roles of 
epigenetic reprogramming in tumorigenesis and tumor progression, the finding paves a new way to more 
effectively treat CRC by co-targeting epigenetic modulators and CAF-mediated signaling pathways. In the 
presence of CAFs, tumor cells also displayed resistance to cetuximab, a monoclonal antibody therapy 
targeting epidermal growth factor receptor (EGFR). A further study ascribed this to increased secretion of 
EGF from CAFs[10,46]. Another recent study demonstrated that ECM remodeling and stiffness features were 
positively correlated with CAFs activation in CRC patients’ tissue samples. Mechanistically, key components 
of the renin-angiotensin system (RAS), such as angiotensin II (ANGII) produced by CAFs, are involved in 
ECM deposition. More importantly, targeting CAF-derived RAS signaling was able to improve response to 
antiangiogenic therapy (bevacizumab), which was due to reduced ECM stiffness[47]. Intriguingly, matrix 
stiffness can induce autophagy in CAFs by stiffness sensing through the Integrin αV-focal adhesion kinase-
AMPKα axis[48], forming a CAF–ECM positive feedback regulatory loop. Collectively, these studies show an 
intimate connection between CAFs and resistance to targeted therapy. Blocking CAF-related signaling 
pathways will be a powerful strategy to tackle this tough issue.

CAFs modulate response to ICI
Immunotherapy, specifically immune checkpoint inhibitors (ICIs), has led to a revolution in cancer 
treatment paradigms in the past decade. While ICIs have shown effectiveness in multiple cancers such as 
melanoma and lung cancer, the majority of patients cannot benefit from the treatment, especially those with 
“cold tumors”, such as PDAC and CRC[49,50]. Based on the underlying mechanism of ICI action, several 
potential markers are proposed to be related to clinical response, including the PD-L1 expression level, 
specifically on tumor cells and APC cells, immune composition within the TME, neoantigens, tumor 
mutation burden, etc. Recent evidence shows that CAFs are linked to the resistance of ICIs[15]. CAFs can 
modulate the recruitment and activity of immune cells mainly through regulating ECM remodeling, the 
expression of immune checkpoints, and cytokines/chemokines, thereby skewing the TME to 
immunosuppressive status. For example, CAF-modified ECM is involved in the exclusion of cytotoxic T 
cells (CTLs) from the proximity of tumor cells. The secretion of matrix proteins and the production of 
matrix metalloproteinases (MMPs) by CAFs increased matrix stiffness, which not only promotes the 
migration and invasion of cancer cells but also serves as the physical barrier for immune cell 
infiltration[51,52]. Depletion of FAP+ CAFs, which exhibited upregulation of proinflammatory factors similar 
to iCAFs, can decrease tumor volumes in a CD4+ T cell- and CD8+ T cell-dependent manner in a KPC 
mice model[53,54]. Treating the FAP+ CAF-depleted mice with ICIs targeting PD-L1/CTLA-4 dramatically 
reduced tumor volumes. Furthermore, FAP+ CAFs are considered the principal source of CXCL12 and IL-
6, which have been implicated in the prevention of T cell accumulation/activity in the tumor. Combined 
treatment with inhibitor targeting the CXCL12–CXCR4 axis or IL-6 antibody and anti-PD-L1 elicited 
synergistic efficiency in a PDAC mouse model[55-57]. apCAFs, which present antigens to CD4+ T cells 
through expressing MHCII molecules, were speculated to deactivate CD4+ T cells by inducing either anergy 
or differentiation into Tregs and dampen antitumor immunity[20,58]. Interestingly, an analog to apCAFs was 
reported to kill CD8+ T cells in an antigen-dependent manner via PD-L2 and FASL[59]. Thus, targeting 
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apCAFs might enhance antitumor immunity by restricting immune checkpoint activation. Another newly 
published work unraveled that CAF-derived wnt2 suppressed dendritic cell (DC) differentiation as well as 
DC-mediated antitumor T cell response. Targeting wnt2+ CAFs via monoantibody was able to significantly 
restore antitumor T cell response and enhance response to anti-PD-1 in both esophageal squamous cell 
carcinoma (OSCC) and a CRC mouse model[60]. Additionally, numerous studies have demonstrated that the 
expression of immune checkpoints such as PD-L1, PD-L2, and B7-H3 on CAFs can directly induce T cell 
exhaustion and deactivation[59,61,62]. Moreover, CAFs were reported to induce PD-L1, PD-1, cytotoxic 
lymphocyte-associated antigen-4 (CTLA-4), lymphocyte-activation gene-3 (LAG-3), and mucin-domain 
containing-3 (TIM-3) on the surface of immune cells or tumor cells, which dampen the proliferation and 
activity of immune cells, especially cytotoxic T cells[63-66]. By regulating the expression of those immune 
checkpoint molecules, CAFs also possibly potentiate the effect of ICIs. Enhanced recruitment of 
immunosuppressive cells, such as tumor-associated macrophages (TAMs) and myeloid-derived suppressor 
cells (MDSCs), was also shown to reduce the sensitivity of immunotherapy[67-69]. For instance, 
overexpression of proline isomerase (PIN1) in CAFs was correlated with more infiltration of TAMs and 
fewer infiltrated CD8+ T cells in human PDAC tissue samples. Targeting pin1 rendered PDAC tumors 
more sensitive to anti-PD-1 treatment by disrupting the immunosuppressive TME[70]. CAF-derived soluble 
effectors such as CCL2 and CSF1 were critical for the recruitment of MDSCs. Depletion of MDSCs by 
targeting CSF1 was shown to significantly improve response to ICIs such as anti-CTLA4[53,67,71,72]. By taking 
advantage of single-cell analysis, a recently published seminal work has revealed a positive feedback loop 
between specific CAF-S1 clusters and Tregs in breast cancer, which subsequently contributed to resistance 
to immunotherapy[73]. In addition, a recently identified subtype of CAFs, termed NetG1+ CAFs, possessed 
intrinsic immunosuppressive properties and inhibited NK cell activity in PDAC[74]. Cardiotrophin-like 
cytokine factor 1 (CLCF1) derived from CAFs was able to promote infiltration and polarization of 
neutrophils in HCC[75]. Taken together, these studies suggest that co-targeting CAFs or CAF-derived 
signaling pathways might be one of the most attractive options to improve the efficiency of ICIs by 
reshaping the tumor immune microenvironment.

Challenges and Perspectives to target CAFs
Although tremendous efforts have been made to either directly or indirectly target CAFs [Figure 2], many 
strategies have failed to show promising clinical outcomes. The breadth of CAF functions and the 
interconvertibility of different subtypes pose a challenge for the field. In addition to their oncogenic 
functions, it has been revealed that CAFs can also play important roles in restraining tumors[21,23]. In several 
clinical or preclinical studies, targeting CAFs by some approaches did not lead to sufficient therapeutic 
efficacy or even promoted disease progression[76-78]. For example, depletion of α-SMA+ CAFs resulted in 
unexpected immunosuppression and aggressive tumor. Analogously, targeting the Sonic hedgehog (SHH) - 
smoothened (SMO) signaling that is involved in the activation of myCAFs also did not present therapeutic 
efficiency or, in some contexts, even shortened patient survival in clinical trials. Further studies indicated 
that this might be due to the aforementioned heterogeneity of CAFs present in the tumor milieu, and 
myCAFs tended to play a tumor-restraining role. On the contrary, depletion of FAP+ CAFs or interference 
with its derived CXCL12-CXCR4 axis restored antitumor immunity in PDAC. This prompted an ongoing 
phase II clinical trial involving patients with pancreatic cancer (NCT02826486). Thus, more efforts should 
be addressed to define CAF subtypes and further decipher their functions when interacting with other 
components in the microenvironment. In addition to direct depletion of CAFs, modulation of CAF activity 
would be another way to target CAFs. An important study described above found that the IL-1/JAK/STAT 
signaling cascade was mainly responsible for the generation of iCAF, which displayed tumor-promoting 
properties across multiple cancers. Targeting IL-1 or JAK was considered as an appealing approach to 
converting pro-tumoral CAFs into a tumor-restraining subpopulation. The preclinical data have 
encouraged an early phase I clinical trial to combine standard chemotherapy and IL-1 receptor antagonist 
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Figure 2. Targeting cancer-associated fibroblasts (CAFs) in cancer. Four main strategies targeting cancer-associated fibroblasts (CAFs) 
as cancer treatment are discussed. CAFs can be depleted by several treatments targeting CAF-specific markers, such as FAP and α-
SMA. The normalization of CAFs from a pro-tumorigenic status to a quiescent or tumor-suppressive state can also be used for cancer 
treatment with small molecules such as ATRA or VDR ligands. The crucial signalings for CAF tumor-promoting function, such as 
cytokines and growth factors signalings, can be targeted to inactivate CAFs. Finally, CAF-derived extracellular matrix (ECM) proteins or 
related signalings can be targeted to induce ECM remodeling. MDSC: Myeloid-derived suppressor cell; FAP: fibroblast activation 
protein; CAR: chimeric antigen receptor; ATRA: all-trans retinoic acid; VDR: vitamin D receptor; FGFR: fibroblast growth factor receptor; 
SMO: smoothened; MMP: matrix metalloproteinase.

Anakinra in PDAC (NCT02021422). All-trans retinoic acid (ATRA) may normalize the CAFs to an inactive 
state in pancreatic ductal adenocarcinoma (PDAC)[79] (NCT03307148, NCT00001509). Pharmacological 
stimulation of the vitamin D receptor (VDR) with its ligand calcipotriol can induce stromal 
reprogramming, ultimately reversing chemotherapeutic resistance induced by CAFs in the PDAC 
models[80]. Targeting the crucial signalings for CAFs’ tumor-promoting function, such as tocilizumab 
targeting IL-6 receptor[81] (NCT02767557) or an FGFR inhibitor[82] (NCT02699606, NCT01962532, 
NCT01703481, NCT02421185), can also be exploited to counteract the pro-tumoral effects of CAFs. Finally, 
CAF-derived extracellular matrix (ECM) proteins or related signalings can be targeted to induce ECM 
remodeling, which ultimately alleviates therapeutic resistance caused by CAFs. For example, losartan, an 
angiotensin inhibitor, can reduce hyaluronan production by CAFs, thereby improving vascular perfusion 
and drug delivery in breast and pancreatic cancers[83] (NCT04106856). The above-mentioned clinical trials 
targeting CAFs are summarized in Table 2.

The rapid development of single-cell RNA sequencing provides great opportunities to define subtypes and 
interpret the roles of CAFs. Although the high heterogeneity and diverse potential functions of CAFs have 
been revealed in many types of cancer utilizing scRNA-seq[20,84-88], there are still many details to be 
elucidated: (1) The precise roles of various CAF subtypes in therapeutic resistance remain largely undefined. 
The precise identification and characterization of CAFs’ role in promoting or restraining tumors might pave 
new ways to target CAFs; (2) the mechanism of how the homeostasis between fibroblasts [including CAF 
subtypes and normal fibroblasts (NFs)] is maintained requires further investigation. For example, 
fibroblasts play different roles in tumors by secreting different cytokines[35]. The interconversion between 
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Table 2. CAF targeting strategies in cancers and related clinical trials

Target Drugs/agents Cancer models Mechanism of action Phase Trail No.

CAF depletion

FAP antibody 
(Sibrotuzumab)

Lung cancer Depletion FAP+ CAFs Phase I NCT02209727FAP

Talabostat (PT-100) Multiple cancer types Inhibits FAP enzymatic activity Phase I-
II

NCT00303940, 
NCT00086203,  
NCT00083252,  
NCT00083239,  
NCT00080080

CAF activation blocking

IPI-926 (saridegib) 
and GDC0049 
(vismodegib)

Pancreatic Cancer Reduced CAF activation Phase I-
II

NCT01130142,  
NCT01195415

Hedgehog

LDE225 (sonidegib) Multiple cancer types Inhibits Hedgehog signaling 
through SMO inhibition

Phase I-
II

NCT02027376,  
NCT02195973,  
NCT02138929,  
NCT01487785,  
NCT01327053,  
NCT01708174,  
NCT01350115,  
NCT00961896

PDAC,  
Ovarian and 
Colorectal Cancer 

Phase I NCT02179970 Plerixafor

Children Cancer, Solid 
Tumor

Phase II NCT01225419 

CXCR4

BL-8040 PDAC

Inhibit CXCL12 production, restore 
antitumoral immunity

Phase II NCT02826486

IL-6 receptor Tocilizumab Pancreatic Carcinoma Phase II NCT02767557

Lymphoma, 
Adenocarcinoma, etc.

Phase I NCT01962532, 
NCT01703481, 

Multiple cancer types Phase II NCT02699606

FGFR JNJ-42756493 
(erdafitinib)

Hepatocellular 
Carcinoma

Prevents CAF activation 

Phase I-
II

NCT02421185

CAF Normalization

IL-1 receptor Anakinra PDAC CAF normalization Phase I NCT02021422

Vitamin A 
metabolism

ATRA PDAC, Nephroblastoma Normalize stellate cells Phase I-
II

NCT03307148, 
NCT00001509

VDR Calcipotriol Breast Cancer, CAF normalization Phase I NCT03596073

Paricalcitol Multiple cancer types CAF normalization and improved 
chemotherapeutic efficacy

Phase I-
II

NCT00637897, 
NCT03520790, 
NCT03883919, 
NCT03415854

ECM remodeling

Angiotensin 
receptor

Losartan Breast cancer, 
Pancreatic cancers

Reduces hyaluronan production by 
CAFs

Phase 
III

NCT04106856, 
NCT03900793, 
NCT01805453 

PDAC: Pancreatic ductal adenocarcinoma; CAF: cancer-associated fibroblasts.

CAF subtypes might change the tumor’s behavior. Furthermore, NFs can be educated to be tumor-
promoting by tumor cells or CAFs[5,89]. Epigenetic and chromatin remodeling could be a potential 
mechanism to interpret these conversions. (3) The effect of therapeutic approaches on CAFs is another 
direction to be investigated. Many therapeutic paradigms such as chemotherapy could profoundly affect the 
CAFs’ status and the tumor microenvironment in which they reside, ultimately changing the response of 
the tumors to treatments. With advances in technologies, the studies of multi-omics such as 
transcriptomics, proteomics, epigenomics, and metabonomics, improve our understanding of cancer 
biology in an unprecedented way. A comprehensive analysis and precise functional studies in CAFs are 
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required to integrate these multi-omics data using multiple model systems, especially at single-cell 
resolution. Next, super-resolved spatial omics studies may offer systematic approaches to understand the 
interplay between CAFs and other cells in tumors. In conclusion, these comprehensive investigations may 
warrant both preclinical and clinical studies targeting CAFs to achieve better clinical benefits for patients.
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