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Abstract
Ovarian cancer is the leading cause of gynecologic cancer death in the United States. Most ovarian cancer patients 
are diagnosed with advanced-stage disease, which poses a challenge for early detection and effective treatment. At 
present, cytoreductive surgery and platinum-based chemotherapy are foundational for patients with newly 
diagnosed ovarian cancer, but unfortunately, most patients will recur and die of their disease. Therefore, there is a 
significant need to seek innovative, novel approaches for early detection and to overcome chemoresistance for 
ovarian cancer patients. The microbiome, comprising diverse microbial communities inhabiting various body sites, 
is vital in maintaining human health. Changes to the diversity and composition of the microbial communities 
impact the microbiota-host relationship and are linked to diseases, including cancer. The microbiome contributes 
to carcinogenesis through various mechanisms, including altered host immune response, modulation of DNA 
repair, upregulation of pro-inflammatory pathways, altered gene expression, and dysregulated estrogen 
metabolism. Translational and clinical studies have demonstrated that specific microbes contribute to ovarian 
cancer development and impact chemotherapy’s efficacy. The microbiome is malleable and can be altered through 
different approaches, including diet, exercise, medications, and fecal microbiota transplantation. This review 
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provides an overview of the current literature regarding ovarian cancer and the microbiome of female reproductive 
and gastrointestinal tracts, focusing on mechanisms of carcinogenesis and options for modulating the microbiota 
for cancer prevention and treatment. Advancing our understanding of the complex relationship between the 
microbiome and ovarian cancer may provide a novel approach for prevention and therapeutic modulation in the 
future.

Keywords: Ovarian cancer, gynecological cancer, microbiota, microbiome, platinum-based chemotherapy, 
dysbiosis

INTRODUCTION
Ovarian cancer (OC) is the most lethal gynecologic cancer in the United States[1]. In 2022, approximately 
20,000 new cases were diagnosed, with 13,000 estimated deaths[2]. The five-year survival in patients with 
advanced OC is estimated at 30% and has been relatively unchanged over recent years[3,4]. The poor 
prognosis associated with OC is because 70% of patients are diagnosed with advanced-stage disease because 
of limited effective screening options and often indolent or non-specific symptoms at diagnosis[1,5]. 
Moreover, chemotherapy resistance is one of the most significant factors contributing to the poor prognosis 
and increased mortality rate of patients diagnosed with ovarian cancer[6].

Notably, in recent years, the remarkable heterogeneity of OC has been increasingly realized, with significant 
variations in histology, genomic drivers, and molecular classification, which impact carcinogenesis, 
treatment selection, and disease outcomes. The vast majority of OC are of epithelial origin, and can be 
subdivided into several different histological subtypes, accounting for either low (30%) or high-grade (70%) 
tumors[7,8]. Low-grade serous OC tends to be relatively chemoresistant and harbor mutations in Kirsten rat 
sarcoma virus (KRAS), Phosphatase and TENsin homolog deleted on chromosome 10 (PTEN), and 
PIK3CA oncogenes[7]. In contrast, 90% of high-grade OC are serous carcinomas with mutations in tumor 
protein 53 (TP53), Breast Cancer gene 1 (BRCA1), and Breast Cancer gene 2 (BRCA2) oncogenes[7]. 
Notably, approximately 20% of OCs are hereditary with germline mutations, including BRCA1 and 
BRCA2[7].

The microbiome has been increasingly studied for its role in maintaining human health and disease. The 
microbiomes of the gut and the female reproductive tract have been linked to many diseases, including 
OC[8]. In recent years, pre-clinical and translational studies have demonstrated that specific microbes may 
contribute to carcinogenesis, toxicity, and efficacy of cancer therapies in patients with OC[9]. The microbiota 
is dynamic and may be altered through various mechanisms, including diet, exercise, medications, and fecal 
microbiota transplantation. This review provides an overview of the current literature detailing the 
relationship between OC and the microbiome, focusing on mechanisms of carcinogenesis and strategies for 
modulating the microbiota to improve treatment efficacy and toxicity.

REVIEW OF CURRENT TREATMENT PARADIGM FOR ADVANCED AND RECURRENT 
OVARIAN CANCER
While historically, most patients with OC were treated similarly in the front-line setting, the landscape of 
therapeutics has changed dramatically in recent years[10]. The front-line treatment paradigm for advanced 
OC currently includes a multimodal approach of cytoreductive surgery and chemotherapy with carboplatin 
and paclitaxel. Further, in patients with advanced OC, bevacizumab concurrently with platinum-doublet 
chemotherapy, followed by bevacizumab maintenance, is approved based on the results of GOG-0218 and 
ICON-7[11]. Similarly, maintenance with poly (ADP-ribose) polymerase (PARP) inhibitors is approved as 
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monotherapy or in combination with bevacizumab, following results of the SOLO-1, PRIMA, VELIA, and 
PAOLA-1 trials[1,11-15]. Notably, OC tumors with homologous recombination deficiency (HRD) exhibit 
greater sensitivity to PARP inhibitors and have been shown to have the most significant benefit[3,10].

Despite treatment for advanced ovarian cancer with cytoreductive surgery and platinum-based 
chemotherapy, most patients will recur and die of their disease[16,17]. The main cause of chemoresistance in 
ovarian cancer is the increased antioxidant capacity of cancer cells against platinum-derived compounds[6]. 
Both chemotherapy drugs and cell metabolism produce significant levels of reactive oxygen species (ROS) 
in tumor cells, resulting in DNA damage and various cellular responses. Consequently, the nuclear factor 
erythroid 2-related factor 2 (Nrf2) pathway is activated to combat oxidative stress, which is associated with 
ovarian cancer development and resistance to platinum-based treatments[18]. Patients with recurrent, 
platinum-resistant ovarian cancer have limited therapeutic options, decreased chemotherapy response rates, 
and poor prognosis, with overall survival (OS) of 9-12 months[19]. There is a significant unmet need for 
innovative therapeutic strategies to improve the survival rate of patients with advanced OC.

MECHANISTIC INSIGHTS INTO THE ROLE OF THE MICROBIOME IN THE PATHOGENESIS 
OF OVARIAN CANCER
The microbiome as a mediator of human health and disease has been increasingly studied. The human 
microbiome is a collection of microorganisms, including bacteria, viruses, fungi, archaea, and protozoa, that 
live within and upon the body's mucosal surfaces[20,21]. Further, microbial-derived metabolites can impact 
immune function, cell proliferation and signaling, gene expression, and hormonal and nutrient metabolism. 
Each microbiota has unique properties, including the composition and diversity of microbes. The gut and 
the female reproductive tract microbiomes are especially relevant to gynecologic cancers, including OC 
[Figure 1]. The female reproductive tract has two distinct microbial environments. The lower female 
reproductive tract microbiota includes the vagina and cervix and is generally colonized by Lactobacillus 
species[9]. In contrast, the microbiota of the upper female reproductive tract, including the uterus, fallopian 
tubes, and ovaries, was historically considered sterile but is now understood to harbor a diverse array of 
anaerobes[9].

The microbiome can significantly contribute to cancer development through several mechanisms, such as 
chronic inflammation infections, integration into the human genome, and the production of genotoxic 
metabolites. Some examples, like Helicobacter pylori-mediated inflammation, are linked with mucosa-
associated lymphoid tissue (MALT) lymphoma and gastric cancer[22]. Similarly, hepatocellular carcinoma 
was found to be more frequent in patients infected with Hepatitis B and C viruses[23] and Fusobacterium 
nucleatum with colorectal carcinoma[24,25]. OC is a complex and multifactorial disease with genetic, 
epigenetic, immunologic, and environmental risk factors. Given that significant knowledge gaps exist in OC 
pathogenesis, the microbiome has been increasingly studied as an environmental risk factor for several 
gynecologic cancers, including OC. While the pathogenesis of OC is not yet fully understood, growing 
evidence suggests that the microbiota may play a role in the development and progression of OC[25].

Changes in the composition of the gut microbiome and the intestinal mucosal barrier can lead to cancer 
development through various mechanisms, including chronic inflammation, altered immune response and 
barrier function, dysregulated nutrient and hormone metabolism, and upregulation of oncogenic signaling. 
Additionally, certain microbes can induce DNA damage and apoptosis by releasing genotoxic metabolites 
or indirectly by producing reactive oxygen species [Figure 2].
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Figure 1. Gut and female reproductive tract microbiome and ovarian cancer.

Observational studies have demonstrated a link between history of prior infections and OC, especially pelvic 
and sexually transmitted diseases. In a study led by Lin et al., pelvic inflammatory disease was associated 
with an increased risk of OC[26]. Specifically, studies have identified that a history of infection with specific 
pathogens, including Chlamydia trachomatis and Mycoplasma genitalium, is associated with OC 
development[27-30]. Prior infections may induce the activation of oncogenic pathways and increased 
production of inflammatory cytokines, such as disruption of the cell cycle via heightened mitogen-activated 
protein kinase (MAPK) signaling, degradation of p53, and the modulation of DNA damage repair 
proteins[31]. Specifically, studies have demonstrated that Chlamydia trachomatis contributes to 
carcinogenesis through multiple mechanisms, including blocking mitochondrial caspase-3 mediated 
cytochrome C release, inhibiting apoptosis and immune response, inducing DNA damage due to reactive 
oxygen species (ROS), and altering cellular tight junctions[31]. The persistence of human papillomavirus 
(HPV) infection is a well-established determinant for developing the majority of invasive cervical 
carcinomas via E6 and E7 viral oncogenes, which inactivate tumor suppressor genes p53 and Rb, 
respectively[31]. However, recent evidence suggests that HPV infection might also influence the pathogenesis 
of OC, potentially via a similar mechanism[15].

Previous studies have suggested complex interactions between the microbiota, cancer cells, and the tumor 
microenvironment, including upregulation of Toll-like (TLR) and nucleotide oligomerization domain 
(Nod)-like receptors (NLRs) signaling pathways[32-36]. Several carcinogenic signaling pathways may be 
activated in OC, including p53, Human epidermal growth factor receptor 2 (HER2), Epidermal growth 
factor receptor (EGFR), and Vascular endothelial growth factor receptor (VEGFR)[37]. Upregulation of pro-
inflammatory pathways leads to increased IL-6, activation of the Janus kinase/signal transducers, and 
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Figure 2. Microbiome mediated mechanisms of carcinogenesis and platinum resistance in ovarian cancer. TNF-α: Tumor necrosis factor 
alpha; TLR: toll-like receptor; VEGF-C: vascular endothelial growth factor-C; IL-6: interleukin 6; JAK: janus kinase; STAT: signal 
transducer and activator of transcription; LPS: lipopolysaccharides.

activators of the transcription 3 (JAK/STAT3) pathway, resulting in tumor proliferation[38]. IL-6 induces 
proliferation through increased production of matrix metalloproteinase (MMPs) and loss of E-cadherin 
expression, which promotes cell proliferation, increased autocrine and paracrine cytokine production, 
promotion of epithelial-mesenchymal transition and metastasis, and potentially development of 
chemoresistance [Figure 2][39]. Lactobacillus species may serve as tumor suppressors through the 
downregulation of Wnt/β-catenin signaling and may represent a therapeutic strategy in years to come[40].

Changes to the intestinal mucosal barrier expose the systemic circulation to bacteria and their associated by-
products, leading to the production of pro-inflammatory cytokines like tumor necrosis factor-alpha 
(TNF-α), triggering a cascade of inflammatory processes contributing to cancer tumorigenesis [Figure 2][41]. 
Specific gut microbes, such as Lactobacillus, Bifidobacterium, and Akkermansia, have been shown to 
stimulate healthy gut mucus production[42]. Factors promoting a healthy mucosal barrier layer, including 
short-chain fatty acids and a high-fiber diet, may act as tumor suppressors.

TLRs are important mediators of inflammatory pathways in the gut, which have a significant role in 
mediating immune responses and linking adaptive and innate immune responses [Figure 2]. TLR-4 and 
TLR-5/7 have been proposed as mediators in OC carcinogenesis via PI3K activation[43]. In a human-derived 
OC cell line (Human Epithelial Ovarian cancer cell line: CP70) study, bacterial lipopolysaccharide (LPS) 
binding to TLR-4 triggered multiple carcinogenesis events[44]. Similarly, TLR-4 activation in metastatic 
ovarian human tissue-derived cells (SKOV3 cells) resulted in NF-κB activation, p65 DNA binding, and the 
generation of pro-tumoral molecules (IL-6, IL-8, VEGF, and MCP-1), promoting cancer development and 
chemoresistance[45]. TLR-4 inhibition decreased MMP-2 and MMP-9 gene expression and enzymatic 
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activity, preventing the epithelial-mesenchymal transition metastasis and providing antineoplastic effects[46]. 
TLR-5 recognition of commensal microbiota is linked to metastatic OC and systemic tumor-promoting 
inflammation in pre-clinical mouse models with TLR-5 deficiency treated with antibiotics to induce 
microbial dysbiosis[33]. TLR-5 activation leads to the production of immune-suppressive protein galectin-1, 
upregulation of IL-6, promotion of myeloid-derived suppressor cells (MDSCs) mobilization, and 
accelerated tumor growth. The importance of IL-6 production via TLR-5 activation in the first phases of 
ovarian cancer tumorigenesis is highlighted by the fact that TLR-5-deficient mice had much slower tumor 
growth. Notably, antibiotic-induced dysbiosis revokes TLR-5-dependent variations in tumor development.

The gut microbiome influences estrogen metabolism and systemically available estrogen levels, which may 
play a role in gynecologic cancer development [Figure 2]. Estradiol undergoes first-pass metabolism in the 
liver and is excreted through the bile, urine, or feces[47]. The “estrobolome” refers to microorganisms that can 
deconjugate estrogens excreted within the stool via beta-glucuronidase and beta-glucosidase enzymes, 
leading to intestinal reabsorption of estrogens and increased systemic estrogen levels[47]. In a study by Peters, 
shotgun metagenomic sequencing was performed on stool samples of 2,300 patients, including 295 pre-
menopausal women, 1,027 post-menopausal women, and 978 men. They identified significant differences in 
the microbial diversity and composition between the two groups with post-menopausal women with 
decreased Akkermansia muciniphila, Clostridium lactatifermentans, and Parabacteroides johnsonii species. 
Specifically, post-menopausal women had a decreased abundance of microbial β-glucuronidase, which 
correlated with serum progestin metabolite levels[48]. Therefore, the interactions between estrogen, 
progesterone, gut microbiome, and OC warrant further investigation[49].

MICROBIAL SIGNATURES IN OVARIAN CANCER
In recent years, the gut and female reproductive tract microbiomes have been associated with OC 
development and treatment responses. While historically, the upper female reproductive tract was 
considered sterile, preliminary data also supports that microbe within the peritoneal cavity and OC tumors, 
referred to as the tumor microbiome, may also contribute to carcinogenesis and chemoresistance[50,51]. In a 
study by Banerjee et al., it was demonstrated that microbial colonization of OC tumors was frequent, with 
representative species including Brucella (76%), Chlamydia (60%), and Mycoplasma (74%)[52]. Additionally, 
they observed a significant increase in the ratio of Proteobacteria to Firmicutes in OC tumors, distinct from 
the composition in healthy tissues[52]. Similarly, Miao et al. evaluated the peritoneal microbiota in patients 
with benign ovarian masses (n = 20) or OC (n = 10)[51]. They identified that patients with OC had a distinct 
peritoneal microbial signature, including microorganisms responsible for estrogen metabolism 
(Rikenellaceae), vascular permeability and metastasis (Alphaproteobacteria), and anti-inflammatory 
responses (Akkermansia)[51]. Most recently, Asangba et al. evaluated the microbiota in OC patients 
compared to controls[53]. They systematically sampled the microbiome of the female reproductive tract, 
ascites or peritoneal fluid, urine, and stool in both benign and OC patients. They determined a distinct OC 
microbiome with enrichment of several microbes at all body sites except the stool and omentum, including 
Dialister, Corynebacterium, Prevotella, and Peptoniphilus in the OC cohort. Notably, these microbes were 
more prominent in low-grade, early-stage OC patients, indicating a potential avenue for early detection 
strategies[53]. Similarly, they associated specific microbial populations with histologic subtypes. Patients with 
non-serous showed increased Lactobacillus iners, Fusobacterium nucleatum, Prevotella buccalis, and 
Dialister propionicifaciens versus patients with serous OC.

The female reproductive tract microbiome has been associated with the development of OC. Studies have 
identified that the absence of Lactobacillus in the microbiota of the female reproductive tract may impact 
OC development and oncologic outcomes. In a case-control study of 176 patients with OC compared to 115 
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healthy controls, 16S rRNA gene sequencing, decreased Lactobacillus within the female reproductive tract 
microbiota was strongly associated with increased risk for OC. Further analysis demonstrated that in age-
matched women with BRCA1 mutations, those with a non-Lactobacillus dominant microbiota were more 
likely to have OC [Table 1][54].

Lastly, preliminary data has linked the gut microbiota composition with the development of OC. In a study 
by Chen et al., two cohorts of mice were treated with tamoxifen to induce ovarian cancer over the course of 
one year and were supplemented with either antibiotics for five months or a placebo[55]. Antibiotic treatment 
led to significant changes to the microbiota of the vagina and the gut in mice, and mice that received 
antibiotics had significantly fewer and less advanced tumors than control animals at the study endpoint[55]. 
Jacobson et al. identified an inverse relationship between Lactobacillus species and OC, with only 24% of 
OC patients having Lactobacillus species present compared to healthy controls [Table 1][56]. In contrast, 
studies have suggested that certain gut microbes may have anti-tumor activity in OC. In a study by Wang, 
supplementation of Akkermansia in pre-clinical mouse models of OC was associated with decreased tumor 
growth, increased T-cell activation, and enhanced interferon (IFNy) secretion from CD8+ T cells[57]. Further 
investigation is needed to understand how these microbes could be targeted for early diagnosis, therapeutic 
modulation, and to overcome chemoresistance[56].

IMPACT OF THE MICROBIOME ON TREATMENT RESPONSE AND DEVELOPMENT OF 
CHEMORESISTANCE IN OVARIAN CANCER
Over the last decade, studies across multiple cancer types suggest that the microbiome may impact the 
efficacy and toxicity of both systemic chemotherapy and immunotherapy[58-68]. Platinum-based 
chemotherapy remains the most effective chemotherapy agent for OC patients. It is utilized both in the 
front-line setting and in patients with recurrent, platinum-sensitive disease in combination with other 
agents, including paclitaxel, gemcitabine, pegylated liposomal doxorubicin with or without bevacizumab[16]. 
Platinum-based chemotherapy exerts its antineoplastic effects through the formation of platinum-DNA 
adducts or crosslinks, which block DNA replication and provoke the production of ROS, resulting in cell 
death[69,70].

Several studies have assessed the impact of the microbiome on platinum response in pre-clinical cancer 
models, including OC. A landmark study by Iida et al. administered antibiotics to mouse models of 
melanoma, leukemia, and colon adenocarcinoma before treatment with oxaliplatin and cisplatin[69]. 
Antibiotics were associated with reduced treatment response and survival compared to control animals[69]. 
Mice treated with antibiotics had downregulation of genes related to adaptive immune response, antigen 
presentation, DNA damage repair, and upregulation of genes related to cancer metabolism. Specific gram-
positive microbes, such as Lactobacillus fermetum, were associated with improved anticancer activity[69]. One 
potential mechanism for this effect is, in prior studies, translocation of gram-positive bacteria during 
mucositis (characterized by epithelial barrier inflammation and cell loss), which leads to increased 
production of cytotoxic ROS and the infiltration of Th-17 cells into tumors, resulting in improved 
anticancer activity[70].

Several studies have demonstrated that in pre-clinical models of cancer, antibiotic treatment to alter the gut 
microbiome leads to global changes in immune response and activation of pro-inflammatory genes, which 
supports the gut microbiome’s impact on chemotherapy response through direct or indirect actions on the 
immune system[69-73]. These data suggest that the gut microbiome may have a role in modulating the 
immune response for platinum chemotherapy efficacy. Additionally, the gut microbiota might trigger the 
production of ROS in tumor-infiltrating myeloid cells, leading to increased oxidative stress and heightened 
cytotoxicity of platinum compounds [69,72,74].
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Table 1. Clinical studies overview

Author Study type Study population Study findings

Asangba 
et al., 
2023[53]

Cohort 18 years of age or older and undergoing 
hysterectomy for ovarian cancer (n = 34) 
or a benign gynecologic condition 
(n = 30)

Microbial taxa were identified as differentially abundant between the 
benign cohort and early- and advanced-stage OC patients. The 
presence of mostly detrimental microbes was observed in early-
stage, low-grade OC patients, with a decrease in advanced-stage, 
high-grade OC patients

Nené et al., 
2019[54]

Case-control OC patients (n = 176) compared to 
healthy controls (n = 115)

Non-lactobacilli-dominated cervicovaginal microbiomes were more 
prevalent in patients with ovarian cancer and in women with BRCA1 
mutations who had yet to develop cancer, compared with age-
matched healthy women and women without BRCA1 or BRCA2 
mutations, respectively

Jacobson 
et al., 
2021[56]

Retrospective Platinum-free interval (PFI) < 6 months 
(n = 17), PFI > 24 months (n = 23), 
benign (n = 5)

Observed the inverse relationship between a Lactobacillus-dominant 
vaginal microbiome and ovarian cancer, with only 24% of OC 
patients having Lactobacillus species present compared to healthy 
controls (47%)

Chambers 
et al., 
2021[59]

Retrospective 
cohort

Patients with recurrent EC, CC, and OC 
treated with ICIs (n = 101)

Antibiotics given 30 days prior to ICI treatment, but not during, are 
linked to reduced response and worse progression-free survival 
(PFS) and overall survival (OS) in women with recurrent 
endometrial, cervical, and ovarian cancer

Pflug et al., 
2022[58]

Prospective 
cohort study

n = 800; patients with chronic 
lymphocytic leukemia and lymphoma 
were undergoing treatment with either 
cyclophosphamide or cisplatin

A potential negative impact of anti-Gram-positive antibiotics on the 
anticancer activity of cyclophosphamide and cisplatin in a clinical 
setting

Chambers 
et al., 
2020[60]

Retrospective 
cohort

Patients diagnosed with epithelial 
ovarian cancer stage III/IV (n = 424) 
underwent cytoreductive surgery and 
Platinum chemotherapy

Antibiotic treatment during platinum chemotherapy leads to a 
significant reduction in both progression-free survival (PFS) and 
overall survival (OS). Additionally, the use of antibiotics targeted 
against gram-positive bacteria is strongly associated with worse 
oncologic outcomes

Wang et al., 
2022[107]

Community
based 
observational

n = 1,417; 10% were considered 
sarcopenic based on physical 
performance and biometric testing

Significant differences in the microbial populations and microbial-
derived metabolites were observed between sarcopenic and non-
sarcopenic patients

In pre-clinical models of OC utilizing syngeneic ID-8 cells, Chambers et al. demonstrated that broad-
spectrum antibiotic treatment (with neomycin, ampicillin, vancomycin, and metronidazole) resulted in 
increased tumor growth, cisplatin resistance, and decreased survival compared to non-antibiotic treated 
control mice[59]. Additionally, RNAseq analysis of OC tumors of antibiotic-treated mice demonstrated 
significant changes in DNA damage repair, cell death, angiogenesis, and cancer stem cell gene pathways 
compared to controls[59]. Notably, the chemoresistant phenotype observed in the antibiotic-treated mice was 
overcome through cecal microbiota transplantation of control mice stool. In this study, several gut-derived 
tryptophan metabolites were significantly decreased in the antibiotic-treated mice, including indole-3-
propionic acid. These studies provide background to support the production of anticancer metabolites and 
may represent a target for intervention in women with recurrent, platinum-resistant ovarian cancer in years 
to come. Subsequently, clinical studies have demonstrated that antibiotics during platinum chemotherapy 
are associated with worsened oncologic outcomes in several cancers, including OC[58,59,68,70,75]. These studies 
associated anti-gram-positive antibiotics with reduced progression-free survival (PFS) and OS. In a study by 
Pflug et al., 800 patients with chronic lymphocytic leukemia and lymphoma were undergoing treatment 
with either cyclophosphamide or cisplatin, respectively, on two clinical trial protocols[Table 1][58]. 
Investigators assessed the use of antibiotics targeting gram-positive bacteria during treatment and 
demonstrated that of the patients with relapsed lymphoma, those who were treated with anti-gram-positive 
antibiotics (n = 21/122) had a significantly lower response rate (70.3% vs. 42.9%, P = 0.016) and decreased 
PFS (median 2.3 vs. 11.5 mo, P = 0.001). Additionally, on multivariate analysis controlling for multiple 
confounders, anti-gram-positive antibiotics were independently associated with reduced PFS (HR 2.237, 
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P = 0.012) and OS (HR 7.831, P < 0.001). Similarly, in a retrospective cohort study by Chambers et al., 
including 424 patients with stage III and IV OC, antibiotic treatment during platinum chemotherapy was 
associated with decreased PFS (17.4 months vs. 23.1 months, HR 1.50, P < 0.001) and OS (45.6 months vs. 
62.4 months, HR 1.63, P < 0.001) compared to patients not treated with antibiotics [Table 1][60]. Notably, 
patients who received anti-gram-positive antibiotics were noted to have significantly worse PFS 
(16.5 months vs. 23.1 months; HR 1.85, P < 0.001) and OS (35.0 months vs. 62.4 months; HR 2.12, P < 0.001) 
compared to untreated patients, even when controlling for factors including postoperative complications 
and performance status on multivariable analysis. While these studies are retrospective and lack correlative 
analysis of patient stool samples, this preliminary data is hypothesis-generating, supporting further 
investigation into the role of the gut microbiome in platinum chemotherapy response and resistance in OC.

Immunotherapy is a promising treatment approach for many patients with advanced or recurrent 
gynecologic cancer, but unfortunately, prospective clinical trials have demonstrated limited efficacy of 
immunotherapy for patients with OC[19,76,77]. Notably, in patients with melanomas and various solid 
malignancies, the gut microbiome has been shown to modulate response to immunotherapy[64,67,77]. In a 
retrospective cohort study of 101 women with recurrent gynecologic cancers, including 26 patients with 
OC, antibiotic treatment prior to immunotherapy was associated with a significantly lower response rate, 
PFS, and OS[61]. Further research is needed to understand how the microbiome mediates immunotherapy 
response in women with gynecologic cancers and whether modulation of the microbiota may be a strategy 
to improve immunotherapy response in these patients.

IMPACT OF THE MICROBIOME UPON SURGICAL MANAGEMENT AND POSTOPERATIVE 
OUTCOMES IN OVARIAN CANCER
Cytoreductive surgery, which normally includes the removal of the uterus, cervix, fallopian tubes, ovaries, 
and omentum, is an essential component of the care of OC patients. Optimal cytoreduction, to remove all 
visible disease to less than one centimeter and ideally no gross residual disease, is consistently associated 
with improved PFS and OS[17,75,78-80]. Due to the often widespread nature of OC involving the peritoneal 
surfaces, upper abdominal surgical procedures, including diaphragm resection or splenectomy, as well as 
small bowel resection and large bowel resection, are often required to achieve optimal cytoreduction[79,80]. 
Given the extensive nature of these surgical procedures, it is not uncommon for patients to experience 
postoperative complications, including ileus, infection, wound separation, and anastomotic leaks[60,79]. Data 
on how the gut and female reproductive tract microbiome may influence a person’s risk for postoperative 
morbidity are limited. In a study by Tong et al., significant differences were noted between stool samples 
taken pre-operatively, postoperatively, and during chemotherapy[81]. Further, they appreciated that OC 
patients significantly increased in anaerobic species such as Bacteroides, Collinsella, and Blautia during 
chemotherapy[81]. Studies in patients with colorectal cancer undergoing cytoreductive surgery with bowel 
resection have demonstrated that probiotic administration before surgery may be protective against surgical 
site infection and anastomotic leaks. Still, additional data are necessary to understand the potential 
mechanism and whether this will similarly extend to patients with OC[82-85].

MODULATION OF THE MICROBIOME IN OVARIAN CANCER AND FUTURE DIRECTIONS
The next frontier in microbiome science is to develop therapeutic approaches to modulate the microbiome 
to improve response to cancer treatment in OC patients. Potential strategies include dietary modifications, 
exercise, fecal microbiota transplantation (FMT), and probiotic supplementation[60,68,84,86-90]. Studies in non-
gynecologic cancers have demonstrated promising early responses to FMT in immunotherapy patients. 
Landmark phase I clinical trials by two groups gave patients with PD-1 refractory metastatic melanoma an 
FMT with stool from patients whose tumors responded well to treatment. FMT overcame the 
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immunotherapy resistance in certain patients, with clinical responses restored in 30%, with one complete 
response. Therefore, it is plausible that these approaches may yield similar benefits in women with OC, and 
further study is necessary[89,91] .

In OC patients, many of whom are elderly, fatigued, malnourished, or have diminished appetite related to 
the stigma of advanced disease, probiotic supplementation holds potential as a practical therapeutic 
intervention. Studies evaluating probiotics in non-gynecologic cancers have demonstrated promising 
results, including decreased infectious outcomes and diminished radiation and chemotherapy-induced 
gastrointestinal toxicities[92-96]. Further, in vitro and early-phase clinical trials of probiotics as an oral 
supplement or intra-tumoral injection have demonstrated anticancer activity[92-97]. Additional studies are 
needed to investigate the feasibility of probiotic supplementation during chemotherapy in OC patients, 
evaluate the impact on the gut microbiota, patient quality of life, and symptoms, and assess the association 
with oncologic outcomes.

Currently, data regarding microbiome-directed dietary interventions to impact outcomes in OC patients are 
limited[98-100]. Diet is a key mediator of the composition and function of the microbiota. Microbial-derived 
metabolites, such as short-chain fatty acids (SCFA), are degradation products of fiber and can influence host 
immunity, either directly via changes to metabolic signaling pathways or indirectly through the regulation 
of gut mucosal permeability. Western-style diets, which are defined by high levels of saturated fats and low 
dietary fiber, have been linked to reduced SCFA levels and altered host immune response[101]. In a study of 
128 patients with melanoma, those with high dietary fiber intake (defined as > 20 grams/day) had improved 
PFS compared to the low fiber cohort, which was most notable in those who did not use concurrent 
probiotics[86]. These studies provide evidence that diet modulation may be a promising strategy to improve 
cancer therapy outcomes.

Gynecologic cancer patients, especially the older population with advanced-stage disease, are more 
susceptible to malnutrition, sarcopenia, and cachexia, impacting approximately 70% of patients[102]. 
Malnutrition and skeletal muscle depletion have many adverse consequences, including lower quality of life, 
increased risk of prolonged hospitalization, heightened treatment-related toxicity, re-operations, 
readmission, and postoperative complications[103-105]. Several retrospective studies have indicated a strong 
link between malnutrition and decreased OS in OC patients compared to non-malnourished patients[103-106].

Importantly, the microbiome may influence the pathogenesis of cancer cachexia through changes in the gut 
microbial composition and mucosal barrier function. In a study of 1,417 participants, 10% were considered 
sarcopenic based on physical performance and biometric testing. Significant differences in the microbial 
populations and microbial-derived metabolites were observed between sarcopenic and non-sarcopenic 
patients [Table 1][107]. An analysis of blood samples of patients with cancer cachexia showed increased 
bacterial translocation, resulting in heightened inflammation and elevated concentrations of inflammatory 
markers such as IL-6, TNF- α, and IFN-γ[108]. Approaches focused on restoring microbial balance and 
enhancing gut barrier function through long-term or acute dietary changes or nutrition interventions may 
hold promise for addressing malnutrition and sarcopenia in cancer patients.

Prospective clinical trials are urgently needed to assess potential strategies to target the microbiome. In July 
2023, we performed a systematic search strategy on the ClinicalTrials.gov website utilizing a librarian-
designed search strategy [Supplementary File 1]. We compared the number of active clinical trials for 
microbiome-mediated interventions (prebiotics, probiotics, live biotherapeutics) for the leading cancer 
diagnoses in the United States according to the Surveillance, Epidemiology, and End Results (SEER) 

https://clinicaltrials.gov/
jcmt90107-SupplementaryMaterials.pdf
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Figure 3. Assessment of microbiome clinical trials by cancer site in the United States.

program[109]. On a review of available clinical trials on ClinicalTrials.gov in July 2023, we identified that OC 
and uterine cancer are remarkably underrepresented compared to other disease sites such as colorectal 
cancer and melanoma, and this highlights a major unmet in future research efforts [Figure 3].

CONCLUSIONS
The microbiome of the gut and female reproductive tracts serves essential functions in maintaining health. 
The microbiome may also impact the toxicity and efficacy of cancer therapies for OC patients. Furthermore, 
the microbiota is highly dynamic and may be modulated through various approaches, although significant 
research gaps exist for gynecologic cancer patients. The connection between the microbiome and ovarian 
cancer is still being investigated, but the key question of whether they are directly linked remains 
unanswered. Since ovarian cancer tends to occur later in life, it is challenging to conduct long-term studies 
that establish causality. This raises concerns about whether the vaginal microbiome contributes to its 
development and whether it can be leveraged for primary prevention. Moreover, establishing a causal link 
between the microbiome and ovarian cancer is a challenging task due to the complexity of the disease, the 
difficulty in conducting large longitudinal studies, and the multifaceted nature of the microbiome. Although 
research is still underway, there is optimism that we are making progress in the right direction. Targeting 
the microbiome may lead to innovative ways to treat ovarian cancer, improve outcomes, and reduce 
toxicity. This emerging field holds promise for developing personalized treatment approaches. Further 
research may lead to innovative therapies that can transform the prognosis for those affected by recurrent 
and chemoresistant OC. Advancing our understanding of the complex relationship between the microbiota 
and OC represents a novel strategy to improve future patient outcomes.
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