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Abstract
Antimalarial agents have been used to treat various autoimmune rheumatic diseases for over a century. 
Hydroxychloroquine is a safe, effective and inexpensive antimalarial drug with additional antithrombotic, 
cardioprotective, antimicrobial, and anti-neoplastic benefits. It has been used extensively in various diseases, 
especially systemic lupus erythematosus and rheumatoid arthritis; however, it has not been used in anti-neutrophil 
cytoplasmic antibody associated vasculitides (AAVs). There exists a significant unmet need for safe and 
inexpensive treatments for non-severe AAV or those with low-grade “grumbling” disease activity who do not 
warrant significant escalation of therapy but who remain at risk of disease flares and damage accumulation. 
Hydroxychloroquine may be an option to help fill this void. Although the mechanisms of action of 
Hydroxychloroquine are not fully understood, it interacts with various inflammatory mediators involved in the 
pathogenesis of AAV. Based on these benefits, along with the unmet need in AAV, we present evidence to support 
the use of Hydroxychloroquine as a potential therapy for AAV.
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INTRODUCTION
The anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAVs) are a group of small 
vessel vasculitides characterized by necrotizing inflammation of blood vessels and often positive 
autoantibodies to neutrophil proteins - leukocyte proteinase 3 (PR3-ANCA) or myeloperoxidase (MPO-
ANCA)[1,2]. They comprise three distinct conditions - Granulomatosis with Polyangiitis (GPA, previously 
known as Wegener’s Granulomatosis), Eosinophilic Granulomatosis with Polyangiitis (EGPA, previously 
known as Churg-Strauss syndrome), and Microscopic Polyangiitis (MPA)[2]. They usually present with 
severe life- or organ-threatening disease; however, less severe and limited disease also occurs[1]. Treatment 
usually involves remission induction (with high dose Glucocorticoids (GCs) + either Rituximab or 
Cyclophosphamide) followed by maintenance therapy (with either low dose GCs, Azathioprine, 
Methotrexate, Mycophenolate Mofetil, Rituximab or Avacopan)[3].

Despite significant advances in diagnoses and management, patients with AAV continue to have significant 
morbidity and mortality, reduced survival rates, poor quality of life, and increased socio-economic burden 
compared to the general population[4-7]. This is due to a combination of the disease itself, treatment adverse 
effects, poor physical health (mostly from fatigue), psychological factors (mainly anxiety), decreased social 
participation (due to lifestyle changes related to disease and social perceptions of vasculitis), and decreased 
employment (due to functional impairment)[8]. Despite adequate treatment, 20%-30% of patients have 
refractory disease[9], and relapse rates remain high (up to 50% at 5 years)[10].

There remain several unmet needs in AAV. Better and less toxic glucocorticoid-sparing therapies are 
required to reduce treatment-related adverse events. Avacopan is an exciting new therapy in the AAV 
armamentarium[11]. It is an orally administered small molecule complement C5a receptor blocker that 
inhibits neutrophil chemoattraction and activation (terminal C5a production is a component of AAV 
pathogenesis)[11]. There is also an unmet need for safe and inexpensive treatments for non-severe AAV or 
those with low-grade “grumbling” disease activity[12] who do not warrant significant escalation of therapy 
but who remain at risk of disease flares and damage accumulation. Trimethoprim/Sulfamethoxazole (TMP/
SMX) is an option for this patient group; however, previous results have been variable[13-15].

Antimalarial agents have been used to treat various autoimmune rheumatic diseases for over a century. 
Hydroxychloroquine (HCQ) is a safe and effective antimalarial drug that was approved by the United States 
Food and Drug Administration in 1955 for the treatment of discoid lupus, systemic lupus erythematosus 
(SLE), and rheumatoid arthritis (RA). It has since become the cornerstone background therapy in SLE 
patients; however, it has not been used for AAV. HCQ has additional antithrombotic, cardioprotective, 
antimicrobial, and anti-neoplastic benefits, which would be immensely valuable in patients with AAV who 
are at risk of infections, malignancy, and thrombosis, owing to the disease itself and background 
immunosuppression.

Based on these benefits, along with the unmet need for safe and inexpensive treatments for non-severe/low-
grade “grumbling” AAV, we suggest that HCQ may help fill this void. Through this review, we hope to 
present evidence to support the use of HCQ as a potential therapy for AAV.

HISTORY OF ANTIMALARIALS
The history of antimalarials is an interesting one, based on a mixture of facts and legends, and subsequently 
researched by several authors. The bark of the Cinchona tree (then called “fever tree”) appears to have been 
first used by the Andean population to combat shivering, fevers (although it was not included in the Inca 
pharmacopeia)[16]. Since then, the medicine became known by several names such as Cortex peruanus, 
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Peruvian bark, or Jesuit’s powder (since it was imported into Europe from Latin America by Jesuit 
missionaries). It is documented that in 1638, the Viceroy of Peru (Countess Cinchona) was treated by an 
Incan herbalist with the bark of a “fever tree” (subsequently named after her, the Cinchona tree), with 
dramatic improvement[17]. The Schedula Romana, published in 1649, is an early example of an efficient 
antimalarial recipe, assumed to have been designed by the Spanish cardinal Juan de Lugo, based on trial and 
error and recipes proposed by Roman apothecaries[16]. Oliver Cromwell, Lord Protector of England, died of 
a fever illness (later thought to be malaria) as he refused the Jesuit powder cure.

By the 18th and 19th centuries, Cinchona bark was in widespread use for treating intermittent fevers; 
however, it was not until 1820 that Quinine was discovered as the active ingredient[18]. It became one of the 
first drugs produced and sold by a global pharmaceutical industry, and factories in Europe, North America 
and later Asia dominated manufacturing. Initially, the raw material (the Cinchona bark) came from South 
America; however between 1890 and 1940, Cinchona plantations on Java (Netherlands East Indies) supplied 
90% of the bark for the quinine pharmaceutical business (other sources were Latin America and British 
India)[19].

Subsequently Chloroquine (CQ) was synthesized in 1934 and used extensively as an antimalarial drug. 
However, due to its significant toxicity, a modification of Chloroquine (via hydroxylation) was required and 
led to the development of Hydroxychloroquine in 1945, which was less toxic[17,18].

The first documented use of antimalarials for rheumatic disease was in a postgraduate lecture by Joseph 
Frank Payne at St. Thomas’ Hospital, London, where he described using Quinine for treating cutaneous 
lupus[20]. The subsequent discovered benefit of antimalarials for inflammatory arthritis and rashes was 
serendipitous - during the Second World War, millions of soldiers taking antimalarial prophylaxis noted 
significant improvement in their joint pains and rashes[17]. This led to the first trial (in 1951) showing the 
benefit of antimalarials (Mepacrine) in 18 SLE patients, many of whom had failed quinine[21]. Since then, 
antimalarials have been used for a wide variety of autoimmune rheumatic diseases. The first use of HCQ in 
rheumatic diseases was in 1956 for treating cutaneous and mild (benign) systemic lupus[22-24].

PHARMACOKINETICS AND PHARMACODYNAMICS
Hydroxychloroquine belongs to the antimalarial drug class 4-aminoquinolines[25]. It has a large volume of 
distribution and long half-life (around 50 days), which is responsible for its delayed onset of action and 
prolonged effect after drug discontinuation[26]. It is a weak base and hence accumulates in acidic 
compartments such as lysosomes and inflamed (acidic) tissues - this is thought to be crucial for its action[27]. 
HCQ also strongly binds to melanin and can deposit in melanin containing tissues such as the skin and 
eyes, which might explain its benefit in cutaneous disease and its adverse effects of retinopathy and skin 
pigmentation after prolonged use[27]. It is taken orally as Hydroxychloroquine Sulphate in doses between 
100-400 mg, rapidly absorbed in the upper intestines, metabolized by the liver, and excreted by the kidneys 
with an oral bioavailability between 60%-90%[28]. It reaches peak concentration 2-4 h after an oral dose[28]. 
Caution must be taken regarding dosage in patients with kidney disease, as reduced creatinine clearance 
leads to increased bioavailability and subsequent toxicity of HCQ[28]. Despite the fact that HCQ crosses the 
placenta and previous concerns regarding drug-related pigmentation in foetal tissue, HCQ is considered 
safe to use in pregnancy and breastfeeding[29,30].

CURRENT INDICATIONS FOR HYDROXYCHLOROQUINE
Apart from malaria, HCQ has been used in the treatment of various rheumatic and non-rheumatic diseases 
[Table 1]; however, its use in systemic vasculitis has been very limited [Table 2]. The best-known use of 
HCQ has been in SLE and RA.
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Table 1. Previous use of hydroxychloroquine in other diseases

Disease condition Hydroxychloroquine use Evidence base for hydroxychloroquine

1. Autoimmune rheumatic diseases:

(a) Sjögren’s 
syndrome (SS)

HCQ not routinely used 
Based on its benefits for SLE, a 12-month therapeutic trial is 
recommended in patients with mild systemic disease (rash, 
arthralgia/arthritis, fatigue). If there is no response at 12 months, 
advice is to stop[176,177]

• Previous studies - benefits on sicca symptoms 
(ocular/oral dryness), arthralgia, fatigue[178,179], 
immunoglobulin levels, and ESR*[180,181] 
• Subsequent trials and meta-analyses - no significant 
benefit[182-184] 

(b) Antiphospholipid 
syndrome (APS)

HCQ may be used as an add-on therapy in patients with APS and 
recurrent thrombotic/pregnancy complications despite 
combination treatment with low-dose aspirin and prophylactic 
dose heparin[185]

• No RCT’s** 
• Previous multicentre RCT of HCQ for primary 
thrombosis prevention in primary APS patients - 
terminated early due to poor recruitment[186] 
• Main evidence comes from SLE patients - HCQ 
shown to reduce the risk of both arterial and venous 
thrombosis[42,43] 
• Small European multicentre study - reduction in 
pregnancy losses from 81% to 19% (P < 0.05) in APS 
patients treated with HCQ during pregnancy[142] 
• Other studies, systematic reviews - similar 
benefits[187,188] 
• In vitro experiments - HCQ reduces 
antiphospholipid antibody mediated thrombosis in 
mouse models[189] 

(c) Sarcoidosis HCQ may be used as a second-line steroid sparing in patients with 
pulmonary and/or extrapulmonary sarcoidosis[190,191]

• No RCT’s 
• Several trials and publications - benefit in 
pulmonary and extrapulmonary manifestations 
(musculoskeletal, cutaneous, osseous, and 
neurological)[192-195]

(d) Hand 
osteoarthritis

HCQ not used as treatment • 2 RCT’s - no significant benefit of HCQ in pain relief 
compared to placebo[196,197]

(e) Other 
autoimmune diseases

Variable success in: 
• Eosinophilic fasciitis[198] 
• Dermatomyositis (including clinically amyopathic and childhood-onset dermatomyositis)[199-201] 
• Kikuchi-Fujimoto disease[202,203] 
• Adult-onset Still’s disease[204] 
• Juvenile idiopathic arthritis[204] 
• Chronic Chikungunya (viral) related arthritis[205] 
• Immune thrombocytopenia[206,207] 
• IgA nephropathy[208-210]

2. Infections

(a) Malaria HCQ primarily developed as antimalarial drug. Due to widespread 
drug resistance, no longer recommended for the treatment of P. 
falciparum malaria

• WHO guideline[211] - CQ or HCQ are indicated for 
the treatment of uncomplicated malaria due to 
Plasmodium vivax, P. malariae, P. ovale and P. knowlesi

(b) COVID-19 
infection

Although several trials showed no benefit in COVID-19 infection, 
HCQ was used in several countries as an inexpensive treatment 
with variable response

• HCQ initially thought to be a promising prospect 
based on previous benefits on SARS-COV1, 2 
viruses[212] 
• Several RCT’s including RECOVERY and REMAP-
CAP trials - no benefit of HCQ vs. placebo[212,213] 
• Some trials, meta-analysis showing worse 
outcomes including cardiac complications and 
death[214-216]

(c) Other infections  
(variable benefit)

• Bacterial infections (e.g., Coxiella burnetti infections[217,218], Whipple’s disease[219]) 
• Fungal infections (e.g., cryptococcal[220,221], Aspergillus[222], Paracoccidioides infections[223]) 
• Viral infections (HIV[224], Zika virus infection[225], Chikungunya virus infection[205], etc.) 

3. Graft versus host 
disease (GVHD)

HCQ not routinely used[226]; however may be beneficial as an 
adjuvant therapy

• Phase II clinical trials - some benefit of HCQ in 
treatment of chronic GVHD[227,228] 
• Phase III clinical trials - no benefit[229,230]

4. Malignancies HCQ not routinely used • HCQ shown to have possible benefit in chronic 
lymphocytic leukaemia (CLL)[231,232] and breast 
cancer[233,234]

5. Porphyria cutanea 
tarda (PCT)

Current recommended treatments for PCT are repeated 
phlebotomy or low dose HCQ (100 mg bd)[235]

• Previous trials, studies - HCQ in an effective therapy 
for PCT and is better than phlebotomy or 
desferrioxamine[236-238] 
• Large RCT’s lacking

HCQ has shown some benefit in miscellaneous other diseases: 
• Polymorphous light eruptions[239] 

6. Other diseases
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• Granuloma annulare[240] 
• Lichen planus[241,242] 
• Chronic ulcerative stomatitis[243] 
• Hidradenitis suppurativa[244] 
• Chronic urticaria[245,246] 
• Multiple sclerosis[247] 
• Alport syndrome[248] 
There are several on-going clinical trials of HCQ in immunological, infectious, neurological, and neoplastic disorders[249] 
and the indications of use for this “wonder drug” are ever-growing

* ESR: erythrocyte sedimentation rate; ** RCT: randomized controlled trials.

Table 2. Previous use of hydroxychloroquine in systemic vasculitis

Disease condition Hydroxychloroquine use Evidence base for hydroxychloroquine

[A] Large vessel vasculitis:

1. Giant cell arteritis (GCA) HCQ not routinely used • Previous retrospective study - steroid-sparing benefit of HCQ in GCA[250] 
• Subsequent double-blind RCT (only published in abstract form) - no benefit 
of adjunctive HCQ vs glucocorticoids (GC’s) alone as a steroid sparing agent 
or on relapse rates[251] 
• No further RCT’s done

2. Takayasu arteritis (TA) HCQ not routinely used • No RCT’s 
• Longitudinal observational retrospective study by Rongyi et al. - HCQ 
enhanced anti-inflammatory effect, greater reduction in inflammatory 
markers (ESR, CRP), alleviated angiographic progression[252] 
• Case report - HCQ associated with improvement in arthralgia, reduced risk 
of relapse[253]

[B] Medium vessel vasculitis:

3. Polyarteritis Nodosa 
(PAN)

HCQ has been used as an 
adjunctive therapy along with 
GC’s[254]

• No RCT’s 
• Case series - HCQ used as an adjunctive therapy along with GCs in 
cutaneous PAN[254]

4. Kawasaki disease (KD) HCQ not routinely used • No literature found 
• HCQ was empirically used in COVID-19 with multi-system inflammatory 
syndrome in children (MIS-C) which presents similar to Kawasaki disease; 
however, subsequent trials and meta-analyses found this not to be 
beneficial[255]

[C] Small vessel vasculitis:

5. Urticarial vasculitis (UV) HCQ is included in the 
recommendations for treatment of 
cutaneous UV[256]

• No RCT’s 
• Several case reports and series - benefit of HCQ in 
hypo/normocomplementemic urticarial vasculitis with improvement in 
symptoms, anti-C1q antibody levels[257,258], associated retinal vasculitis[259], 
C1-esterase inhibitor concentration and activity[260] 
• Largest study from the French Vasculitis Study Group (n = 5) - HCQ was as 
effective as GC’s for hypocomplementemic urticarial vasculitis[261]

6. IgA vasculitis 
(IgAV)/Henoch Schonlein 
purpura (HSP)

HCQ not routinely used • No RCT’s 
• Limited case reports - improvements in arthralgia, rash, fatigue, 
gastrointestinal symptoms, reduction in flare rates, steroid dose[253], 
reduction in proteinuria in IgA nephropathy patients[208-210]

7. Anti-GBM*** 
disease/Goodpasture 
syndrome

HCQ not routinely used • No relevant literature found 
• Single case report - mentioned use of HCQ as maintenance therapy in a 
patient with Goodpasture syndrome and hemophagocytic 
lymphohistiocytosis (HLH). Patient relapsed after 2 months[262]

8. ANCA-associated 
vasculitis (AAV)

HCQ not routinely used • No RCT’s 
• Case reports - improvements in arthralgia, reduction in flare rates and dose 
of steroids with HCQ[253,263]

*** GBM: glomerular basement membrane.
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Systemic lupus erythematosus
HCQ has become the recommended background therapy in all SLE patients and is a part of all major 
guidelines[31-34]. HCQ has been shown to improve disease activity in mild to moderate disease[35], improve 
long-term outcomes/survival[36], and reduce disease flares[37,38], steroid burden[38], damage accrual[39,40], 
hospitalisations[41], and mortality[36]. It has also been shown to improve cardiovascular risk (by lowering 
lipids, glucose, and atherosclerosis risk), reduce VTE risk[42,43], improve bone mineral density[44] and protect 
against osteonecrosis[45] and malignancies[46]. It was previously also suggested that HCQ use in antinuclear 
antibody (ANA) positive individuals may delay the progression to SLE[47] or onset of renal disease[48].

Apart from systemic lupus, HCQ has shown benefit in cutaneous lupus erythematous (including discoid 
lupus, lupus panniculitis and refractory disease)[49-51] and as an adjuvant therapy for lupus nephritis[52,53]. It is 
also considered safe for use in in pregnancy and improves disease activity[54,55], reduces risk of flare[55,56], 
protects against complications (preeclampsia[57,58], intrauterine growth restriction/prematurity[59]) and 
reduces the risk of developing neonatal lupus and congenital heart block in Ro positive patients[60].

Rheumatoid arthritis
HCQ is an established treatment for Rheumatoid arthritis (RA) and is a part of all major national and 
international guidelines[61-63]. It can be used as monotherapy in early mild disease (without poor prognostic 
factors) or palindromic rheumatism but is most commonly used as combination therapy with either 
Methotrexate and/or Sulfasalazine. Apart from improving disease activity[64,65], slowing the rate of disease 
progression[65], and enhancing Methotrexate exposure[66], HCQ also improves the lipid profile, blood sugar 
levels and cardiovascular profile in patients with RA, leading to an overall reduction in cardiovascular 
events[67,68]. HCQ has previously also been shown to have some benefit in rheumatoid vasculitis[69,70]. A recent 
large observational cohort study by Wu et al. showed that RA patients on HCQ also have a significantly 
lower (36%) incidence of chronic kidney disease compared to those not on HCQ (HR 0.64, 
95%CI: 0.45-0.90, P = 0.01)[71].

PROPOSED MECHANISMS FOR HYDROXYCHLOROQUINE IN ANCA ASSOCIATED 
VASCULITIS
The exact mechanisms by which HCQ benefits in autoimmune rheumatic diseases are still not fully 
understood; however, HCQ interacts with various inflammatory mediators involved in the pathogenesis of 
ANCA-associated vasculitis and hence might be effective in treatment of this disease[72]:

1. HCQ is a weak diprotic base. At neutral pH (e.g., in serum), it remains uncharged and can easily diffuse 
across the lipid cell membrane of lysosomes. Once inside, the drug becomes protonated causing an increase 
in intracellular pH, which in turn causes disruption of proteins (cytokines, immune receptors) and impaired 
proteolysis, chemotaxis, and protein degradation (via endocytosis, phagocytosis, or autophagy). This in turn 
inhibits MHC (major histocompatibility complex) Class II auto-antigen processing and presentation to 
T-cells, production of lymphocytes and autoantibodies all of which play a role in AAV pathogenesis[27,73].

2. Recently it has been shown that the NLRP3 inflammasome may play an important role in the 
pathogenesis of several autoimmune and vascular disorders including vasculitis through inflammatory 
cytokines IL (interleukin)-1β and IL-18[74,75]. Inflammasome mediated IL-1β has also been shown to play a 
role in ANCA vasculitis associated renal involvement[76,77]. HCQ has been shown to inhibit NLRP3 
inflammasome activation and IL-1β secretion without affecting inflammasome priming steps[78,79]. This 
might be an exciting and novel mechanism through which HCQ, and other drugs may be beneficial in 
AAV[75].
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3. B-cell activating factor (BAFF) is a pro-survival factor for autoreactive memory B-cells[80]. BAFF has been 
shown to be elevated in patients with AAV[81,82]. HCQ has been shown to reduce BAFF levels in the serum of 
patients with Sjögren’s syndrome, SLE and Rheumatoid arthritis[83-85], as well as in salivary and tear fluid in 
patients with Sjögren’s syndrome[83].

4. There is increasing evidence to suggest that Toll-like receptors (TLR), especially TLR2, TLR4 and TLR9, 
are critically involved in the immune response in AAV[86-88]. These can be triggered by infections and 
microbial peptides (such as bacterial CpG oligodeoxynucleotide), leading to neutrophil activation[89] and 
ANCA formation[90-92]. TLR9 single nucleotide polymorphisms (SNPs) have been identified to be genetically 
associated with Granulomatosis with Polyangiitis (GPA), Microscopic Polyangiitis (MPA) and ANCA 
positive disease in genome wide disease association studies[93]. HCQ has been shown to inhibit TLR 
signalling and cell activation by altering the pH of endosomes, preventing TLR7 and TLR9 from binding to 
ligands and inhibiting the activity of nucleic acid sensor cyclic GMP-AMP synthase (cyclic guanosine 
monophosphate-adenosine monophosphate synthase)[27,94,95]. This in turn inhibits the production of pro-
inflammatory cytokines. TLR inhibition has also been suggested as a potential target for several other 
autoimmune diseases[96,97] and this may apply to AAV as well.

5. Several cytokines are implicated in the pathogenesis of AAV, especially IL-6, IL-8, IL-10, IL-17 and 
TNF-α (tumour necrosis factor alpha)[98]. HCQ has been shown to inhibit the production of IL-6, IL-17 and 
TNF-α (possibly by inhibiting TLR pathways), in addition to other cytokines like IL-1, IL-2, IL-22, IFN-α 
(interferon alpha), and IFN-gamma[99,100].

6. T-cells play an important role in immunopathogenesis of AAV. Abnormalities in peripheral T-cell subset 
numbers and function have been varyingly identified in patients, consistent with the heterogeneity of 
disease phenotypes encompassed within AAV. Transcriptional changes in peripheral CD4 and CD8 T-cell 
subsets, including naïve and memory T-cell subsets are indicative of persistent activation and bear 
hallmarks of toll-like receptor activation and exposure to microbial infection[101-105]. Furthermore, increased 
levels of circulating CD4+CD25+ cells have been identified in AAV patients, including CD4+CD25lo T-
effector cells and CD4+CD25hi T-regulatory (Treg) cells, which are vital cells in controlling the immune 
response to quell inflammation[102]. Despite the increased Treg levels, these cells were shown to be defective 
in their suppression of Teff proliferation in vitro[106]. In contrast, other studies noted reduced levels of 
circulating Tregs and increased follicular T-helper (TFH) cells in GPA patients, with no defect in 
suppressive function of Tregs[107]. The reasons for these differing observations remain unclear and may in 
part be due to clinical heterogeneity within AAV patients. Future studies exploring functional Treg 
subpopulations in blood and granulomatous tissue by deep sequencing technologies, will shed light on any 
functional defects in this population between different groups of AAV patients.

Interestingly, we have observed that HCQ treatment can inhibit the expression of the T-cell activation 
marker CD25 on unactivated CD4 T-cells from healthy donors, in plasma co-culture experiments using ex-
vivo plasma from patients, or by addition of HCQ in in-vitro cultures. In contrast, HCQ has no effect on 
unactivated peripheral blood mononuclear cells (PBMCs) cultured with healthy control donor plasma 
[Figures 1 and 2][107]. This observation suggests that HCQ acts to suppress potential inflammatory mediators 
in patients. Mechanistically, HCQ suppresses T- and B-cell receptor mediated signalling by specifically 
inhibiting calcium signalling and subsequent NFAT (nuclear factor of activated T-cells) activation[108]. HCQ 
induces apoptosis in autoreactive memory T-cells[109], and reduces pro-inflammatory T-cell activation[110,111].
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Figure 1. Effect of HCQ on CD25 activation on ex-vivo and in-vitro CD4 T cells from GPA patients. (A) Peripheral blood mononuclear 
cells (PBMCs) from healthy control (HC) donors were co-cultured with 10% plasma from HCQ-treated GPA patients (n = 4), HCQ-
untreated GPA patients (n = 5) or HC plasma (n = 5) for 5 days. PBMCs from HC were co-cultured with (B) HCQ-untreated GPA 
plasma or (C) HC plasma samples with or without 3 µM HCQ treatment. Following co-culture for 5 days, PBMCs were stained with 
antibodies for CD4, CD8, CD19, and CD25 and evaluated by flow cytometry to identify lymphocyte subsets expressing CD25. Statistical 
significance was calculated by (A) Mann-Whitney test and (B) and (C) two-way ANOVA grouped analysis. *P < 0.05, **P < 0.01.

Figure 2. HCQ inhibits T cell activation in vitro. PBMC from 6 healthy control donors were incubated with 50 µM HCQ for 24 h, then left 
unstimulated or stimulated with plate-bound anti-CD3 (10 mg/mL UCHT1, Ancell) and anti-CD28 (1 mg/ml, ANC28.1/5D10, Ancell) 
for 18 h, and analysed by flow cytometry to identify CD3+CD4+ and CD3+CD8+ T cell subsets expressing activation markers CD69 and 
CD25. Statistical significance was assessed by the Mann-Whitney test. **P < 0.01.

7. High mobility group box 1 (HMGB1) is among the most important chromatin proteins in humans and is 
encoded by the HMGB1 gene. In the nucleus, it helps to organize DNA and regulate transcription; however, 
outside the nucleus, it is also a crucial cytokine that mediates response to infection, injury, inflammation, 
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and cancer[112]. HMGB1 is thought to play a role in a wide range of diseases including but not limited to 
cancers[113], inflammatory disorders[114-116], and vascular disorders[117] and might be a potential target for drug 
therapy[118]. Patients with AAV have higher levels of HMGB1[119,120] and this is associated with disease 
activity[120-122], presence of renal disease[119] and vascular inflammation[123]. Antimalarials such as CQ and 
HCQ have been shown to inhibit HMGB1 inflammatory signalling[124,125].

8. Matrix metalloproteinases (MMP) are a group of proteinases that degrade both matrix and non-matrix 
proteins in the extracellular space. They play an important role in wound healing, tissue repair and 
remodelling in response to injury[126]. Tissue inhibitors of matrix metalloproteinases (TIMP) are a family of 
proteins that function to inhibit MMPs[127]. Altered levels of MMP and TIMP have been implicated in 
several human diseases[128].

TIMP-1, TIMP-2, MMP-2, MMP-3, and MMP-7 levels are promising biomarkers in AAV and help to 
distinguish between active disease, remission, and renal disease. TIMP-1, MMP-3 and MMP-7 levels are 
elevated in active disease, whereas MMP-2 and TIMP-2 levels are elevated in remission. Elevated TIMP-1, 
MMP-3 and MMP-7 are associated with worsening renal function[129-132]. HCQ has been shown to modulate 
the levels of TIMP-1, MMP-2 and MMP-9[133,134] and this might be of use in AAV.

OTHER BENEFITS OF HYDROXYCHLOROQUINE
Hydroxychloroquine has been shown to have antithrombotic, cardioprotective, anti-infective and 
antineoplastic benefits. These benefits have been mainly described in patients with altered risk secondary to 
underlying autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus and 
antiphospholipid syndrome. Patients with AAV are at higher risk of comorbidities such as 
thromboembolism, cardiovascular events, infections, and malignancies due to active disease and side effects 
of systemic immunosuppression (especially steroids).

It remains unclear whether these benefits are as a direct result of HCQ itself, or an indirect consequence of 
the interacting mechanism outlined earlier, and whether these benefits may translate to a different 
autoimmune milieu as seen in AAV; however, this may provide an additional avenue of benefit of HCQ in 
AAV patients.

Antithrombotic effect
Patients with AAV have a 2-3 times higher risk of venous and arterial thromboembolism (VTE, ATE) 
compared to the general population[135,136]. This risk is higher earlier in the disease course (when disease 
activity is higher); however, the increased risk persists despite remission[137]. Apart from classical risk factors 
for VTE (e.g., older age, higher BMI, immobilization, major surgery, malignancy, etc.), AAV specific risk 
factors include higher disease activity, myeloperoxidase-ANCA (MPO-ANCA) positivity, and 
hypoalbuminemia[138,139]. Proteinase 3 ANCA (PR3-ANCA) positivity was previously thought to be a risk 
factor[139]; however, a recent meta-analysis showed an inverse relationship between PR3-ANCA positivity 
and VTE risk[138].

The earliest documented trials using HCQ for thromboprophylaxis were in the 1970’s and 80’s for reducing 
peri-operative VTE’s in orthopaedic (joint replacement) and non-orthopaedic surgeries[140,141]. Since then, 
the antithrombotic benefits of HCQ have been well documented, especially in patients with SLE[42,43] and 
antiphospholipid syndrome (APS)[142,143].
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The main mechanisms, although incompletely understood, are thought to be related to reduction in disease 
activity, platelet activation[144], atherosclerotic plaque formation[145], antiphospholipid antibody (aPL) 
levels[146], aPL related thrombus formation[145,147], aPL mediated disruption of the potent anticoagulant 
Annexin A5[148,149], and improvement in vascular endothelial function[150,151].

Antineoplastic effect
As with most other autoimmune diseases, patients with AAV have an increased risk of malignancy, 
particularly bladder cancer, leukaemia, and non-melanoma skin cancers[152-154]. This is thought to be due to 
impaired immunosurveillance, chronic immune stimulation and immunosuppressive medications 
(particularly Cyclophosphamide and Azathioprine). Reassuringly, with the increased use of Rituximab, the 
rates of cancer are declining[155].

The antineoplastic benefits of antimalarials were first observed when Chloroquine (CQ) was used for a 
malaria prophylaxis programme in Tanzania and was associated with a reduction in the incidence of Burkitt 
lymphoma[156]. Since then, CQ and HCQ have shown benefit in several malignancies (see Table 1). 
Antimalarials have also been shown to reduce the risk of malignancy in patients with SLE[46], Sjögren’s 
Syndrome[157], and RA[158,159].

Improved cardiovascular risk
Patients with AAV have greater than three-fold risk of cardiovascular (CV) events compared to the general 
population[160,161]. This is thought to be due to a combination of endothelial dysfunction related to active 
vasculitis[162,163], accelerated atherosclerosis in systemic vasculitis[164,165], and comorbidities, i.e., diabetes 
mellitus, hypertension etc. related to steroids.

HCQ has previously been shown to have a beneficial effect in lowering blood sugars[166-168], improving lipid 
profiles[167,168], and reducing atherosclerosis/improving vascular elasticity[150,151] all of which improve CV risk 
profiles[169].

Reduced infection risk
Patients with AAV are at an increased risk of infections especially within the first year of diagnosis[170,171]. 
This is due to a combination of immune dysfunction due to the disease itself and concomitant 
immunosuppression. Infections are the most common cause of mortality within the first year[171].

HCQ is well known for its antimicrobial properties and is used in the treatment of various infections (see 
Table 1). HCQ has also been shown to reduce infection rates in other autoimmune diseases like SLE and 
RA[172,173].

SIDE EFFECTS OF HYDROXYCHLOROQUINE
Overall HCQ is considered safe and well tolerated; however, as with all medications, it may be associated 
with certain adverse effects. In contrast to other immunosuppressive medications, HCQ is not associated 
with an increased risk of infections or malignancy. The most common side effects are gastrointestinal 
(nausea, vomiting, diarrhoea, abdominal discomfort) and cutaneous (pruritis, rashes, urticaria). With 
chronic long-term use, patients may develop blue-grey hyperpigmentation (particularly over gums, palate, 
face and shins)[18,27].

The most well studied and worrying adverse effect of HCQ remains retinopathy (known as bull’s eye 
maculopathy), which is often symptomatic in the early stages and may cause permanent visual loss. The 
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most common risk factors for HCQ-related retinopathy include long duration of treatment, cumulative 
dose, chronic kidney disease and pre-existing retinal disease. As a result, annual ophthalmic screening with 
OCT (optical coherence tomography) is mandatory for patients on HCQ based on local guidelines[18,27,174].

Apart from these, other rare but serious side effects may include cardiovascular (conduction defects, 
cardiomyopathy), dermatological (toxic epidermal necrolysis, Steven-Johnson syndrome, exacerbation of 
psoriasis), haematological (bone marrow toxicity, neutropenia), neuromuscular (myositis, toxic myopathy), 
neuropsychiatric (confusion, disorientation, hallucination) and others (ototoxicity, tinnitus, fulminant 
hepatic failure)[18,27].

HAVEN TRIAL
In order to study the hypothesis that HCQ has disease modifying activity in AAV, the HAVEN trial was 
launched in 2018. HAVEN (Hydroxychloroquine in ANCA Vasculitis Evaluation) is a United Kingdom 
(UK) multicentre, randomized, double-blind, placebo-controlled trial of HCQ in ANCA vasculitis. Seventy-
six patients with AAV and a Birmingham Vasculitis Activity Score (BVAS) > 3 will be randomised 1:1 to 
HCQ or placebo over 52 weeks. The primary outcome measure is the ability of HCQ to control disease 
activity measured by the BVAS[175].

CONCLUSION
HCQ has the potential to be an effective, safe, well tolerated, and inexpensive disease modifying anti-
rheumatic drug (DMARD) for AAV patients with low-grade “grumbling” disease activity. It already has 
efficacy in several other autoimmune diseases, especially SLE and RA. Apart from its potential mechanisms 
of action in AAV, HCQ has antithrombotic, cardioprotective, antimicrobial and antineoplastic effects, 
which would make it an excellent option in this disease. Similar to SLE, HCQ may have the potential to 
improve disease activity, reduce steroid use, reduce flares, and improve outcomes in patients with AAV. If 
the HAVEN trial is positive, this could lead to a change in the management of patients with AAV.
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