
Yip et al. Hepatoma Res 2022;8:12
DOI: 10.20517/2394-5079.2021.144

Hepatoma Research

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, 
adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as 

long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

www.hrjournal.net

Open AccessReview

Overview of methodologies and statistical strategies 
in observational studies and meta-analyses on the 
risk of hepatocellular carcinoma in patients with 
chronic hepatitis B on entecavir or tenofovir therapy
Terry Cheuk-Fung Yip1,2,3, Vincent Wai-Sun Wong1,2,3, Mandy Sze-Man Lai1,2,3, Vicki Wing-Ki Hui1,2, Yee-Kit 
Tse1,2,3, Grace Lai-Hung Wong1,2,3

1Medical Data Analytics Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, 
China.
2Department of Medicine and Therapeutics, 9/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, 30-32 Ngan 
Shing Street, Shatin, Hong Kong, China.
3Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.

Correspondence to: Grace Lai-Hung Wong, MD, Department of Medicine and Therapeutics, 9/F Lui Che Woo Clinical Sciences 
Building, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, Hong Kong, China. E-mail: wonglaihung@cuhk.edu.hk

How to cite this article: Yip TCF, Wong VWS, Lai MSM, Hui VWK, Tse YK, Wong GLH. Overview of methodologies and 
statistical strategies in observational studies and meta-analyses on the risk of hepatocellular carcinoma in patients with chronic 
hepatitis B on entecavir or tenofovir therapy. Hepatoma Res 2022;8:12. https://dx.doi.org/10.20517/2394-5079.2021.144

Received: 29 Nov 2021  First Decision: 6 Jan 2022  Revised: 18 Jan 2022  Accepted: 7 Feb 2022  Published: 11 Mar 2022

Academic Editor: Guang-Wen Cao  Copy Editor: Xi-Jun Chen  Production Editor: Xi-Jun Chen

Abstract
Entecavir (ETV) and tenofovir disoproxil fumarate (TDF) are first-line antiviral therapies for patients with chronic 
hepatitis B (CHB) and reduce the risk of disease progression and liver-related complications, as well as improve 
survival by effectively suppressing viral replication. Nevertheless, since the first publication in 2019 on a lower risk 
of hepatocellular carcinoma (HCC) in Korean patients receiving TDF than those receiving ETV, the topic has 
remained a hot and unsettled debate. Multiple studies and meta-analyses have yielded conflicting results. As HCC 
takes time to develop, studies are mainly observational to benefit from a larger sample size and longer follow-up 
that provides a higher statistical power to compare the two treatments. However, TDF was available to CHB 
patients a few years later than ETV in most countries, thus leading to a difference in follow-up duration. Moreover, 
despite studying the same topic, the difference in data sources and available parameters, inclusion and exclusion 
criteria, and use of statistical methods complicated the interpretation and comparison of the findings and 
contributed to between-study heterogeneity in meta-analyses. This review describes some caveats in interpreting 
and comparing the results from these observational studies and meta-analyses. Future studies should explore 
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better designed observational studies with high-quality data sources, and aggregation of patient data in meta-
analysis to tackle between-study heterogeneity.

Keywords: Bias, confounding, hepatitis B virus, hepatocellular carcinoma, liver cancer, nucleos(t)ide analogues, 
propensity score

INTRODUCTION
Entecavir (ETV) and tenofovir disoproxil fumarate (TDF) are currently recommended by all the 
international guidelines as the first-line antiviral treatments for patients with chronic hepatitis B (CHB) who 
fulfill treatment criteria[1-3]. However, starting from the publication by Choi et al.[4] in 2019 which reported a 
lower risk of hepatocellular carcinoma (HCC) among TDF-treated patients than ETV-treated patients, a hot 
debate on whether ETV and TDF differ in HCC prevention has been initiated. Since then, numerous studies 
and meta-analyses have been performed[5-8]. Till now, the debate remains unresolved. It is expected that 
more studies will continue to be performed until there is enough evidence to draw a conclusion. While 
many studies have been done, the methodology and statistical strategies used are heterogeneous, which may 
affect how clinicians and researchers understand, compare, and combine findings from different studies. In 
this review, we summarize and compare different methodologies and statistical strategies that were applied 
in the previous studies on comparing ETV and TDF on HCC risk, and their impact on data interpretation 
and data aggregation.

METHODOLOGY USED IN PREVIOUS STUDIES COMPARING ETV AND TDF ON HCC RISK
Data source
Most of the studies comparing ETV and TDF on the risk of HCC development are based on observational 
data. The common data sources included hospital-based clinical cohorts, administrative claims databases, 
and electronic health record databases[7]. Tseng et al.[7] demonstrated in their meta-analysis that the effect 
estimates can differ depending on the data sources. In particular, CHB patients who were treated by ETV or 
TDF did not have a statistically significant difference in the incidence of HCC in the subgroup analysis of 
eleven hospital-based clinical cohorts [adjusted hazard ratio (aHR) = 1.03, 95% confidence interval (CI): 
0.88-1.21; I2 = 0%][7]. Here, I2 statistic quantifies the percentage of the variability in effect estimates that is due 
to heterogeneity rather than random error; a small I2 statistic indicates little heterogeneity. In contrast, the 
effect estimates favor the use of TDF over ETV in two administrative database studies without laboratory 
data (aHR = 0.67, 95%CI: 0.59-0.76; I2 = 0%), as well as two electronic health record databases with 
laboratory data (aHR = 0.69, 95%CI: 0.25-1.90; I2 = 0%)[7]. Observational studies often allow a large sample 
size to provide sufficient statistical power to test for the difference in treatments on long-term clinical 
outcome. However, depending on the data sources, studies can suffer from different extent of biases 
including selection bias, and residual confounding bias when some important confounders are not 
captured. It is essential to understand the limitations and better identify all possible confounding factors 
that can mask the true treatment effect.

Inclusion and exclusion criteria
Inclusion and exclusion criteria are critical for defining a study population that represents the target 
population. Poorly designed inclusion and exclusion criteria can lead to selection bias and low 
generalizability. Some major differences in the inclusion and exclusion criteria of the previous studies 
include the study period, the inclusion of treatment-experienced patients, and the inclusion of patients with 
decompensated liver cirrhosis. In many countries where the previous studies came from, ETV was available 
some years before TDF. This caused an imbalance in the follow-up duration of the two treatment groups, 
especially in some earlier studies. Moreover, some studies may have different inclusion periods for ETV and 
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TDF due to availability of the data [Table 1].

Moreover, channeling bias can exist whenever the time of introduction of two treatments with a similar 
indication is different. Channeling bias is a confounding bias that occurs when a newly registered drug and 
an established drug are preferentially prescribed to patients with different baseline clinical 
characteristics[9,10]. That usually occurs when a new drug becomes available; clinicians tend to start the new 
drug or switch the old drug to the new drug in patients for whom the old treatment is less effective. This can 
result in a less favorable clinical profile of the patients who started the new drugs. On the other hand, there 
exist some additional differences in the baseline clinical characteristics between ETV- and TDF-treated 
patients due to indications. For instance, clinicians may prioritize patients with advanced age, as well as 
renal and bone problems to ETV over TDF treatment due to safety issues. Also, pregnant women who 
required antiviral treatment receive TDF but not ETV during pregnancy. A way to exclude pregnant women 
who will stop antiviral treatment after delivery would be to include only CHB patients on at least 1 year of 
antiviral therapy. To handle channeling bias, it is important to adjust for the difference in baseline clinical 
characteristics between the patients by various statistical methods. Another direct way to address 
channeling bias is to restrict the start of the study period until both drugs are approximately equally 
available for the patients. This may however be hard to implement due to the reduced sample size and 
statistical power. On the other hand, some studies included patients who received other nucleos(t)ide 
analogues before the use of ETV or TDF[11-15]. As some patients were switched from previous nucleos(t)ide 
analogues to TDF, that can result in a much longer total treatment duration and potentially a more notable 
reduction in HCC.

In the meta-analysis by Choi et al.[8], they showed that the inclusion of decompensated cirrhosis was a 
source of heterogeneity between studies. They demonstrated that TDF treatment is associated with a lower 
incidence of HCC than ETV treatment in nine studies that included patients with decompensated cirrhosis 
(aHR = 0.69, 95%CI: 0.55-0.85; I2 = 0%). In the other six studies that did not include patients with 
decompensated cirrhosis, the pooled effect estimate still favors TDF over ETV, yet did not reach statistical 
significance (aHR = 0.90, 95%CI: 0.76-1.06; I2 = 4%). Choi et al.[8] pointed out that patients with 
decompensated cirrhosis suffered from a high risk of HCC and can thus strengthen the statistical power of 
the studies to detect the treatment difference. As ETV and TDF treatments can benefit patients with 
decompensated cirrhosis from improved survival, they are thus a potential group of patients that can show 
the treatment effect and the potential treatment difference between ETV and TDF on the development of 
HCC[16-19]. In particular, Shim et al.[16] compared 55 ETV-treated patients with decompensated cirrhosis with 
144 ETV-treated patients with compensated cirrhosis. They demonstrated that ETV provided a comparable 
benefit on virological, biochemical, and serological responses at 6 and 12 months to patients with 
decompensated cirrhosis as compared to patients with compensated cirrhosis. Patients with decompensated 
cirrhosis benefited from improved liver function after 12 months of ETV treatment[16]. Kumada et al.[19] also 
showed that antiviral treatment is associated with a reduced risk of liver-related mortality in 160 patients 
with decompensated cirrhosis. In existing studies, there was no clear agreement on whether decompensated 
cirrhosis should be included or not in the study population [Table 1].

STATISTICAL STRATEGIES USED IN PREVIOUS STUDIES COMPARING ETV AND TDF 
ON HCC RISK
Propensity score
In observational studies, treatment selection for the patients is not randomized but judged by the clinicians 
based on patients’ medical history. Thus, the baseline differences in the medical history of patients (i.e., 
confounding factors) have to be adjusted for before making a comparison between the patients receiving the 
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Table 1. List of the methodologies used in published full articles between Dec 2018 and Oct 2021 on comparison between entecavir (ETV) and tenofovir disoproxil fumarate (TDF) on the risk of 
hepatocellular carcinoma (HCC) after the publications by Kim et al.[41] and Choi et al.[4]

Ref.

Number of ETV- & 
TDF-treated 
patients (study 
period)a

Inclusion of patients with 
decompensated cirrhosis (% 
in the cohort)

Mentioned about missing data 
handling (method adopted)

Use of 
competing risk 
analysis

Use of propensity 
score (balancing 
strategy)

Variables included in 
the propensity scoreb

Conclusion 
TDF vs. ETV 
HR (95%CI)

Kim et al.[41] 2018 ETV (n = 721): 
1/2007-4/2017 
TDF (n = 604): 
1/2007-4/2017

No Yes (complete case analysis) No Yes (matching) 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 
13, 14, 17, 18, 19

Matching: 
0.74 (0.39-1.39) 
P = 0.340

Choi et al.[4] 2019 
Nationwide cohort

ETV (n = 11,464): 
1/2012-12/2014 
TDF (n = 12,692): 
1/2012-12/2014

Yes (3.7%) Yes (multiple imputation) Yes Yes (matching) 1, 2, 3, 4, 7, 25, 47, 53 Matching: 
0.68 (0.60-0.78) 
P < 0.001

Choi et al.[4] 2019 
Hospital cohort

ETV (n = 1680): 
1/2010-12/2016 
TDF: (n = 1,141): 
1/2010-12/2016

Yes (59.9%, both compensated 
and decompensated)

Yes (multiple imputation) Yes Yes (matching, 
weighting)

1, 2, 3, 4, 7, 8, 9, 10, 11, 14, 
17, 18, 19, 28, 29, 30, 31, 
32, 36

Matching: 
0.68 (0.46-0.99) 
P = 0.04 
Weighting: 
0.68 (0.46-0.99) 
P = 0.045

Kim et al.[5] 2019 ETV (n = 1484): 
1/2012-12/2014 
TDF (n = 1413): 
1/2012-12/2014

No No No Yes (matching, 
weighting)

1, 2, 3, 5, 7, 8, 9, 10, 19 Matching: 
1.02 (0.77-1.35) 
P = 0.884 
Weighting: 
1.00 (0.77-1.29) 
P = 0.988

Yip et al.[6] 2020 ETV (n = 28,041): 
1/2008-6/2018 
TDF (n = 1309): 
1/2008-6/2018

Yes (4.7%) Yes (multiple imputation) Yes Yes (matching, 
weighting)

1, 2, 3, 4, 7, 8, 9, 10, 11, 14, 
17, 18, 19, 36, 40, 45, 51

Matching: 
0.39 (0.18-0.84) 
P = 0.016 
Weighting: 
0.36 (0.16-0.80) 
P=0.013

Hsu et al.[42] 2020 ETV (n = 4837) 
TDF (n = 700)

Yes (10.7%) Yes (complete case analysis) Yes Yes (matching) 1, 2, 3, 4, 6, 8, 11, 18, 19, 41 Matching: 
0.89 (0.41-1.92) 
P = 0.77

Lee et al.[43] 2020 ETV (n = 1439): 
2/2007-1/2019 
TDF (n = 1583): 
2/2007-1/2019

No Yes (multiple imputation) Yes Yes (matching, 
weighting)

1, 2, 3, 7, 8, 9, 10, 11, 12, 13, 
15, 16, 17, 18, 19, 24, 26, 27, 
28, 39, 48, 52

Matching: 
1.03 (0.70-1.51) 
P = 0.880 
Weighting: 
0.97 (0.68-1.38) 
P = 0.866

ETV (n = 921): 
11/2008-12/2017 

Matching: 
1.84 (0.90-3.79) 

Ha et al.[44] 2020 No No Yes Yes (matching, 
weighting)

1, 2, 3, 4, 8, 9, 10, 11, 12, 13, 
15, 18, 19, 20, 24, 40
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TDF (n = 419): 
11/2008-12/2017

P = 0.088 
Weighting: 
1.30 (0.81-2.10) 
P = 0.276

Oh et al.[45] 2020 ETV (n = 753): 
1/2011-1/2014 
TDF (n = 807): 
12/2012-12/2015

Yes (6.9%) No No Yes (matching) 1, 2, 3, 4, 6, 7, 8, 9, 10, 13, 
14, 18, 19, 27, 28, 34, 35, 37

Matching: 
1.30 (0.80-2.02) 
P = 0.295

Papatheodoridis et 
al.[11] 2020

ETV (n = 772): 
Before 12/2012 
TDF (n = 1163): 
Before 12/2012

No No No No N.A. Multivariable 
analysis 
0.93 (0.55-1.56) 
P = 0.791

Chen et al.[12] 2020 ETV (n = 993): 
1/2008-12/2018 
TDF (n = 567): 
1/2008-12/2018

Yes (15.4%) Yes (multiple imputation) No Yes (matching, 
weighting)

1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 
13, 14, 18, 19, 26, 27, 34, 44

Matching: 
0.66 (0.46-0.95) 
P = 0.023 
Weighting: 
0.73 (0.54-0.98) 
P = 0.038

Hu et al.[46] 2020 ETV (n = 678): 
1/2008-3/2018 
TDF (n = 216): 
1/2008-3/2018

No Yes (complete case analysis) No Yes (matching) 1, 9, 13, 18, 34, 42, 49 Matching: 
0.66 (0.38-1.14) 
P = 0.141

Su et al.[13] 2021 ETV (n = 2193): 
3/2005-12/2016 
TDF (n = 1094): 
8/2008-12/2016

Yes (8.6%) Yes (categorical variables that 
indicated if patients had missing 
data)

Yes Yes (weighting) 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 
14, 17, 18, 19, 21, 22, 24, 33, 
39, 50, 54

Weighting: 
1.00 (0.76-1.32)c

Shin et al.[47] 2021 ETV (n = 1955): 
1/2007-1/2018 
TDF (n = 1731): 
1/2007-1/2018

No Yes (multiple imputation) Yes Yes (matching, 
weighting)

1, 2, 3, 4, 7, 8, 9, 10, 11, 14, 
17, 18, 19, 29, 30, 31, 32

Matching: 
0.77 (0.46-1.29) 
P = 0.319 
Weighting: 
0.69 (0.43-1.11) 
P = 0.124

Na et al.[48] 2021 ETV (n = 671): 
6/2012-12/2015 
TDF (n = 665): 
6/2012-12/2015

Yes (10.8%) Yes (multiple imputation) No Yes (matching, 
weighting)

1, 2, 4, 8, 9, 11, 15, 18, 19, 
23, 34, 58

Matching: 
1.02 (0.68-1.52) 
P = 0.940 
Weighting: 
1.11 (0.74-1.66) 
P = 0.620

Güzelbulut et al.[23] 
2021

ETV (n = 248): 
1/2007-12/2018 
TDF (n = 359): 
1/2007-12/2018

Yes (6.1%) No No No N.A. Multivariable 
analysis: 
0.66 (0.24-1.80) 
P = 0.414

Choi et al.[34] 2021 ETV (n = 21,486): Yes (34.4%, both compensated Matching: No No Yes (matching) 1, 2, 3, 4, 7, 38, 40, 46



Page 6 of Yip et al. Hepatoma Res 2022;8:12 https://dx.doi.org/10.20517/2394-5079.2021.14414

Cohort 1 1/2013-12/2017 
TDF (n = 54,799): 
1/2013-12/2017

and decompensated) 0.93 (0.86-1.01) 
P = 0.081

Choi et al.[34] 2021 
Cohort 2

ETV (n = 19,871): 
1/2012-12/2014 
TDF (n = 19,871): 
1/2012-12/2014

Yes (34.7%, both compensated 
and decompensated)

No No Yes (matching) 1, 2, 3, 4, 7, 38, 40, 46 Matching: 
0.85 (0.79-0.91) 
P < 0.001

Pol et al.[14] 2021 ETV (n = 814): 
8/2012-12/2015 
TDF (n = 986): 
8/2012-12/2015

No Yes (missing covariate values were 
handled using indicators for missing 
data in the multivariate model)

No Yes (weighting) 1, 2, 3, 7, 8, 9, 11, 12, 13, 15, 
18, 24, 27, 39, 43, 44, 55, 
56, 57

Weighting: 
1.24 (0.49-3.13)c

Chang et al.[15] 2021 ETV (n = 5348): 
1/2011-10/2018 
TDF (n = 1900): 
1/2011-10/2018

Yes (66.5%) Yes (complete case analysis) No Yes (matching, 
weighting)

1, 2, 3, 4, 8, 9, 10, 11, 12, 13, 
14, 26, 27, 28, 33

Matching: 
0.83 (0.65-1.06) 
P = 0.129 
Weighting: 
0.86 (0.69-1.06) 
P = 0.149

aDate format was in month/year. bThe reference list of numbers are as follows. 1: age, 2: gender, 3: DM, 4: cirrhosis, 5: compensated cirrhosis, 6: decompensated cirrhosis, 7: hypertension, 8: platelet count, 9: 
albumin, 10: total bilirubin, 11: ALT, 12: AST, 13: AFP, 14: INR, 15: PT, 16: GGT, 17: creatinine, 18: HBV DNA level, 19: HBeAg status, 20: HBsAg level, 21: HCV, 22: HIV, 23: cholesterol, 24: alcohol drinking, 25: smoking, 
26: APRI, 27: FIB-4 index, 28: CTP score, 29: CUHCC score, 30: GAG-HCC score, 31: PAGE-B score, 32: REACH-B score, 33: CCI, 34: eGFR, 35: MELD, 36: ascites, 37: chronic kidney disease, 38: chronic obstructive 
pulmonary disease, 39: BMI, 40: calendar year of treatment initiation, 41: country of study centers, 42: family history of HCC, 43: geographic origin, 44: HBV treatment naïve at the start of TDF or ETV, 45: hepatic 
encephalopathy, 46: hospital type, 47: level of health care, 48: esophageal varix, 49: presence of upper gastrointestinal varices, 50: race/ethnicity, 51: renal replacement therapy, 52: severity of underlying liver 
disease, 53: socioeconomic status, 54: substance use disorder, 55: time since first treatment, 56: time since HBV diagnosis, 57: time since start of ETV or TDF, 58: time to complete viral response. cP value was not 
provided. AFP: Alpha-fetoprotein; ALT: alanine aminotransferase; APRI: AST to platelet ratio index; AST: aspartate aminotransferase; BMI: body mass index; CCI: Charlson comorbidity index; CTP score: Child-
Turcotte-Pugh score; CUHCC score: Chinese University HCC score; DM: diabetes mellitus; eGFR: estimated glomerular filtration rate; ETV: entecavir; FIB-4 index: Fibrosis-4 index; GAG-HCC score: guide with age, 
gender, HBV DNA, core promoter mutations, and cirrhosis-HCC score; GGT: gamma-glutamyl transferase; HBeAg: hepatitis B e antigen; HBsAg: hepatitis B surface antigen; HBV DNA: hepatitis B virus DNA; HCC: 
hepatocellular carcinoma; HCV: hepatitis C virus; HE: hepatic encephalopathy; HIV: human immunodeficiency virus; INR: international normalized ratio; MELD: model for end-stage liver disease; PAGE-B score: 
platelet age gender B score; PT: prothrombin time; REACH-B score: risk estimation for hepatocellular carcinoma in chronic hepatitis B score; TDF: tenofovir disoproxil fumarate.

two treatments. While multivariable regression is a direct way to model the relationship between treatments and clinical outcomes under the adjustment for 
other confounding factors, the use of propensity scores (PSs) has gained popularity in clinical studies over the past two decades[20]. To compare TDF and ETV 
treatment on HCC risk, PS models the use of TDF or ETV as the dependent variable and the measured confounding factors as the independent variables. PS is 
considered as a balancing score that balances the two treatment groups on their confounding factors. Traditionally, PS is estimated by binary logistic 
regression, while the use of machine learning classification algorithms such as decision tree and gradient boosting has also been studied to incorporate non-
linear relationships between the confounding factors and the treatment assignment[21,22]. In this article, a cohort of 100 TDF-treated patients and 900 ETV-
treated patients with chronic hepatitis B is simulated to illustrate the use of PS, PS matching/weighting algorithm, balance diagnostics of the distribution of 
clinical characteristics between ETV- and TDF-treated patients before and after PS matching/weighting, as well as the impact of the presence of competing risk 
on the estimation of cumulative incidence of HCC.
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After PS is estimated, different statistical strategies including stratification, adjustment, weighting, and 
matching can be used to balance the clinical characteristics of the patients receiving different treatments 
[Figure 1A]. Most of the previous studies comparing ETV and TDF on HCC risk in CHB patients used PS 
matching and/or weighting as the strategies [Table 1], while two out of the 18 studies used solely 
multivariable regression instead of PS[11,23]. These two studies concluded that TDF-treated patients were not 
associated with a lower risk of HCC than ETV-treated patients. In PS matching, each TDF-treated patient is 
matched to one or multiple ETV-treated patients based on similar values of their PSs. A common matching 
algorithm is the nearest-neighbor matching within a pre-specified caliper distance that sets a restriction on 
the maximum difference between the PSs in each of the matched pairs [Figure 1B][24]. In PS weighting, 
weights for every subject are calculated based on their PS to create a weighted cohort in which the 
confounding factors are balanced [Figure 1C]. While different types of weighting methods have been 
proposed, average treatment effect (ATE) and average treatment effects on the treated (ATT) were the two 
commonly used methods in previous studies. If ETV treatment is the reference group, ATE represents the 
average effect of treatment of TDF vs. ETV in the whole study population of treated CHB patients, while 
ATT represents the average effect of treatment of TDF vs. ETV in CHB patients who received TDF 
treatment. Generally, ATE is used if every patient can potentially receive both ETV or TDF, whereas ATT is 
preferred when patients’ clinical characteristics are more likely to determine the treatment they received[25]. 
ATT is used in PS matching, while ATT or ATE can be used in PS weighting.

One of the advantages of using PS over multivariable regression is that the balance of the distribution of 
clinical characteristics between treatments can be explicitly assessed and compared by balance diagnostics 
such as the absolute standardized mean difference after PS matching [Figure 2A], as well as PS weighting 
[Figure 2B][26]; an absolute standardized mean difference of < 0.1 or < 0.2 between the treatment groups is 
generally considered as good balance[24]. When some of the absolute standardized mean differences after 
balancing are larger than the prespecified threshold, a method to manage that would be using a doubly 
robust model that adjusted for those imbalanced covariates in the regression model after PS balancing. 
Moreover, the distribution of the PSs can be examined so that patients who have extreme PS can be 
identified [Figure 1A-C]. These patients usually have clinical characteristics that are not comparable with 
the rest of the cohorts. Unlike the PS method, multivariable regression estimates the conditional effect of 
treatments when keeping other confounding factors fixed. Also, in studies with a small HCC incidence, the 
number of patients who received the two treatments is larger than the number of HCC cases. In that 
situation, more information is available to estimate the relationship between the confounding factors with 
the treatment choice than that with the HCC incidence. Hence, PS is preferable as it models the relationship 
between confounding factors and the use of ETV vs. TDF, while multivariable regression examines the 
relationship of treatment use and other confounding factors on HCC development[27,28].

Missing data imputation
Missing data are common in observational studies[29]. If incomplete data are not handled appropriately, the 
studies can suffer from selection bias as well as a loss of statistical power and validity[30]. Multiple imputation 
is a widely adopted approach for handling missing data which gained popularity in recent years[31]. Unlike 
singular imputation which causes an underestimation of the data variability, multiple imputation preserves 
the uncertainty in the missing data by imputing the unobserved values multiple times[32]. Appropriate use of 
multiple imputation can reduce selection bias and improve precision when compared to complete case 
analysis, in which all records with missing data are excluded from the analysis[31]. There are three typical 
missing data mechanisms namely missing completely at random, missing at random, and missing not at 
random[33]. Missing at random indicates that the missing data of subjects are expected to be comparable to 
those with similar baseline characteristics who had complete data. Thus, multiple imputation can lead to an 
unbiased result as the missing data can be modeled based on those of similar subjects[33]. However, missing 
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Figure 1. Violin plots of propensity score (PS) (A) before and after (B) 1:1 nearest neighbor matching (caliper of 0.1 standard deviations 
of the logit of PS) and (C) weighting using average treatment effect of the treated (ATT) in a simulated cohort of 100 tenofovir 
disoproxil fumarate (TDF)-treated patients and 900 entecavir (ETV)-treated patients with chronic hepatitis B. PS was estimated by 
logistic regression of seven covariates to predict the use of TDF.

Figure 2. The change in absolute standardized mean difference (ASMD) of the seven clinical characteristics included in the propensity 
score (PS) in a simulated cohort of 100 tenofovir disoproxil fumarate (TDF)- and 900 entecavir (ETV)-treated simulated patients before 
and after (A) PS matching and (B) weighting. DM: Diabetes mellitus; HBeAg: hepatitis B e antigen; HBV: hepatitis B virus.

at random assumption may not always be valid so that a complete case analysis can be performed as a 
sensitivity analysis to examine the impact of multiple imputation on the results[30]. Regarding previous 
studies, some explicitly stated that multiple imputation or other methods were used to impute missing 
values, while 10 out of the 18 studies did not explicitly mention the management of missing data, or 
assumed that the missing data occurred randomly and performed complete case analysis as the main 
analysis [Table 1]. In the 10 studies, all except one of them showed that TDF treatment was not associated 
with a lower risk of HCC than ETV treatment[34]. The one that showed a significant result was claimed to be 
an inferior study design by the authors to demonstrate the impact of the unmatched year of treatment 
commencement[34].
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Figure 3. The effect of the presence of competing risk on the overestimation of cumulative incidence of hepatocellular carcinoma (HCC) 
by the Kaplan Meier method under (A) 20% of competing risk in all patients, (B) 40% competing risk in all patients, and (C) 20% and 
40% of competing risk in 100 tenofovir disoproxil fumarate (TDF)- and 900 entecavir (ETV)-treated simulated patients respectively. 
Gray’s method that takes competing risk into account when estimating the cumulative incidence function is used as a reference.

Competing risk analysis
In time-to-event studies, some patients can experience events other than the clinical outcome of interest. 
For example, when we follow ETV- or TDF-treated patients for the development of HCC, some patients 
may die during follow-up due to different causes or receive liver transplantation due to hepatic 
decompensation. An event is a competing risk when its occurrence precludes or fundamentally hinders the 
chance of occurrence of the clinical outcome of interest[35]. When HCC is the outcome of interest, death and 
liver transplantation can be considered as competing risks. Failure to account for the presence of competing 
risk can lead to an overestimate of the cumulative incidence of the outcome of interest, or more seriously, 
an unreasonable conclusion. Figure 3A-C show the impact of the existence of competing risk on the 
estimation of cumulative incidence by the Kaplan-Meier method, which does not consider competing risk. 
When 20% of patients in the cohort had competing risk, the Kaplan-Meier method overestimated the 
cumulative incidence of HCC [Figure 3A]; the overestimation was amplified when 40% of patients in the 
cohort had competing risk [Figure 3B]. Instead, Gray’s method takes into account the presence of 
competing risk to estimate the cumulative incidence function. Of note, the proportion of patients with 
competing risk can also be different between treatment groups [Figure 3C]. A hypothetical example on the 
issue of ignoring competing risk would be when both treatments A and B do not affect the risk of HCC, yet 
treatment A causes more death than treatment B. When we compare treatments A and B on the incidence 
of HCC in CHB patients, if we ignore that treatment A causes more death, we may unreasonably 
recommend treatment A over treatment B as we will likely observe fewer HCC in treatment A than 
treatment B as those who died can never develop HCC. Some previous studies have accounted for 
competing risks of HCC in their analysis, which included death and/or liver transplantation [Table 1]. In 
analyzing time-to-event outcomes, some common semi-parametric models as an extension of the Cox 
proportional hazard model under the presence of competing risk are cause-specific hazard models and 
Fine-Gray subdistribution hazard model[36,37]. Cause-specific hazard model estimates the association of ETV 
vs. TDF with the rate of HCC occurrence in subjects who are currently event‐free (i.e., free of HCC and the 
competing events). The Fine-Gray model estimates subdistribution hazard ratio that represents the 
association of ETV vs. TDF with the cumulative incidence function of HCC or on the probability of HCC 
occurrence over time[37].

Meta-analysis
Meta-analysis is a systematic way in evidence‐based medicine to generate a pooled effect estimate based on 
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Table 2. List of meta-analyses between May 2019 and Nov 2021 that compared the effectiveness of entecavir (ETV) and tenofovir 
(TDF) in reducing the risk of HCC (adopted and modified from Choi et al.[39])

Ref. Included studies, n
Unadjusted HR 
(95%CI) 
P valuec

Adjusted HRd 
(95%CI) 
P valuec

I2 in unadjusted HR (%)e 
P valuec

I2 in adjusted HR (%)e 
P valuec

Zhang et al.[49] 2019a 7 N.A.a,b N.A. 0% 
P = 0.78

N.A.

Li et al.[50] 2020 32 0.87 (0.73-1.04) 
P = 0.13

N.A. 59.0% 
P < 0.01

N.A.

Wang et al.[51] 2020a 13 N.A.a N.A. 40.0% 
P = 0.11

N.A.

Gu et al.[52] 2020 11 0.75 (0.65-0.87) 
P < 0.001

0.77 (0.60-0.99) 
P = 0.04

47.0% 
P = 0.07

40.0% 
P = 0.12

Kamal et al.[53] 2020f 7 0.84 (0.63-1.12) 
P = 0.240

0.94 (0.63-1.40) 
P = 0.750

43% 49%

Liu et al.[54] 2020 7 N.A. 0.75 (0.56-0.96) 
N.A.

N.A. 47.5% 
P = 0.076

Teng et al.[55] 2020 10 N.A.a N.A.a N.A. N.A.

Cheung et al.[56] 2020 13 N.A. 0.81 (0.67-0.99) 
P = 0.041

N.A. 43.4% 
P = 0.066

Kim et al.[57] 2020f 7 N.A. 0.96 (0.74-1.25) 
P = 0.79

N.A. 50% 
P = 0.06

Dave et al.[58] 2020 14 N.A. 0.79 (0.63-0.99) b 
P = 0.04

N.A. 58.0% 
N.A.

Tseng et al.[7] 2020 15 0.75 (0.54-1.03) 
0.080

0.88 (0.73-1.07) 
P = 0.20

76.7% 
P < 0.0001

56.4% 
P = 0.0038

Choi et al.[8] 2021 15 0.80 (0.69-0.93) 
P = 0.003

0.75 (0.58-0.97) 
P = 0.028

13.0% 
P = 0.31

46.0% 
P = 0.09

Yuan et al.[59] 2021 13 0.75 (0.60-0.95) 
N.A.

0.83 (0.66-1.03) 
N.A.

80.9% 
P < 0.01

63.0% 
P = 0.003

Jeong et al.[60] 2021 17 N.A.a N.A.a 80% 
P < 0.01

64% 
P = 0.01

HRs are reported using ETV as the reference; a HR < 1 associates TDF with reduced risk of developing HCC compared to ETV. aThese meta-
analyses did not calculate HRs. Zhang et al.[49] 2019, reported an unadjusted rate ratio of 0.66 (0.49-0.89); Wang et al.[51] 2020, reported an 
unadjusted risk ratio of 0.66 (0.41-1.05); Teng et al.[55] 2020, reported an unadjusted risk ratio of 0.49 (0.38-0.64) and an adjusted risk ratio of 
0.53 (0.38-0.73); and Jeong et al.[60] 2021, reported an unadjusted risk ratio of 0.59 (0.35-0.98) and an adjusted risk ratio of 0.67 (0.45-1.02). 
bValues for Zhang et al.[49] 2019, and Dave et al.[58] 2020 were transformed in order to use ETV as a reference, in line with the other studies. cPer 
convention, the meta-analyses have used a significance level of 0.05. dAdjusted HRs are those calculated using covariate adjustment or 
propensity score matching, as described later in this article. eI2 indicates the percentage of the variability in effect estimates that is due to 
heterogeneity instead of sampling error. fPublished in form of meeting abstract. aHR: Adjusted hazard ratio; CHB: chronic hepatitis B; ETV: 
entecavir; HCC: hepatocellular carcinoma; N.A.: not available; TDF: tenofovir disoproxil fumarate.

effect estimates and standard errors of individual studies extracted from the available literature or obtained 
directly from the study authors[38]. Between December 2019 and November 2021, 12 meta-analyses that 
compared ETV and TDF treatment on the risk of HCC in CHB patients were published [Table 2][39]. These 
meta-analyses included a median of 13 studies to provide a pooled estimate on the treatment difference 
between ETV and TDF on HCC prevention; most of the included studies were based on Asian populations. 
Most of the meta-analyses calculated the pooled hazard ratio using the hazard ratio after multivariable 
regression or PS matching in each of the included studies, while some used risk ratio as the summary 
estimate [Table 2]; risk ratio does not incorporate the time-to-event nature of HCC occurrence and can be 
affected by the difference in follow-up duration in the two treatment arms. As expected, most of the meta-
analyses reported moderate to high heterogeneity between studies as reflected by the high I2 statistic, which 
indicates the percentage of the variability in effect estimates that is due to heterogeneity instead of sampling 
error. As shown in Table 1, studies had different strategies including multivariable regression and PS 
matching/weighting to tackle within-study heterogeneity of the ETV- and TDF-treated patients. Even if PS 
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matching/weighting was used, studies included different covariates in the PS estimation due to the 
availability of data as well as the percentage of missing data. Together with the differences in inclusion and 
exclusion criteria as well as missing data management, all these features contributed to the between-study 
heterogeneity as shown in the meta-analyses. Consequently, the pooled estimates were obtained by a 
random-effects model in the meta-analyses. To tackle the problem of between-study heterogeneity, 
individual patient data meta-analysis is a possible approach by aggregating the data of individual patients in 
the studies instead of the effect estimate of the studies, though it involves a potentially long process of 
communication with study authors[40]. Choi et al.[39] summarized the methodological challenges in 
performing and interpreting the findings of these meta-analyses of observational studies.

CONCLUSION
Since the publication by Choi et al.[4] in 2019, the potential difference in the risk of HCC in ETV- or TDF-
treated CHB patients has remained controversial due to the contradictory findings from different studies 
and meta-analyses. The intrinsic limitations of observational studies, and the difference in study period, 
inclusion and exclusion criteria, and statistical strategies in the studies, have brought heterogeneity to meta-
analyses and uncertainty to the conclusion. It is thus important to understand the data source and 
methodology used in each of these studies to make a more appropriate comparison and aggregation of 
findings. Ideally, a high-quality, multicenter randomized controlled trial will provide a high level of 
evidence to end the debate. Nonetheless, it is unlikely to happen due to the significant time and resources 
needed to follow the patients and the large sample size required. Future work should focus on well-designed 
observational studies with high-quality data sources to mitigate the biases. For meta-analysis, aggregation of 
raw data in the patients’ level with a standardized analysis protocol (i.e., an individual patient data meta-
analysis) instead of pooling the individual effect estimates would reduce the between-study heterogeneity 
and yield a more accurate estimate of the treatment effect.
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