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Abstract
Genetically modified animal models are commonly used for in vivo studies of human diseases. Mice are the most 
common animal models used in biomedical research, which have provided important insights into disease 
pathogenesis and are widely used to find treatments for diseases. However, due to the differences in the 
anatomical structure and physiological function between human and mouse brains, most genetically modified 
mouse models cannot fully recapitulate the overt and selective neuronal loss seen in age-dependent 
neurodegeneration diseases. While non-human primates (NHP) are closer to humans and have been used to 
model human disease, these models are difficult to be utilized at a large scale due to various limitations including 
their high costs, prolonged breeding time, community concerns for use of NHP, and high ethical standards. As an 
important animal resource in agriculture, pigs are also used as animal models in biomedical research. The central 
nervous system of pigs is highly similar to that of humans, making pig models suitable for investigating neurological 
diseases. The relatively short breeding period, large litter size, and established somatic cell transfer technology are 
advantages over NHP for using pigs to model human diseases. The recent development of gene editing tools allows 
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one to more efficiently generate pig models that can precisely mimic genetic mutations in neurological diseases. In 
this review, we summarize recent advances in the use of pigs for modeling human neurological diseases, including 
new approaches for generating genetically modified pig models.

Keywords: Pig models, neurological diseases, gene editing, genetic modification, genome editing tools, disease 
models

INTRODUCTION
In vivo experiments using laboratory animals are essential for the verification of important findings from in 
vitro studies. In addition, animal models of human diseases are critical in revealing pathological changes 
and disease pathogenesis, which provide the theoretical basis for the development of treatments and 
therapeutic strategies. Small animal models such as mice and rats have been widely used in biomedical 
research, and animal models generated from mice have greatly advanced our understanding of the 
pathology and mechanisms of diseases. Small animals can partially mimic the symptoms and pathologic 
phenotypes of human disease, especially in extremely complex neurodegenerative diseases. That may be due 
to the considerable differences in development, aging, and fine structures between mouse and human 
brains. For example, the full development time for mouse brains is 21 days while primates’ brains need 
more than 150 days to reach full maturation[1]. The short lifespan of rodents is another major difference that 
may cause the different presentation of the neuropathology, since mice can only live for a little over two 
years, which is much shorter than the human’s average of 70 years. Therefore, the rapid development of the 
brain and the short lifespan of mice may cause neuronal cells to respond less strongly to the production of 
misfolded toxic proteins than do human neuronal cells. Differences in neural circuits and anatomical and 
physiological features between rodent and human brains suggest that we should explore other animal 
models to develop neurodegenerative diseases.

Undoubtedly, non-human primates (NHP) are ideal animal models that can closely mimic human diseases 
due to the high similarities between NHP and humans in genetics, physiology, development, social 
behaviors, and cognition. However, it is difficult to create a genetically modified NHP model when 
compared with small animals due to various factors, including long breeding cycles, lack of effective 
methods for genetic manipulations, high costs, community concerns, and high ethical standards. As a result, 
the first transgenic mouse model was generated as early as 1974[2], but the first genetically modified monkey 
model did not appear until 2001[3].

Considering the shortcomings of small animals and non-human primates in modeling human neurological 
diseases, pigs have some advantages over other species. Pig models have several unique features that make 
them a promising alternative animal model[4]. Pigs can produce larger litters and have a shorter maturation 
and reproduction time with fewer concerns about ethical issues and lower costs than non-human 
primates[5,6]. In regards to the similarity of pigs to humans, pigs are also highly close to humans in terms of 
anatomy, physiology, and metabolism[5]. As for the brain, the central nervous system of pigs is very similar 
to that of humans. For example, both human and pig brains have many sulci and gyri. Anatomically, the 
dorsal striata of the pig and human brains are both split into two distinct structures of the caudate nucleus 
and putamen, compared with a single structure in the rodent brain. In addition, the hippocampus in the pig 
brain more structurally resembles the human hippocampus than that in rodents. The timing of myelin 
formation in pig brains is also similar to that of humans during brain development[6] [Figure 1]. These 
similarities make the pig a better animal model for studying neurological diseases. In addition, pigs have the 
advantages of early sexual maturity (5-8 months), a short reproduction cycle between generations, and a 
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Figure 1. Comparison of brain structures of mouse, pig, and human.

larger litter size (about 10-12 piglets per litter)[7,8]. Moreover, fully established somatic cell nuclear transfer 
(SCNT) technology combined with recently developed genome editing technology has made it possible to 
efficiently generate genetically modified pig models[9] [Figure 2]. Here, we briefly discuss how to use related 
techniques to establish genetically modified pig models and review the established pig models for 
neurological diseases.

METHODS FOR GENERATING GENETICALLY MODIFIED PIG MODELS
For a long period of time, there have been two main methods to establish genetically modified pig models: 
embryonic microinjection and SCNT. Microinjection is a traditional method for creating transgenic 
animals and involves injecting DNA material directly into the pronucleus and transferring the early embryo 
into the surrogate mother to create a transgenic animal, which introduces transgenes randomly into the 
genome of the resulting offspring[10]. This method is fairly straightforward, but the efficiency of producing 
transgenic animals is relatively low, about 10% in mice, 4% in rabbits, and only 2%-3% in pigs[11,12]. Although 
several strategies have been used to improve the efficiency of embryonic microinjection, including pronuclei 
or cytoplasmic injection of DNA or mRNA[13,14], there are still many difficulties in using this method to 
generate genetically modified pig models. For example, due to the high lipid content and low transparency 
in pig oocytes[15], it is difficult to perform embryonic microinjection. In addition, this method will lead to 
random integration and poor precision of gene targeting. To improve the accuracy of gene editing, 
researchers developed a gene targeting strategy using homologous recombination (HR) in embryonic stem 
(ES) cells, which greatly improves the efficiency of generating gene-targeted animal models[16,17]. The lack of 
ES cells in pigs hinders the generation of precise genetically modified pig models. To overcome this 
difficulty, researchers firstly screen and identify the precisely targeted transgenes in cultured pig cells and 
then use them for SCNT, making it possible to establish gene-targeted pig models. However, the efficiency 
of HR in modifying pig somatic cells is very low, and the fatality rate is high due to the intrinsic genetic 
defects[18]. Later, an attempt to improve the efficiency of pig gene targeting was made by the application of 
several important technologies, including the delivery of gene-targeting vectors using recombinant adeno-
associated virus (rAAV)[19,20].

GENOME EDITING TOOLS
Due to low targeting efficiency, for a long time, only a few transgenic pig models had been successfully 
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Figure 2. Flow chart of transgenic and gene editing using SCNT to construct neurodegenerative disease pig models. SCNT: Somatic cell 
nuclear transfer.

established[21-24]. This situation was greatly improved with the development of new precise gene editing tools, 
which include zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and 
clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas). 
ZFNs, composed of DNA-binding domains consisting of tandem zinc finger motifs with nuclease domains 
from the endonuclease FokI, can induce the targeted DNA double-stranded breaks (DSBs) that lead to DNA 
damage repair mechanisms[25,26]. Although ZFNs have been widely applied in many species, including plants, 
animals, and mammalian cells in culture[25], they have not been used to create large animal models.

TALENs are an alternative tool for genome engineering[27-29]. They are also fusion proteins of tandem 
repeats of a TAL effector protein and the FokI nuclease. TALENs induce the targeted DSBs that activate 
DNA damage response pathways and lead to gene knockout (KO) or knock-in (KI)[30]. As compared with 
ZFNs, TALENs are easier to design and synthesize, and some animal models of disease have been 
successfully established using TALENs[31].

Although ZFNs and TALENs have been applied to various species, CRISPR/Cas9 is now the most widely 
used genome editing tool for generating genetically modified animal models. The CRISPR/Cas9 system 
confers targeted gene editing by small RNAs that guide the Cas9 nuclease to the target site through base 
pairing[32]. When the complex is located at the targeting site of the genome, Cas9 cuts both strands at a 
precise location. Then, the repair mechanism kicks in to rejoin the damaged genomic DNA by non-
homologous end joining (NHEJ) or homology-directed repair (HDR), which may result in mutations to 
inactivate or alter gene function. Based on this damage-repair mechanism, scientists have optimized the 
CRISPR/Cas9 system to create many genome editing models for small animals, such as mice[33], rats[34], and 
zebrafishes[35]. Large animal models such as pigs have also benefited from this technology. Here, we focus on 
genetically modified pig models of neurological diseases.

Pig models of amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is an adult-onset progressive neurodegenerative disease caused by the 
selective death of motor neurons (MNs). With the occurrence of aging, patients with ALS develop 



Page 5 of Li et al. Ageing Neur Dis 2022;2:13 https://dx.doi.org/10.20517/and.2022.13 13

progressive loss of upper and lower MNs, muscle atrophy, and eventually paralysis, and they usually die 
within 3-5 years after the onset of symptoms[36,37]. Currently, the pathophysiological mechanism of ALS 
remains to be fully understood. Genetic studies have identified more than 30 gene mutations that are highly 
associated with the etiology of ALS, including copper/zinc superoxide dismutase 1 (SOD1) and TAR DNA-
binding protein 43 (TDP-43). Mutations of these genes affect many cellular and molecular processes, 
leading to increased oxidative stress, mitochondrial dysfunction, excitatory toxicity, neuroinflammation, 
protein aggregation, and abnormal RNA metabolism. The neuropathology of ALS is characterized by 
protein aggregation and accumulation of ubiquitinated protein inclusion bodies in the neuronal cytoplasm. 
In most ALS patients, SOD1 and TDP-43 are the main components of these inclusion bodies, suggesting 
that SOD1 and TDP-43 are causative factors for the occurrence and development of ALS. Therefore, several 
studies have generated pig models that express mutant SOD1 or TDP-43 and showed ALS-like phenotypes.

Chieppa et al. produced an ALS pig model using SCNT in combination with transfected somatic cells 
expressing the G93A mutation of human SOD1[38]. In 2014, Yang et al. used similar techniques to generate 
transgenic pigs that express the same SOD1 mutation. The transgenic pigs developed age-dependent 
neuropathology and movement disorders, which recapitulate the features of the early disease symptoms 
seen in human ALS[9]. Moreover, transgenic mutant SOD1 pigs show intranuclear inclusions and an 
association of SOD1 with the nuclear protein PCBP1, which were not seen in mouse brains[9]. In addition to 
SOD1, researchers also established transgenic miniature pigs expressing mutant TDP-43. They found that 
transgenic TDP-43 was also distributed in the cytoplasm of neuronal cells resembling the pathology seen in 
human ALS brain tissues[39], which was not found in many transgenic TDP-43 mouse models[40-42]. Therefore, 
these pig models of ALS have a great value in studying the pathogenesis mediated by cytoplasmic mutant 
TDP-43 or intranuclear SOD1.

Pig models of Huntington’s disease 
Huntington’s disease (HD) is an autosomal dominant and age-dependent neurological disorder 
characterized by motor dysfunction, cognitive decline, and psychological disturbance. Pathologically, HD is 
characterized by selective neurodegeneration, which preferentially occurs in the striatum. Most HD patients 
develop symptoms in middle age, and the symptoms worsen with age with patients usually dying 10-15 
years after symptom onset[43]. HD results from a monogenetic mutation of a CAG repeat expansion in the 
exon1 of the gene Huntingtin (HTT). HTT is a multifaceted protein that is expressed ubiquitously and has 
numerous roles[44]. CAG repeat expansion (> 36 CAGs) in the HTT gene is translated to a polyglutamine 
(polyQ) expansion that causes HTT to misfold and aggregate in the brain. HD transgenic mice and HD-KI 
mice have been widely used, but their brains do not display the selective and striking neuronal loss seen in 
human HD patients[45].

In 2001, a transgenic pig model for HD was produced by pronuclear microinjection. However, the 
development of behavioral and neuropathological symptoms of HD in this transgenic pig model remains 
unclear[46,47]. In 2010, researchers used SCNT to successfully establish a transgenic HD pig model expressing 
N-terminal mutant HTT (1-208 amino acids) with 105Q. This pig model showed apoptosis in the brain and 
died postnatally. However, mice expressing the same transgene did not produce the brain pathology seen in 
pigs[48]. Later, another group used lentiviral transduction of pig embryos to establish a transgenic minipig 
model of HD expressing N-terminal mutant huntingtin (1-548 aa) under the control of human HTT 
promoter. However, this pig model did not develop motor deficits at up to 40 months of age, although 
mutant HTT mRNA and protein fragments were detected in the brain and peripheral tissues[49].
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It is apparent that the phenotypes of transgenic HD pig models are dependent on the expression levels of 
transgenic N-terminal mutant HTT. It is important to create a pig model that expresses full-length mutant 
HTT at the endogenous level. With the development of CRISPR/Cas9 technology, precise gene editing of 
various animal species becomes possible[33], especially for the generation of large animal models[32]. To 
overcome the shortcomings of the transgenic pig model of HD, Yan et al. first used CRISPR/Cas9 to insert a 
large CAG repeat (150 CAGs) into the pig HTT locus in fibroblast cells, and then used SCNT to generate a 
HD knock-in pig model[50]. The brains of this pig model showed severe and preferential neurodegeneration 
in the medium spiny neurons in the striatum, an important pathological feature in HD patients. More 
importantly, the HD pig models displayed dance-like symptoms and breathing difficulties, which were 
similar to the symptoms in HD patients. Further, the pathogenic and neurologic features of HD pigs can be 
stably passed to offspring, enabling the establishment of a large animal model of HD for mechanistic study 
and drug screening.

Pig models of Alzheimer’s disease
The incidence rate of Alzheimer’s disease (AD) is increasing year by year with aging. Its early neurological 
symptoms are mainly memory loss and behavioral changes, and, in the late stage, the patients will have 
cognitive impairment, which severely affects daily life[51]. AD is usually divided into familial AD (FAD) and 
sporadic AD (SAD) according to different pathologies. Only about 5% of AD cases are FAD and are caused 
by mutations in β-amyloid precursor protein (APP), presenilin 1 (PS1), and/or presenilin 2 (PS2). Nearly 
95% of patients with AD are classified as SAD, which is caused by a combination of genetic factors and 
environmental risk factors without documented familial history of AD[52]. The deposition of β-amyloid (Aβ) 
and hyperphosphorylation of Tau are the major pathological hallmarks, with other pathophysiologic 
changes including neuroinflammation, oxidative stress, and abnormal lipid metabolism. In addition to Aβ 
and Tau, apolipoprotein E4 (APOE4) and coulomb-receptor expressed on myeloid cells 2 (TREM2) are 
considered to be the risk factors[53]. Various mouse models of AD have been developed to mimic the 
symptoms of AD. However, due to the complexity of the neuropathology spectrum of AD, none of the 
available mouse models truly recapitulate the full spectrum of AD neuropathology, which includes Aβ 
deposition, synapse loss, inflammation, tau hyperphosphorylation, and neurofibrillary tangle formation[54]. 
To model the characteristics of AD in more human-like species, researchers injected Aβ oligomers into the 
lateral ventricle of macaques, which diffused into the brain and accumulated in several regions associated 
with memory and cognitive functions. They found that oligomer injections induced AD-like pathology with 
neurofibrillary tangle formation in the macaque brain, which was not found in small animal models[55]. 
Other researchers also used viral delivery of human 4R-tau to generate a tau-based rhesus monkey model of 
Alzheimer’s disease[56]. However, due to the long reproductive cycle of monkeys and immature cloning 
technology, it was difficult to obtain a large group of monkey models of AD through transgenic methods. 
Therefore, the establishment of transgenic pig models of AD is needed.

In 2009, Kragh et al. tried to develop a pig model of Alzheimer’s disease by expressing AD-causing 
dominant mutation APPsw. The transgene consisted of the cDNA of the neuronal variant of the human APP 
gene with the Swedish mutation. However, no disease phenotype was reported, although it was predicted 
that accumulation of the Aβ peptide in the brain might develop at the age of 1-2 years[57]. The same group 
also generated a transgenic miniature pig model expressing a cDNA of the AD-causing gene PSEN1M146I 
driven by an enhanced human UbiC promoter. However, no phenotypic data have been published yet[46,58]. 
To induce the neuropathology of the increased intraneuronal Aβ plaque formation, this group combined 
the mutation of PSEN1 and APP together to generate double transgenic Göttingen minipigs that carry one 
copy of a human PSEN1 cDNA with the Met146Ile (PSEN1M146I) mutation and three copies of a human A
βPP695 cDNA with the Lys670Asn/Met671Leu (AβPPsw) double mutations. Their strategy successfully 
generated a pig model with an intraneuronal accumulation of Aβ42 in the brain between the age of 10 and 
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18 months, which may represent an early event in the pathogenesis of AD[59]. In 2017, another group used a 
retroviral multi-cistronic vector to generate an AD transgenic pig carrying three AD-related genes with a 
total of six well-characterized mutations: hAPP (K670N/M671L, I716V, and V717I), hTau (P301L), and 
hPS1 (M146V and L286P). They confirmed that transgenes were expressed at especially high levels in the 
brain. The levels of Aβ-40/42, total Tau, and GFAP were high in the brains of these transgenic animals as 
well. They proposed that more tests are needed in the future to find out if these pigs have age-dependent 
phenotypes of AD[60].

Pig models of Parkinson’s disease
Parkinson’s disease (PD), characterized by slowness of movement, limb stiffness, and tremors, is the second 
most common neurodegenerative disorder in the world. PD patients may also have issues such as cognitive 
issues, depression, anxiety, olfactory loss, and gastrointestinal disorder. The motor symptoms of PD are 
caused by the death of dopaminergic neurons in the substantia nigra[61]. Loss of dopamine neurons causes a 
drop in dopamine levels in the striatum, which leads to disrupted motor control[62]. Many mutations or 
variants in a number of genes, such as α-synuclein (SNCA), leucine-rich repeat kinase 2 (LRRK2), ten-
induced kinase 1 (PINK1), arkin (PRKN), and protein deglycase (DJ-1), are found to increase the 
susceptibility to PD and have been used to create genetically modified animal models of PD[62,63]. However, 
many mouse models do not recapitulate the selective and progressive neurodegeneration seen in PD[64,65]. 
Although non-human primate models of PD have been established for investigation[66,67], it is difficult to 
establish a cohort of PD monkey models. Some teams thus explored the generation of pig models to study 
the neurological phenotypes of PD.

Yao et al. used TALENs combined with SCNT and embryo transfer to generate DJ-1 KO piglets by 
disrupting the PARK7 gene to model the phenotype of PD. Unfortunately, the piglets all died due to cloning 
defects, although DJ-1 protein was successfully repressed in all the detected tissues[68]. Another group used 
CRISPR/Cas9 combined with SCNT to generate PARK2 and PINK1 double-gene KO pigs. However, as with 
mouse PD models, no phenotypic symptoms of PD were observed in the seven-month-old live mutant 
pigs[69]. In 2016, Wang et al. generated a PD pig model using CRISPR/Cas9 system by simultaneously 
targeting three distinct genomic loci, Parkin/DJ-1/PINK1, in Bama miniature pigs. However, the piglets 
remained healthy with a normal growth rate, and no typical symptoms of Parkinson’s disease were observed 
in the 10-month-old live mutant pigs in this study[70].

BASE EDITING USED IN PIG MODELS
Although the CRISPR/Cas9 system has been widely used to facilitate genome editing, it could induce 
random insertions or deletions (indels) through error-prone NHEJ rather than the error-free HDR[35]. As a 
result, indels are obtained much more frequently at targeting sites than single-nucleotide substitutions. 
However, most human neurological diseases are induced by point mutations, rather than indels[71], which 
emphasizes the importance of the application of the genome-editing technique of base editing in the 
establishment of animal models of human neurological disease.

Base editing is a genome-editing technique that generates mutations at single-base resolution[72-74]. All four 
transition mutations, namely C to T, G to A, A to G, and T to C, can be inserted into the genome with the 
available CRISPR/Cas base editors (BEs). The cytosine base editor (CBE) can insert a C-G to T-A mutation, 
while the adenine base editor (ABE) can alter an A-T base pair into a G-C pair. In RNA, conversion of A to 
inosine (I) is also possible with the RNA base editor (RBE)[75].
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The above advanced technologies have already been used to generate many genome editing models, 
especially in small animals and plants, such as mouse[76,77], rat[78], rabbit[79], sheep[80], rice[81], and wheat[82]. 
Some groups have also succeeded in applying this tool to large animals[83,84].

As for pigs, Li et al. first established pig models created via BE3, which separately targeted the TWIST2 gene 
and the TYR gene[85]. These pig models were able to reproduce the phenotypes of human diseases, which 
indicates that base editing systems provide a safer and more efficient approach to generating pig models that 
can precisely mimic point mutations of human diseases. Another study also indicated that using base 
editing technology was able to precisely introduce three gene (GGTA1, B4galNT2, and CMAH) base 
conversions into the pig genome with high efficiency[71]. In summary, there is enormous potential for 
establishing pig disease models of neurological disease through base editing because of its significant 
advantages compared with the traditional CRISPR/Cas9 system.

POTENTIAL LIMITATIONS OF USE OF PIG MODELS
Currently, pig models for neurodegenerative diseases provide considerable support for the analysis and 
treatment of such diseases in humans. In general, pig models have great potential to advance the study of 
human neurodegenerative diseases, from pathogenesis research to the development of drugs, and even as 
donors of tissues and organs.

In addition, while pig disease models have greatly accelerated advances in studying genetic diseases and 
testing drugs and treatments, there are still some problems. First, pigs require more space than rodents in 
animal facilities and, thus, higher maintenance costs. Second, due to their large size, surgical operations 
need to be performed by trained personnel, and because its brain is wrapped in a thick skull, the collection 
of brain tissue requires a high degree of proficiency of the operator, which increases the experimental cost to 
a certain extent. Third, because of their large size, behavioral tests will be more difficult. However, at 
present, various behavioral studies of pigs have been gradually improved, for instance, learning and memory 
study using novel object recognition tests; anxiety and depression measurement using open field[86]; 
neuropsychological screening for executive function, anxiety, willingness to explore a new environment, 
and locomotion using the open field test[87]; and motor ability measurement using a 3D kinematic gait 
analysis system[87].

CONCLUSION
A critical step in studying neurological diseases is to establish suitable animal models. Due to the complexity 
of neurological diseases, such as AD and PD, as well as the species differences between mice and humans, 
selective and overt neurodegeneration is not well modeled using mouse models. Pig models have great 
potential in modeling neurological diseases due to their close resemblance to the human nervous system, 
and several genetically modified pig models have been established for investigating neurodegenerative 
diseases [Table 1].

Pigs have very similar brain structure and function to humans. More importantly, pigs have sulci and gyri, 
and their brain volume is similar to that of humans, offering advantages over small animals for studying 
important brain diseases. Given their short reproductive cycle (5-6 months of sexual maturity) and multiple 
litter sizes (average of 7-8 piglets) as well as the availability of techniques for generating specific models of 
human diseases, pigs also have distinct advantages over non-human primates. Pigs can also be ethically used 
for translational research. For example, scientists and doctors recently successfully transplanted a pig heart 
into a patient with end-stage heart disease[88]. This work opened up a new avenue in the study of 
xenotransplantation.
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Table 1. Examples of neurodegenerative disease pigs described in this article

Pig models Genes Editing type References

ALS pig SOD1 TG [38]

ALS pig SOD1 TG [9]

ALS pig TDP-43 TG [39]

HD transgenic pig HTT TG [47]

HD transgenic pig N-mHTT(105Q) TG [48]

HD transgenic pig HTT(1-548) TG [49]

HD KI pig HTT KI [50]

AD transgenic pig APPsw PM [57]

AD transgenic pig PSEN1(M146I) TG [58]

AD transgenic pig PSEN1, APP PM [59]

AD transgenic pig hAPP, hTau, hPS1 PM [60]

PD pig PARK7 KO [68]

PD pig PARK2, PINK1 M-KO [69]

PD pig Parkin, DJ-1, PINK1 M-KO [70]

The table lists genes that have been changed using TG, KO, M-KO, PM, or KI. TG: Transgenic; KO: knockout; M-KO: multiplex knockout; KI: 
knock-in; PM: point mutation (by HDR); ALS: amyotrophic lateral sclerosis; HD: Huntington’s disease; AD: Alzheimer’s disease; PD: Parkinson’s 
disease.

The pig models can also be used for preclinical evaluation of stem cell therapy, gene therapy, and drug 
screening because their body size and metabolism are closer to humans than other species. Their relatively 
fast breeding and reproduction would provide a sufficient number of animals for evaluation of the 
therapeutic effects of drugs and other means. Considering the advanced gene editing tools available, we 
believe that genetically modified pig models will play a more important role in the studies of age-dependent 
neurological diseases in the future.
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