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Abstract
Sweating is an important physiological reaction and a clinical symptom in a variety of diseases. However, it remains 
underrated in clinical use. Gold standards to measure the sweat rate are neither continuous nor easily or lab-
independently applicable. With the emergence of novel wearable devices, using the sweat rate as a digital 
biomarker shows promise for clinical monitoring and diagnostics. In this Commentary, we discuss the potential and 
importance of the sweat rate as a digital biomarker in clinical medicine beyond sports science.
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INTRODUCTION
Sweating is an important physiological reaction to maintain the body’s thermoregulation during exposure to 
environmental heat stress or during rigorous exertion. This is one of the main reasons why the sweat rate 
assessment has been increasingly investigated in sports science and occupational health since the emergence 
of wearable sweat sensing. Reports from diseases such as the “Sudor Anglicus” in the 15th century, 
alongside common medical knowledge from oncology and infectious diseases, have shown that sweating 
has not only a thermo-regulatory function but it can be a symptom in clinical medicine as well[1-3]. 
Therefore, sweat analysis provides valuable information about health, disease, and even age[4,5]. Still, the 
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sweat rate remains underexplored and underrated in clinical medicine. However, with the emergence and 
continuous advancements of sweat analyzing wearables, sweat rate analysis holds the potential to become a 
clinically, broadly available digital biomarker. In this Comment, we introduce and discuss the sweat rate as a 
promising novel digital biomarker to monitor health and disease in clinical medicine beyond sports science.

THE SWEAT RATE PHYSIOLOGY
Basics
The human body houses approximately two to four million sweat glands[6,7]. Eccrine, apocrine, and 
apoeccrine sweat glands can be distinguished[8,9]. While eccrine sweat glands are responsible for the highest 
volume of sweat excretion[10], secretion of apocrine and apoeccrine glands can also influence the sweat 
composition at the skin surface[11]. During sweating, up to 2,426 J of heat per gram of evaporated sweat can 
be dissipated from the body[12]. Aiming to maintain thermoregulation, sweating is the most efficient way to 
dissipate heat from the body. Next to heat stress, sweat glands can be stimulated by emotional stress[13], 
mechanical vibration[14], eating spicy food (gustatory hyperhidrosis)[15], or chemical substances such as 
carbachol and local current[16].

Neurological control
Many thermosensitive neurons can be found in the preoptic area and the anterior hypothalamus[17]. To keep 
the body temperature constant, they initiate appropriate responses when detecting changes in body 
temperature[17]. Augmented local preoptic temperature or a rise in afferent impulses from the cutaneous and 
spinal thermoreceptors caused by elevated skin temperature can both result in increased sweating[17]. 
However, increased core body temperature stimulates the sweat rate nine times more efficiently than 
increased mean skin temperature[18-20].

Body map
Local sweat rates for the mid-front, sides, and mid-later back were found to be significantly higher in males 
compared to females[21]. In both sexes, the highest sweating was observed along the spine, whereas the sweat 
rate on the upper arm was lowest. Furthermore, total sweating on the back exceeded the total sweating of 
the chest.

For older males, gross sweat loss and regional sweat rates were significantly lower compared to the 
young[22]. During rest, significantly lower regional sweat rates at almost all body regions were observed, 
whereas, during exercise, a significant difference was found for the hands, legs, ankles, and feet[22].

Influencing variables
Environmental factors such as ambient temperature, air velocity, and radiant load, along with factors such 
as clothing and the level of physical activity, influence the sweating rate [Figure 1][23].

Heat acclimatization of five to eight days results in thermoregulatory adaptions such as increased sweat rate 
and earlier onset of sweating[24]. However, depending on humid or dry heat exposure, the adaptation of the 
eccrine sweat gland differs: the sweat rate in a hot-humid environment is greater than in a hot-dry 
environment[24]. In healthy unacclimatized men, a sweating capacity of maximally 1.5 liters per hour has 
been reported, whereas, in highly trained acclimatized soldiers, a sweat rate of two to three liters per hour 
was reached[25]. Sweat rates of one liter per hour occur frequently depending on factors like the environment 
or the intensity of exertion; however, sweat rates can vary considerably[26]. Not only heat acclimatization but 
also training can lead to an increase of sweat rates of 200 to 300 mL per hour[26].
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Figure 1. Factors influencing the sweat rate. Non-comprehensive overview of environmental/physiological and pathophysiological 
factors influencing the sweat rate, demonstrating the sweat rate as a digital biomarker going beyond sports science and occupational 
health. Created with BioRender.com.

WEARABLE SWEAT RATE ANALYSIS
Diagnostic instruments that rely on sweat samples collected using absorbent pads yield a wealth of 
information related to physiological status and athletic performance[27,28]. The protocols and the benchtop 
systems required for this purpose are, however, incompatible with real-time monitoring in the field. This is 
due to the bulk and expense of the hardware and the time and effort required for sample collection and 
preparation. Recent advances in flexible, hybrid electronics, soft microfluidics, and electrochemical sensors 
serve as foundations for emerging classes of skin-mounted systems for measuring the properties of sweat, 
each with features that overcome key limitations of conventional technologies[29-33].

The measurement of the sweat rate in skin-mounted systems occurs through microfluidic devices that 
capture the sweat directly from the glands [Figure 2]. The pressure that drives fluid flow arises from the 
action of the sweat glands themselves, assisted by capillary effects in the microchannels. The microfluidic 
system usually consists of a thin polymer layer [usually polydimethylsiloxane (PDMS)] embossed with 
appropriate relief geometry with a top-capping polymer layer [i.e., PDMS and polyethylene terephthalate 
(PET)] that serves as a seal[33]. The resulting overall thickness (usually smaller than 1 mm) and the addition 
of adhesive films enable intimate contact with the epidermis. Sweat rates strongly depend on the body 
location and the intensity of the exercise and may range from 39 to 614 g·h-1·m-2[22]. Therefore, microfluidic 
devices are typically designed to accommodate tens of uL. The inlet opening of a few mm in diameter 
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Figure 2. Overview of the main proposed approaches to measuring the sweat rate using wearable soft microfluidic sensors.

enables sweat collection of multiple glands, sometimes with the help of hydrophilic fillers for rapid sweat 
uptake[34]. The pressure that drives fluid flow arises from the action of the sweat glands themselves, assisted 
by capillary effects in the microchannels and the materials embedded within them. The measurement of the 
sweat rate can be implemented through various strategies that can be roughly categorized by transduction 
methods: (i) optical/visual; (ii) electrical (impedance, resistive). The former consists of fully passive devices 
(do not need a battery) in which the volume change is estimated visually or with the help of a camera[35-37]. 
More sophisticated designs offer quantitative information. They usually see the embedding of conductive 
traces or pads into the microfluidic channels. The flow of sweat induces changes in the electrical impedance. 
Initial designs suffered from the interdependence of the impedance on the volume and ionic concentration 
of the sweat, making the estimation of the rate difficult[34,38,39]. More recent designs have overcome this 
problem by (i) introducing differential measurements through two microfluid systems on the same patch 
(one for the ionic concentration and one for the rate)[40] and by (ii) patterning an array of pads along the 
channel to register discrete/digital changes of the impedance that enable time-volume synchronization 
independently from the ionic concentration[41]. It is worth mentioning that both methods require AC 
measurements to avoid the accumulation of ionic charge in the channels and the fouling of the impedance 
readout. This requirement complicates the circuit design of the wearable patch. While the previously 
mentioned devices rely on the indirect estimation of the rate via the measurement of the sweat volume and 
the passage time between some markers, another recent solution relies on the implementation of a 
flowmeter. This method involves reading the electrical resistance of two thermistors positioned on top of 
the microchannel and spaced out by a heater[42]. The flow of the sweat establishes a temperature change 
between the two thermistors whose dynamic response correlates with the flow rate. The simplicity of this 
strategy requires design optimization and intermittent operation to not incur high power consumption due 
to the heater. It is worth mentioning that all devices listed above are for single use: once the microfluidic is 
filled up, the device must be replaced by an empty one. Therefore, modular multi-layer designs are exploited 
to reuse the expensive layer that contains the electronic components and to dispose of the microfluidic layer 
that can be produced with biodegradable polymers[43]. An overview of typical specifications of wearable 
sweat rate sensors and a list of reported designs can be found in Table 1. Another major challenge deals with 
the production and collection of sweat that may be intermittent. Passive and active approaches rely on 
physical exercises and electro-/chemical stimulation, respectively. Iontophoresis is a widely used method of 
active sweat induction, allowing the acquisition of sweat samples while the body is sedentary. A current is 
generated under the skin surface by applying a voltage between the iontophoretic electrodes, allowing the 
agonist (e.g., pilocarpine molecules) to be delivered to the sweat gland at the anode and stimulating the 
secretion of sweat[33]. Such an approach has proved to be effective for the monitoring of chloride[44], 
ethanol[45], c-reactive protein[46], hormones[47], and glucose[44,48]. Other more innovative methods rely on 
optical infra-red imaging combined with skin temperature and environmental conditions to assess the 
activity of multiple sweat glands[49] or on the use of sweat-responsive covalent organic films for sweat pores 
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Table 1. Typical specifications of wearable sweat rate sensors

Device Materials and design of µ-fluidics Sweat rate measurement Ref.

1 A coiled tubing kept in position by a round plastic frame Sensor: water-responsive chromogenic reagent 
Read-out: external camera for time-stamped picture 
Pros/Cons: simple implementation/not thin film 
so rather bulky, the read-out relies on the post-processing of 
the picture taken from an external camera (semi-quantitative)

[36]

2 A bottom PDMS layer (thickness, 500 μm) embossed with 
appropriate relief geometry (uniform depth, 300 μm) and with a 
top-capping layer of PDMS that serves as a seal (thickness, 200 
μm)

Sensor: water-responsive chromogenic reagent 
Read-out: picture taken from an external camera launched by 
near field communication chip for time 
Pros/Cons: simple design/ the read-out relies on the post-
processing of the picture taken from an external camera (semi-
quantitative)

[35]

3 Two main parts: (i) a microfluidic; and (ii) an electrical sensing 
component. The microfluidic channel is prepared with PDMS 
and is covalently bonded to PET containing sensing electrodes 
layer, via O2 plasma etching and silanization. In some designs, 
the collection well is filled with a patterned SU8 filler coated 
with a thin saturated hydrogel layer that contacts skin for sweat 
uptake

Sensor: capacitive (analog/continuous). The sweat rate 
sensor contains two parallel Cr/Au spirals that are aligned 
with the microfluidic channel. Sweat rate is quantified by the 
change of impedance 
Read-out: external PCB for signal processing and 
communication via bluetooth 
Pros/Cons: quantitative read-out/the read-out signal depends 
also on the changing ionic concentration of the sweat

[34,
38]

4 Design similar to the one of device 3 but with the impedimetric 
sweat rate sensor formed by two electrodes with interdigitated 
fingers over which the serpentine channel repeatedly passes

Sensor: capacitive (digital/discrete). The multi electrodes 
design results in discrete/digital changes of the impedance 
that enable time-volume synchronization independently form 
the ionic concentration 
Read-out: external PCB for signal processing and 
communication via bluetooth 
Pros/Cons: quantitative read-out not depending on the ionic 
sweat concentration/ rather complex implementation 
(multiple electrodes)

[41]

5 The device is formed by three main layers: (i) an adhesive layer 
to strengthen the contact with the skin; (ii) a PDMS layer with 
microfluidics and electrodes for sensing; (iii) flexible PCB to 
connect electronics and communication chips

Sensor: the sensing mechanism relies on the measurement of 
the resistance between metal pads patterned onto the wall of 
the microfluidic channels. Two separate channels allow to 
solved the interdependence of the resistance on rate and 
electrical conductivity of the sweat. AC modulation is 
implemented to avoid the formation of electronic double layer 
that may foul the reading 
Read-out: flexible PCB for signal processing and 
communication via NFC 
Pros/Cons: quantitative read-out not depending on the ionic 
sweat concentration/rather complex implementation (two 
separate channels)

[40]

6 Design consists of (i) an adhesive layer; (ii) a PDMS 
microchannel; (iii) a PDMS PCB that connects two thermistors 
and a heater; and (iv) finally a PDMS cover. The design is 
simpler than the one of device 3 and 5 since it is rely on the 
direct measurement of the speed of the sweat flow rather than 
of the volume. The modular assembly facilitate the re-use of the 
PCB with with the disposable layers connected via magnets to 
the flexible PCB

Sensor: the device implements a flowmeter by reading the 
temperature difference between two thermistors. A heater 
positioned midway between the thermistors set their 
temperature which is identical before the flow of the sweat and 
that is different after. The difference of temperature yields a 
change of the resistance in the two thermistors 
Read-out: flexible PCB for signal processing and 
communication via BLE 
Pros/Cons: elegant solution implementing a micro-thin film 
flow-meter/sensitive to stretching because the distance 
between the two thermistors changes, the heater could be 
power hungry if not properly biased

[42]

AC: Alternate current; BLE: bluetooth low energy; PCB: printed circuit board; PDMS: polydimethylsiloxane; PET: polyethylene terephthalate.

analysis[50]. Currently, we register a few commercial devices that aim to track sweat rates and composition. 
One is KuduSmart (https://kudusmart.com/), and the other one is the GX patch (https://www.gatorade.
com/equipment/gx-sweat-patch/gx-sweat-patch).

https://kudusmart.com/
https://www.gatorade.com/equipment/gx-sweat-patch/gx-sweat-patch
https://www.gatorade.com/equipment/gx-sweat-patch/gx-sweat-patch
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SWEATING - A SYMPTOM IN CLINICAL MEDICINE
Sweating is an unspecific but very common symptom in clinical medicine. Currently, the quantification of 
the sweat rate can only be conducted during clinical examination in this field. There are several qualitative 
measures (the Clinical Opioid Withdrawal Scale and the descriptive observation by the examinator) and 
quantitative measures (gravimetrical analysis using technical absorbents and determining changes in the 
body weight) that can be employed[51-53]. An easy, continuous, and straightforward measurement of the 
sweat rate during everyday life is not yet available. Therefore, the full clinical potential of sweating as a 
symptom and an indicator of health and diseases has only been vaguely exploited until recently.

Clinical sweat terminology
To objectively assess the symptom of “sweating”, the sweat rate must be determined. It can be distinguished 
between local and whole body sweat rates. The local sweat rate refers to the excretion of sweat on a certain 
skin surface, whereas the whole body sweat rate covers the total loss of sweat from the body. Changes of the 
sweat rate can (i) result from either physiological and/or pathophysiological changes in the body, referred to 
as non-iatrogenic; or (ii) be induced in the body, for example, by pharmacological therapy, referred to as 
iatrogenic. The sweat rate may be increased above the physiological need in regard to maintaining 
thermoregulation, named hyperhidrosis, or decreased, named hypohydrosis[54]. When there is no sweat 
excretion at all, it is called anhidrosis. Derived from common medical terminology, changes in the sweat 
rate are classified as focal if a limited area on the body surface is affected or generalized if the whole-body 
surface is presumed to be affected. Changes in the sweat rate are categorized to be primary when originating 
within the functional chain of the sweat gland or secondary when induced by external variables affecting the 
sweat gland chain [Table 2][55].

Clinical sweat monitoring
Both the local and the whole body sweat loss assessments are not continuously feasible and need lab 
infrastructure. Wearable sweat analysis to assess hydration during exertion or in hot environments is 
convenient and affordable[37]. These wearable sweat sensors enable sweat rate monitoring and can 
additionally assess changes in electrolyte concentration such as sodium, chloride, and additional biomarkers 
of interest[46,56]. By being coupled to smartphones, wearable sweat sensors provide a straightforward 
opportunity to continuously assess the local sweat rate. This, in turn, makes it possible to extrapolate the 
whole body sweat loss[56]. Furthermore, learning algorithms enable direct data interpretation and use within 
predictive models to establish preventive measures or to adapt therapies.

Sweat in clinical medicine
Hyperhidrosis
Primary hyperhidrosis is an idiopathic condition that occurs in 4.8% of the U.S. population. The lead 
symptom is excessive sweating. The most affected regions are the plantar, palmar, and axillary regions of the 
body[57,58]. While not primarily being life-threatening, primary hyperhidrosis directly affects social life. More 
severe causes of hyperhidrosis can be assessed during clinical anamnesis and examination. One of the more 
prevalent symptoms of hyperhidrosis is night sweats, which is assessed by inquiring the patients if night 
sweats have been observed. The current clinical definition of night sweats is when pajamas had to be 
changed during the night as being soaked up wet. Due to the binary nature of the question, only the 
affirmative answer leads to documentation and, therefore, implementation into the treatment plan. In many 
instances, however, night sweats are not further investigated. Increased night sweats may have several 
underlying reasons, such as (i) elevated environmental conditions (temperature/relative humidity); (ii) 
infectious diseases such as viral infections with Influenza or COVID-19; and (iii) bacterial infections such as 
pneumonia and even tuberculosis. Additionally, night sweats may appear in cases of (iv) autoimmune 
diseases or (v) cancer. Also, (vi) hormone changes, such as those seen in hyperthyroidism; (vii) genetical 
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Table 2. Summary of the terminology of clinical sweat assessment

Umbrella term Specification Description

Local Sweat collected from a specific body surface over a specified time
(indicated in g·h-1·m-2)

Sweat rate

Whole body sweat loss Total amount of water lost due to sweating over a specified time

Iatrogenic Sweat rate impacted through medical treatment or interventionCauses of sweat rate 
changes Non-iatrogenic Changes of the sweat rate that are not directly caused by medical treatment

Hyperhidrosis Increased above the physiological need regarding the maintenance of the 
thermoregulation of the body

Hypohidrosis Decreased under the physiological need regarding the maintenance of the 
thermoregulation of the body

Amount of sweat

Anhidrosis No sweating

Focal Specific locus on the body surface is affected

Generalized The whole-body surface is presumed to be affected

Primary Caused within the functional chain of the sweat gland

Changes in the amount of 
sweat rate

Secondary Due to external variables of the chain of the sweat gland

changes affecting the sweat gland function (e.g., in cystic fibrosis); (viii) brain infarction; or (ix) 
pharmacological treatments with amiodarone or hormone substitution, may lead to hyperhidrosis.

Hypohydrosis
Hypohydrosis can be categorized into exogenous, dermatological, and neurological causes[59]. Systemic 
neurohormonal inhibition of sweating or damage to skin and sweat glands can result from exogenous 
reasons. Congenital disorders lead to dermatological disorders, and neurological pathologies can be caused 
by autonomous dysfunction.

While hyperhidrosis can be an indicator of serious health deterioration, hypohydrosis is less often clinically 
significant. However, hypohydrosis can be an indicator of peripheral polyneuropathy such as in Diabetes 
Mellitus. Hypohydrosis can be assessed using one of the few established clinical sweat tests, namely the 
thermoregulatory sweat test (TST)[60]. For the TST, an indicator powder that changes color upon contact 
with sweat is applied to the skin. The person undergoing examination is subsequently exposed to 
environmental heat that usually leads to increased sweating. This process helps identify hypohydrotic skin 
areas.

CONCLUSION
Sweating is a common symptom in clinical medicine beyond sports science. Up to date, the absolute 
quantification of the sweat rate is challenging as the gold standard analysis by gravimetrical analysis is 
neither continuous nor feasible outside of a lab setting. These barriers are the main factors why sweat 
analysis has not been implemented in clinical medicine yet. Novel wearable sweat analyzing biosensors 
enable us to easily and continuously monitor the sweat rate independently of specialized laboratories. With 
the emergence of these novel biosensing devices, the sweat rate is accessible for structured clinical 
investigation and can serve as a novel digital biomarker. Importantly, cyber security, bioethical, and policy 
considerations need to be addressed for successful clinical implementation[61,62]. Clinical investigations are 
needed to demonstrate the additional clinical value of wearable sweat rate analysis for all stakeholders in 
healthcare.
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