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Abstract
This paper investigates the problem of non-fragile state estimation for a class of reaction-diffusion genetic regulatory
networks with mode-dependent time-varying delays and Markovian jump parameters. First, the Markov chain with
partially unknown probabilities is used in this paper to describe the switching between system modes, which can
make themodel more generalizable. Moreover, considering the possible gain variations, we design a non-fragile state
estimator that makes the estimation performance non-fragile to gain variations, thus guaranteeing the estimation
performance. Sufficient conditions that ensure the asymptotic stability of the estimation error can be derived by
using the Lyapunov stabilization theory and several inequality treatments. Finally, a simulation example is presented
to demonstrate the effectiveness of the proposed estimator design scheme.

Keywords: Non-fragile state estimation, reaction-diffusion genetic regulatory networks,mode-dependent time-varying
delays, partially unknown probabilities

1. INTRODUCTION
Recently, genetic regulatory networks (GRNs) have gained significant interest in the fields of biology, mathe-
matics, and medicine [1–3]. This is because mathematical models of GRNs can describe the complex dynamic
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behaviors and mutual regulation of mRNAs and proteins within genes during transcription and translation.
The models describing GRNs are mainly classified into two types: Boolean models [4,5] and differential equa-
tion models [6,7]. In the Boolean model, the state of the gene is viewed as either on or off. The differential
equation model can describe the regulatory relationship between mRNAs and proteins in detail and accu-
rately. Therefore, differential equation models are more suitable for modeling GRNs than Boolean network
models.

The diffusion phenomenon is widespread; e.g., molecules propagate in the air, and mRNAs and proteins dif-
fuse orderly within genes. However, in [8,9], the authors default that mRNA and protein concentrations are
uniformly distributed in space, which does not consider the existence of diffusion phenomena, making the
constructed model inaccurate. Therefore, this paper introduces the reaction-diffusion term in the GRNmodel.
During the modeling process, in addition to taking the diffusion phenomenon into account, it is crucial not to
ignore the significance of time delay. This is because delay phenomena are present in the process of gene ex-
pression and demand attention. Based on the above analysis, we incorporate time delays in reaction-diffusion
GRNs (RDGRNs) [10–13]. In [13], Zhang 𝑒𝑡 𝑎𝑙. constructed RDGRNs with constant delays. However, since
constant delays cannot accurately describe the gene regulation process, many scholars investigate GRNs with
time-varying delays [14–16]. Furthermore, compared with common time-varying delays [17], mode-dependent
time-varying delays can reduce the conservativeness of the stability criterion. Thus, Tian 𝑒𝑡 𝑎𝑙. in [18] focused
on the stability analysis ofMarkovian jump neural networks withmode-dependent time-varying delays. To the
best of our knowledge, there has been no relevant research on RDGRNs with mode-dependent time-varying
delays, which is one of the motivations for this paper.

For RDGRNs with time-varying delays, the mode of the system may switch when there are mutations in the
gene sequence or changes in the external environment, and the probabilities of switching are described by the
Markov chain [19–21]. Thus, the investigations of RDGRNs with Markovian jump parameters and time-varying
delays have receivedmuch attention [22,23]. For example, in [23], Zou 𝑒𝑡 𝑎𝑙. studied the robust stochastic stability
of delayed RDGRNs with Markovian jump parameters. However, it is known that the switching probability of
the system is difficult to obtain. Yet, in [24] and [25], the authors have assumed that the switching probabilities
are completely known, which is not realistic. Therefore, it is worthwhile for Markovian jump RDGRNs with
partially unknown transfer probabilities [26–28] to be further scrutinized.

So far, for some applications of RDGRNs, it is a prerequisite to know the exact concentrations of mRNA and
protein within genes. Nevertheless, due to the specificity of RDGRNs and the cost issue, themRNA and protein
concentrations are often only partially available, so it is extremely investigative to utilize the partially available
state information to estimate the system state. In research on state estimation of RDGRNs [29–31], there are
defaults that the estimator parameters can be executed exactly. However, in general, the parameters may be
perturbed to some extent due to factors such as component aging and internal noise, leading to system vulner-
ability. Therefore, some scholars have begun to focus on the non-fragile state estimation and synchronization
of GRNs, and several results have been achieved [32–34]. For example, Li 𝑒𝑡 𝑎𝑙. in [32] investigated the issue
of non-fragile state estimation for delayed GRNs. Nevertheless, the design of non-fragile state estimators for
RDGRNs has not been investigated, which is another research motivation for this paper.

In light of the above discussion, this work studies the non-fragile state estimation forMarkovian jumpRDGRNs
with partially unknown transfer probabilities and mode-dependent time-varying delays. The main innova-
tions of this paper are as follows: (1) The reaction-diffusion term, mode-dependent time-varying delays, and
Markovian jump parameters are considered in the model, which makes this model investigated in this paper
more generalized compared to the existing studies on GRNs [8]; (2) The partially unknown transfer probabil-
ities [26] are used in this work, which is more realistic compared to Markovian switching, where the transfer
probabilities [22] are fully known; and (3) The estimation performance of conventional state estimators [29] is
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affected when facing cases such as component aging and internal noise, whereas the non-fragile state estimator
designed in this paper for RDGRNs makes the estimation performance non-fragile to gain variations.

Notations: <𝑛×𝑛 denote the space of 𝑛 × 𝑛 real matrices, col(·) denotes the column vector, diag(·) indicates
the diagonal matrix, and sym{M} = M +M𝑇 ; (𝑔ℎ𝑞)𝑛×𝑛 represents the 𝑛 × 𝑛 matrix consisting of the elements
𝑔ℎ𝑞 ; Ω denotes the set {𝜈1 ≤ 𝑦 ≤ 𝜈2}. In addition, this paper uses the following abbreviations: �̃�ℎ ≜ �̃�ℎ (𝑥, 𝑦),
𝑝ℎ ≜ 𝑝ℎ (𝑥, 𝑦), �̄� ≜ �̄�(𝑥, 𝑦), 𝑝 ≜ 𝑝(𝑥, 𝑦), 𝐿𝑚 ≜ 𝐿𝑚 (𝑥, 𝑦), 𝐿𝑝 ≜ 𝐿𝑝 (𝑥, 𝑦), �̂� ≜ �̂�(𝑥, 𝑦), and 𝑝 ≜ 𝑝(𝑥, 𝑦).

2. NETWORK MODEL AND PRELIMINARIES
Consider the Markovian jump RDGRNs with mode-dependent time-varying delays as follows:


𝜕�̃�ℎ

𝜕𝑥
= 𝑒ℎ

𝜕2�̃�ℎ

𝜕𝑦2 − 𝑏ℎ,𝜀(𝑥)�̃�ℎ +
𝑛∑
𝑞=1

𝑔ℎ𝑞,𝜀(𝑥)𝜉𝑞 (𝑝𝑞 (𝑥 − 𝛼𝜀(𝑥) (𝑥), 𝑦)) + 𝛿ℎ,

𝜕𝑝ℎ
𝜕𝑥

= 𝑒ℎ
𝜕2𝑝ℎ
𝜕𝑦2 − �̄�ℎ,𝜀(𝑥) 𝑝ℎ + �̄�ℎ,𝜀(𝑥)�̃�ℎ (𝑥 − 𝛽𝜀(𝑥) (𝑥), 𝑦),

(1)

where the border and initial conditions are given as follows:

�̃�ℎ = 0, 𝑦 ∈ 𝜕Ω, 𝑥 ∈ [−𝛽, +∞), �̃�ℎ = 𝜑(𝑥, 𝑦), 𝑦 ∈ Ω, 𝑥 ∈ [−𝛽, 0],
𝑝ℎ = 0, 𝑦 ∈ 𝜕Ω, 𝑥 ∈ [−𝛼, +∞), 𝑝ℎ = 𝜃 (𝑥, 𝑦), 𝑦 ∈ Ω, 𝑥 ∈ [−𝛼, 0], (2)

in which ℎ = 1, 2, . . . , 𝑛; 𝜕Ω indicates the boundary of Ω, 𝜑(𝑥, 𝑦) and 𝜃 (𝑥, 𝑦) denote the initial conditions of
�̃�ℎ and 𝑝ℎ, respectively. �̃�ℎ and 𝑝ℎ are the mRNA and protein concentrations; 𝑥 and 𝑦 ∈ Ω denote time and
space position, respectively; 𝜉𝑞 (𝑝𝑞) denotes the monotonic feedback regulation function, which is described

in the form 𝜉𝑞 (𝑝𝑞) =
( �̃�𝑞
𝜚𝑞

)𝐻𝑞

1+( �̃�𝑞
𝜚𝑞

)𝐻𝑞
, where 𝐻𝑞 is the Hill coefficient representing the degree of cooperativity, 𝜚𝑞 is

a positive constant, and 𝑞 = 1, . . . , 𝑛; the meaning and form of 𝜉𝑞 (𝑝𝑞) are explained in detail by [35–37], so they
are omitted here; 𝛿ℎ =

∑
𝑞∈𝜇ℎ 𝑔

∗
ℎ𝑞,𝜀(𝑥) , and 𝜇ℎ is the set containing all the repressors of gene ℎ; 𝛼𝜀(𝑥) (𝑥) and

𝛽𝜀(𝑥) (𝑥) are time-varying delays that satisfy the following conditions

0 ≤ 𝛼𝜀(𝑥) (𝑥) ≤ 𝛼𝜀(𝑥) , ¤𝛼𝜀(𝑥) (𝑥) ≤ 𝜓1,𝜀(𝑥) < 1, 0 ≤ 𝛽𝜀(𝑥) (𝑥) ≤ 𝛽𝜀(𝑥) , ¤𝛽𝜀(𝑥) (𝑥) ≤ 𝜓2,𝜀(𝑥) < 1, (3)

with known scalars 𝛼𝜀(𝑥) , 𝛽𝜀(𝑥) , 𝜓1,𝜀(𝑥) , and 𝜓2,𝜀(𝑥) . 𝑒ℎ and 𝑒ℎ represent the diffusion rate; 𝑏ℎ,𝜀(𝑥) and �̄�ℎ,𝜀(𝑥)
denote the mRNA and protein degradation rate, respectively; �̄�ℎ,𝜀(𝑥) indicates the translation rate; 𝐺𝜀(𝑥) =
(𝑔ℎ𝑞,𝜀(𝑥))𝑛×𝑛 with

𝑔ℎ𝑞,𝜀(𝑥) =


𝑔∗ℎ𝑞,𝜀(𝑥) , if 𝑞 is an activator of gene ℎ,

0, if there is no link between gene 𝑞 and ℎ,
− 𝑔∗ℎ𝑞,𝜀(𝑥) , if 𝑞 is a repressor of gene ℎ,

denotes the coupling matrix, and 𝑔∗
ℎ𝑞,𝜀(𝑥) is the dimensionless transcriptional rate.

Define 𝜀(𝑥) ∈ U ≜ {1, 2, . . . ,𝑈}(𝑡 ≥ 0) to be a Markov chain, the corresponding transfer probability matrix∏
≜ (𝜋𝑎𝑏)𝑈×𝑈 is given as

Prob{𝜀(𝑡 + Δ𝑡) = 𝑏 | 𝜀(𝑥) = 𝑎} =
{
𝜋𝑎𝑏Δ𝑡 + 0(Δ𝑡), 𝑎 ≠ 𝑏,

1 + 𝜋𝑎𝑏Δ𝑡 + 0(Δ𝑡), 𝑎 = 𝑏,
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where Δ𝑡 > 0, lim
Δ𝑡→0

0(Δ𝑡)
Δ𝑡 = 0, 𝜋𝑎𝑏 is the transfer probability from mode 𝑎 to 𝑏, and 𝜋𝑎𝑎 = −

𝑈∑
𝑎=1,𝑎≠𝑏

𝜋𝑎𝑏 . More-

over, the transfer matrix with partially unknown probabilities can be expressed as


𝜋11 ? . . . ?
𝜋21 ? . . . 𝜋2𝑈
...

...
. . .

...

𝜋𝑈1 ? . . . 𝜋𝑈𝑈


(4)

where “?” represents the unknown transfer probabilities. Define <𝑎
𝑟 ≜ {𝑏 : 𝜋𝑎𝑏 is known}, <𝑎

𝑢𝑟 ≜ {𝑏 :
𝜋𝑎𝑏 is unknown}, and< ≜ <𝑎

𝑟 + <𝑎
𝑢𝑟 .

Let �̃�∗(𝑦) = col
(
�̃�∗

1(𝑦), �̃�∗
2(𝑦), . . . , �̃�∗

𝑛 (𝑦)
)
and 𝑝∗(𝑦) = col

(
𝑝∗1(𝑦), 𝑝∗2(𝑦), . . . , 𝑝∗𝑛 (𝑦)

)
be the unique equilib-

rium point of the system (1), that is
0 = 𝑒ℎ

𝜕2�̃�∗
ℎ (𝑦)

𝜕𝑦2 − 𝑏ℎ,𝜀(𝑥)�̃�∗
ℎ (𝑦) +

𝑛∑
𝑞=1

𝑔ℎ𝑞,𝜀(𝑥)𝜉𝑞 (𝑝∗𝑞 (𝑦)) + 𝛿ℎ,

0 = 𝑒ℎ
𝜕2𝑝∗ℎ (𝑦)
𝜕𝑦2 − �̄�ℎ,𝜀(𝑥) 𝑝∗ℎ (𝑦) + �̄�ℎ,𝜀(𝑥)�̃�∗

ℎ (𝑦).

Define �̄�ℎ = �̃�ℎ − �̃�∗
ℎ (𝑦) and 𝑝ℎ = 𝑝ℎ − 𝑝∗ℎ (𝑦), the system (1) is converted into


𝜕�̄�

𝜕𝑥
= 𝐸

𝜕2�̄�

𝜕𝑦2 − 𝐵𝜀(𝑥)�̄� + 𝐺𝜀(𝑥) 𝑓 (𝑝(𝑥 − 𝛼𝜀(𝑥) (𝑥), 𝑦)),

𝜕𝑝

𝜕𝑥
= �̄�

𝜕2𝑝

𝜕𝑦2 − �̄�𝜀(𝑥) 𝑝 + �̄�𝜀(𝑥)�̄�(𝑥 − 𝛽𝜀(𝑥) (𝑥), 𝑦),
(5)

where

�̄� = col(�̄�1, �̄�2, . . . , �̄�𝑛), 𝐸 = diag(𝑒1, 𝑒2, . . . , 𝑒𝑛), 𝐵𝜀(𝑥) = diag(𝑏1,𝜀(𝑥) , 𝑏2,𝜀(𝑥) , . . . , 𝑏𝑛,𝜀(𝑥)),
𝑝 = col(𝑝1, 𝑝2, . . . , 𝑝𝑛), �̄� = diag(𝑒1, 𝑒2, . . . , 𝑒𝑛), �̄�𝜀(𝑥) = diag(�̄�1,𝜀(𝑥) , �̄�2,𝜀(𝑥) , . . . , �̄�𝑛,𝜀(𝑥)),

�̄�𝜀(𝑥) = diag(�̄�1,𝜀(𝑥) , . . . , �̄�𝑛,𝜀(𝑥)), 𝑓ℎ (𝑝ℎ (𝑥 − 𝛼𝜀(𝑥) (𝑥), 𝑦)) = 𝜉ℎ (𝑝ℎ (𝑥 − 𝛼𝜀(𝑥) (𝑥), 𝑦) + 𝑝∗ℎ (𝑦)) − 𝜉ℎ (𝑝∗ℎ (𝑦)),
𝑓 (𝑝(𝑥 − 𝛼𝜀(𝑥) (𝑥), 𝑦)) = col( 𝑓1(𝑝1(𝑥 − 𝛼𝜀(𝑥) (𝑥), 𝑦)), 𝑓2(𝑝2(𝑥 − 𝛼𝜀(𝑥) (𝑥), 𝑦)), . . . , 𝑓𝑛 (𝑝𝑛 (𝑥 − 𝛼𝜀(𝑥) (𝑥), 𝑦))).

Additionally, the measured outputs of (5) are

𝐿𝑚 = 𝑁�̄�, 𝐿𝑝 = �̄� 𝑝, (6)

where 𝑁 ∈ <𝑛×𝑛 and �̄� ∈ <𝑛×𝑛 are known matrices; 𝐿𝑚 and 𝐿𝑝 represent the measured outputs of mRNA
and protein, respectively.

To estimate the states of (5) by using the measured outputs in (6), one can construct the estimator as follows:
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𝜕�̂�

𝜕𝑥
= 𝐸

𝜕2�̂�

𝜕𝑦2 − 𝐵𝜀(𝑥)�̂� + 𝐺𝜀(𝑥) 𝑓 (𝑝(𝑥 − 𝛼𝜀(𝑥) (𝑥), 𝑦)) + (𝐾1,𝜀(𝑥) + Δ𝐾1,𝜀(𝑥))(𝐿𝑚 − 𝑁�̂�),

𝜕𝑝

𝜕𝑥
= �̄�

𝜕2𝑝

𝜕𝑦2 − �̄�𝜀(𝑥) 𝑝 + �̄�𝜀(𝑥)�̂�(𝑥 − 𝛽𝜀(𝑥) (𝑥), 𝑦) + (𝐾2,𝜀(𝑥) + Δ𝐾2,𝜀(𝑥)) (𝐿𝑝 − �̄� 𝑝),
(7)

where �̂� and 𝑝 represent the estimations of �̄� and 𝑝, 𝐾1,𝜀(𝑥) and 𝐾2,𝜀(𝑥) are the estimator gain matrices, and
Δ𝐾1,𝜀(𝑥) and Δ𝐾2,𝜀(𝑥) denote the gain perturbation, which takes the following form:

Δ𝐾1,𝜀(𝑥) = 𝐴1,𝜀(𝑥)Λ1,𝜀(𝑥) (𝑥)𝐶1,𝜀(𝑥) , Δ𝐾2,𝜀(𝑥) = 𝐴2,𝜀(𝑥)Λ2,𝜀(𝑥) (𝑥)𝐶2,𝜀(𝑥) , (8)

where 𝐴1,𝜀(𝑥) , 𝐶1,𝜀(𝑥) , 𝐴2,𝜀(𝑥) , and 𝐶2,𝜀(𝑥) stand for the given matrices; Λ1,𝜀(𝑥) (𝑥) and Λ2,𝜀(𝑥) (𝑥) are unknown
matrices satisfying ΛT

1,𝜀(𝑥) (𝑥)Λ1,𝜀(𝑥) (𝑥) ≤ 𝐼 and ΛT
2,𝜀(𝑥) (𝑥)Λ2,𝜀(𝑥) (𝑥) ≤ 𝐼 , respectively.

Set 𝜀(𝑥) = 𝑎, we denote 𝐵𝑎 ≜ 𝐵𝜀(𝑥) ,𝐺𝑎 ≜ 𝐺𝜀(𝑥) , 𝛼𝑎 ≜ 𝛼𝜀(𝑥) , �̄�𝑎 ≜ �̄�𝜀(𝑥) , �̄�𝑎 ≜ �̄�𝜀(𝑥) , 𝛽𝑎 ≜ 𝛽𝜀(𝑥) , 𝐾𝑑𝑎 ≜ 𝐾𝑑,𝜀(𝑥) ,
Δ𝐾𝑑𝑎 ≜ Δ𝐾𝑑,𝜀(𝑥) , 𝐴𝑑𝑎 ≜ 𝐴𝑑,𝜀(𝑥) , Λ𝑑𝑎 ≜ Λ𝑑,𝜀(𝑥) , 𝐶𝑑𝑎 ≜ 𝐶𝑑,𝜀(𝑥) , (𝑑 = 1, 2). Define 𝜙𝑚 = �̄� − �̂� and 𝜙𝑝 = 𝑝 − 𝑝
to be the error state vectors; based on (5)–(7), the following error system is derived,


𝜕𝜙𝑚
𝜕𝑥

= 𝐸
𝜕2𝜙𝑚
𝜕𝑦2 − 𝐵𝑎𝜙𝑚 + 𝐺𝑎 𝑓 (𝜙𝑝 (𝑥 − 𝛼𝑎 (𝑥), 𝑦)) − (𝐾1𝑎 + Δ𝐾1𝑎)𝑊𝜙𝑚 ,

𝜕𝜙𝑝

𝜕𝑥
= �̄�

𝜕2𝜙𝑝

𝜕𝑦2 − �̄�𝑎𝜙𝑝 + �̄�𝑎𝜙𝑚 (𝑥 − 𝛽𝑎 (𝑥), 𝑦) − (𝐾2𝑎 + Δ𝐾2𝑎)�̄�𝜙𝑝 ,
(9)

where 𝑓 (𝜙𝑝 (𝑥 − 𝛼𝑎 (𝑥), 𝑦)) = 𝑓 (𝑝(𝑥 − 𝛼𝑎 (𝑥), 𝑦)) − 𝑓 (𝑝(𝑥 − 𝛼𝑎 (𝑥), 𝑦)), 𝜙𝑚 (𝑥 − 𝛽𝑎 (𝑥), 𝑦) = �̄�(𝑥 − 𝛽𝑎 (𝑥), 𝑦) −
�̂�(𝑥 − 𝛽𝑎 (𝑥), 𝑦), Δ𝐾1𝑎 = 𝐴1𝑎Λ1𝑎 (𝑥)𝐶1𝑎 , and Δ𝐾2𝑎 = 𝐴2𝑎Λ2𝑎 (𝑥)𝐶2𝑎 .
Because 𝑓ℎ (·) is a monotonically increasing function, which satisfies the following inequality

0 ≤ 𝑓ℎ (𝑧)
𝑧

≤ 𝜗ℎ, ∀𝑧 ≠ 0; ℎ = 1, . . . , 𝑛, (10)

where 𝜗ℎ is a known positive real number.

The following lemmas are important tools for obtaining the principal results of this article.

Lemma 1. [38] Assume ℏ ≥ 0 ∈ <𝑛×𝑛 and the function ℓ ∈ H 𝑛
𝑙 ( [𝑟1, 𝑟2]) satisfying ℓ(𝑟1) = 0 or ℓ(𝑟2) = 0, then∫ 𝑟2

𝑟1

ℓ𝑇 (𝑦)ℏℓ(𝑦)𝑑𝑦 ≤ 4(𝑟2 − 𝑟1)2

𝜋2

∫ 𝑟2

𝑟1

¤ℓ(𝑦)𝑇ℏ ¤ℓ(𝑦)𝑑𝑦.

Further, if ℓ(𝑟1) = ℓ(𝑟2) = 0, one has∫ 𝑟2

𝑟1

ℓ𝑇 (𝑦)ℏℓ(𝑦)𝑑𝑦 ≤ (𝑟2 − 𝑟1)2

𝜋2

∫ 𝑟2

𝑟1

¤ℓ(𝑦)𝑇ℏ ¤ℓ(𝑦)𝑑𝑦.

Lemma 2. [39] With real matrices 𝐻 and 𝐽 of appropriate dimensions, the inequality satisfies

𝐻𝐽𝑇 + 𝐽𝐻𝑇 ≤ 𝛾−1𝐻𝐻𝑇 + 𝛾𝐽𝐽𝑇 ,
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where 𝛾 is a positive scalar.

Lemma 3. [40] The existence of matrices Ψ = ΨT, 𝐻 and 𝐽 of appropriate dimensions, then

Ψ + 𝐻Λ(𝑥)𝐽 + 𝐻TΛT(𝑥)𝐽T < 0,

for all satisfying ΛT(𝑥)Λ(𝑥) ≤ 𝐼 , the sufficient condition for Λ(𝑥) to hold is the existence of a positive constant
𝛾 such that the following equation holds:

Ψ + 𝛾−1𝐻𝐻T + 𝛾𝐽T𝐽 < 0.

3. MAIN RESULTS
For this section, establishing new criteria by choosing appropriate Lyapunov-Krasovskii functionals (LKFs),
which assures that system (9) is asymptotically stable.

Theorem 1. Given constants 𝜓1𝑎 , 𝜓2𝑎 ,𝜛, matrixN, and estimator gain matrices 𝐾1𝑎 and 𝐾2𝑎 , the system (9) is
asymptotically stable if there exist positive matrices 𝑃𝑙𝑎 , 𝐹𝑙 ,𝑄𝑙 , (𝑙 = 1, 2) with suitable dimensions, symmetric
matrices𝑊𝑎 ∈ <𝑛×𝑛 and �̄�𝑎 ∈ <𝑛×𝑛, and the diagonal matrix 𝑅1 > 0 ∈ <𝑛×𝑛, which makes the below linear
matrix inequalities (LMIs) feasible:

Ψ1 + Ψ2 + Ψ3 ≤ 0, (11)

𝑃1𝑏 +𝑊𝑎 ≤ 0, 𝑃2𝑏 + �̄�𝑎 ≤ 0, ∀𝑏 ∈ <𝑎
𝑢𝑟 , 𝑎 ≠ 𝑏, (12)

where

Ψ1 =sym{𝜁𝑇1 𝑃1𝑎𝜁6 + 𝜁𝑇2 𝑃2𝑎𝜁7} + 𝜁𝑇1
∑
𝑏=<𝑎

𝑟

𝜋𝑎𝑏 (𝑃1𝑏 +𝑊𝑎)𝜁1 + 𝜁𝑇2
∑
𝑏=<𝑎

𝑟

𝜋𝑎𝑏 (𝑃2𝑏 + �̄�𝑎)𝜁2 + 𝜁𝑇1 𝐹1𝜁1 + 𝜁𝑇2 𝐹2𝜁2

− (1 − 𝜓2𝑎)𝜁𝑇3 𝐹1𝜁3 − (1 − 𝜓1𝑎)𝜁𝑇4 𝐹2𝜁4 + sym{𝜁𝑇5 𝑅1(N𝜁4 − 𝜁5)},

Ψ2 = − sym{𝜁𝑇1𝑄1𝐵𝑎𝜁1} − sym{𝜁𝑇1
𝜋2

𝜛2𝑄1𝐸𝜁1} − sym{𝜁𝑇1𝑄1𝐵𝑎𝜁6} + sym{𝜁𝑇1𝑄1𝐺𝑎𝜁5} − sym{𝜁𝑇1𝑄1𝜁6}

+ sym{𝜁𝑇5𝑄1𝐺𝑎𝜁6} − sym{𝜁𝑇6𝑄1𝜁6} − sym{𝜁𝑇1𝑄1𝐾1𝑎𝑁𝜁1} − sym{𝜁𝑇1𝑄1Δ𝐾1𝑎𝑁𝜁1} − sym{𝜁𝑇1𝑄1𝐾1𝑎𝑁𝜁6}
− sym{𝜁𝑇1𝑄1Δ𝐾1𝑎𝑁𝜁6},

Ψ3 = − sym{𝜁𝑇2𝑄2�̄�𝑎𝜁2} − sym{𝜁𝑇2
𝜋2

𝜛2𝑄2�̄� 𝜁2} − sym{𝜁𝑇2𝑄2�̄�𝑎𝜁7} + sym{𝜁𝑇2𝑄2�̄�𝑎𝜁3} − sym{𝜁𝑇2𝑄2𝜁7}

+ sym{𝜁𝑇3𝑄2�̄�𝑎𝜁7} − sym{𝜁𝑇7𝑄2𝜁7} − sym{𝜁𝑇2𝑄2𝐾2𝑎 �̄�𝜁2} − sym{𝜁𝑇2𝑄2Δ𝐾2𝑎 �̄�𝜁2} − sym{𝜁𝑇2𝑄2𝐾2𝑎 �̄�𝜁7}
− sym{𝜁𝑇2𝑄2Δ𝐾2𝑎 �̄�𝜁7},

where 𝜓1𝑎 = 𝜓1,𝜀(𝑥) , 𝜓2𝑎 = 𝜓2,𝜀(𝑥) , N = diag(N1,N2, . . . ,N𝑛), 𝜛 = 𝜈2 − 𝜈1, and 𝜁𝜐 =
[
0𝑛,(𝜐−1)𝑛 𝐼𝑛 0𝑛,(7−𝜐)𝑛

]
,

(𝜐 = 1, . . . , 7).

Proof. Construct the LKFs for the system (9) as follows:

𝑉 (𝑥) = 𝑉1(𝑥) +𝑉2(𝑥) +𝑉3(𝑥), (13)
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where

𝑉1(𝑥) =
∫
Ω
𝜙𝑇𝑚𝑃1𝑎𝜙𝑚𝑑𝑦 +

∫
Ω
𝜙𝑇𝑝𝑃2𝑎𝜙𝑝𝑑𝑦,

𝑉2(𝑥) =
∫
Ω

𝜕𝜙𝑇𝑚
𝜕𝑦

𝑄1𝐸
𝜕𝜙𝑚
𝜕𝑦

𝑑𝑦 +
∫
Ω

𝜕𝜙𝑇𝑝

𝜕𝑦
𝑄2�̄�

𝜕𝜙𝑝

𝜕𝑦
𝑑𝑦,

𝑉3(𝑥) =
∫
Ω

∫ 𝑥

𝑥−𝛽𝑎 (𝑥)
𝜙𝑇𝑚 (𝑧, 𝑦)𝐹1𝜙𝑚 (𝑧, 𝑦)𝑑𝑧𝑑𝑦 +

∫
Ω

∫ 𝑥

𝑥−𝛼𝑎 (𝑥)
𝜙𝑇𝑝 (𝑧, 𝑦)𝐹2𝜙𝑝 (𝑧, 𝑦)𝑑𝑧𝑑𝑦.

The time derivative of 𝑉 (𝑥) is calculated as follows:

¤𝑉1(𝑥) = 2
∫
Ω
𝜙𝑇𝑚𝑃1𝑎

𝜕𝜙𝑚
𝜕𝑥

𝑑𝑦 +
∫
Ω

𝑈∑
𝑏=1

𝜋𝑎𝑏𝜙
𝑇
𝑚𝑃1𝑏𝜙𝑚𝑑𝑦 + 2

∫
Ω
𝜙𝑇𝑝𝑃2𝑎

𝜕𝜙𝑝

𝜕𝑥
𝑑𝑦 +

∫
Ω

𝑈∑
𝑏=1

𝜋𝑎𝑏𝜙
𝑇
𝑝𝑃2𝑏𝜙𝑝𝑑𝑦, (14)

¤𝑉2(𝑥) = 2
∫
Ω

𝜕2𝜙𝑇𝑚
𝜕𝑦𝜕𝑥

𝑄1𝐸
𝜕𝜙𝑚
𝜕𝑦

𝑑𝑦 + 2
∫
Ω

𝜕2𝜙𝑇𝑝

𝜕𝑦𝜕𝑥
𝑄2�̄�

𝜕𝜙𝑝

𝜕𝑦
𝑑𝑦, (15)

¤𝑉3(𝑥) =
∫
Ω
𝜙𝑇𝑚𝐹1𝜙𝑚𝑑𝑦 − (1 − ¤𝛽𝑎 (𝑥))

∫
Ω
𝜙𝑇𝑚 (𝑥 − 𝛽𝑎 (𝑥), 𝑦)𝐹1𝜙𝑚 (𝑥 − 𝛽𝑎 (𝑥), 𝑦)𝑑𝑦

+
∫
Ω
𝜙𝑇𝑝𝐹2𝜙𝑝𝑑𝑦 − (1 − ¤𝛼𝑎 (𝑥))

∫
Ω
𝜙𝑇𝑝 (𝑥 − 𝛼𝑎 (𝑥), 𝑦)𝐹2𝜙𝑝 (𝑥 − 𝛼𝑎 (𝑥), 𝑦)𝑑𝑦

≤
∫
Ω
𝜙𝑇𝑚𝐹1𝜙𝑚𝑑𝑦 − (1 − 𝜓2𝑎)

∫
Ω
𝜙𝑇𝑚 (𝑥 − 𝛽𝑎 (𝑥), 𝑦)𝐹1𝜙𝑚 (𝑥 − 𝛽𝑎 (𝑥), 𝑦)𝑑𝑦

+
∫
Ω
𝜙𝑇𝑝𝐹2𝜙𝑝𝑑𝑦 − (1 − 𝜓1𝑎)

∫
Ω
𝜙𝑇𝑝 (𝑥 − 𝛼𝑎 (𝑥), 𝑦)𝐹2𝜙𝑝 (𝑥 − 𝛼𝑎 (𝑥), 𝑦)𝑑𝑦. (16)

According to (9), the following is obviously true

0 = 2
∫
Ω

(
𝜙𝑚 + 𝜕𝜙𝑚

𝜕𝑥

)𝑇
𝑄1

[
− 𝜕𝜙𝑚

𝜕𝑥
+ 𝐸 𝜕

2𝜙𝑚
𝜕𝑦2 − 𝐵𝑎𝜙𝑚 + 𝐺𝑎 𝑓 (𝜙𝑝 (𝑥 − 𝛼𝑎 (𝑥), 𝑦)) − (𝐾1𝑎 + Δ𝐾1𝑎)𝑁𝜙𝑚

]
𝑑𝑦,

0 = 2
∫
Ω

(
𝜙𝑝 +

𝜕𝜙𝑝

𝜕𝑥

)𝑇
𝑄2

[
−
𝜕𝜙𝑝

𝜕𝑥
+ �̄�

𝜕2𝜙𝑝

𝜕𝑦2 − �̄�𝑎𝜙𝑝 + �̄�𝑎𝜙𝑚 (𝑥 − 𝛽𝑎 (𝑥), 𝑦) − (𝐾2𝑎 + Δ𝐾2𝑎)�̄�𝜙𝑝
]
𝑑𝑦. (17)

According to the definition of the transfer probability matrix (4), for symmetric matrices 𝑊𝑎 ∈ <𝑛×𝑛 and
�̄�𝑎 ∈ <𝑛×𝑛, one gets

0 =
𝑈∑
𝑏=1

𝜋𝑎𝑏𝜙
𝑇
𝑚𝑊𝑎𝜙𝑚 , 0 =

𝑈∑
𝑏=1

𝜋𝑎𝑏𝜙
𝑇
𝑝�̄�𝑎𝜙𝑝 , ∀𝑎 ∈ 𝑈. (18)

Based on (17) and the boundary conditions (2), using the integration by parts, one can get

2
∫
Ω
𝜙𝑇𝑚𝑄1𝐸

𝜕2𝜙𝑚
𝜕𝑦2 𝑑𝑦 = −2

∫
Ω

𝜕𝜙𝑇𝑚
𝜕𝑦

𝑄1𝐸
𝜕𝜙𝑚
𝜕𝑦

𝑑𝑦, (19)

and

2
∫
Ω
𝜙𝑇𝑝𝑄2�̄�

𝜕2𝜙𝑝

𝜕𝑦2 𝑑𝑦 = −2
∫
Ω

𝜕𝜙𝑇𝑝

𝜕𝑦
𝑄2�̄�

𝜕𝜙𝑝

𝜕𝑦
𝑑𝑦. (20)

Following (19) and (20) and applying Lemma 1, we can derive that

− 2
∫
Ω

𝜕𝜙𝑇𝑚
𝜕𝑦

𝑄1𝐸
𝜕𝜙𝑚
𝜕𝑦

+
𝜕𝜙𝑇𝑝

𝜕𝑦
𝑄2�̄�

𝜕𝜙𝑝

𝜕𝑦
𝑑𝑦 ≤ −2

𝜋2

𝜛2

∫
Ω
𝜙𝑇𝑚𝑄1𝐸𝜙𝑚 + 𝜙𝑇𝑝𝑄2�̄�𝜙𝑝𝑑𝑦. (21)
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From (17) and the boundary conditions (2), we have that

2
∫
Ω

𝜕𝜙𝑇𝑚
𝜕𝑥

𝑄1𝐸
𝜕2𝜙𝑚
𝜕𝑦2 𝑑𝑦 = −2

∫
Ω

𝜕𝜙𝑇𝑚
𝜕𝑦

𝑄1𝐸
𝜕2𝜙𝑚
𝜕𝑦𝜕𝑥

𝑑𝑦, (22)

and

2
∫
Ω

𝜕𝜙𝑇𝑝

𝜕𝑥
𝑄2�̄�

𝜕2𝜙𝑝

𝜕𝑦2 𝑑𝑦 = −2
∫
Ω

𝜕𝜙𝑇𝑝

𝜕𝑦
𝑄2�̄�

𝜕2𝜙𝑝

𝜕𝑦𝜕𝑥
𝑑𝑦. (23)

Based on (10), for arbitrary diagonal matrix 𝑅1 > 0, one obtains

0 ≤ 2 𝑓 𝑇 (𝜙𝑝 (𝑥 − 𝛼𝑎 (𝑥), 𝑦))𝑅1(N𝜙𝑝 − 𝑓 (𝜙𝑝 (𝑥 − 𝛼𝑎 (𝑥), 𝑦))). (24)

By combining (14)–(24), it can be proved that

¤𝑉 (𝑥) ≤
∫
Ω
ℓ𝑇 (𝑥, 𝑦)(Ψ1 + Ψ2 + Ψ3)ℓ(𝑥, 𝑦)𝑑𝑦

+
∫
Ω

∑
𝑏=<𝑎

𝑢𝑟

𝜋𝑎𝑏𝜙
𝑇
𝑚 (𝑃1𝑏 +𝑊𝑎)𝜙𝑚 +

∑
𝑏=<𝑎

𝑢𝑟

𝜋𝑎𝑏𝜙
𝑇
𝑝 (𝑃2𝑏 + �̄�𝑎)𝜙𝑝𝑑𝑦, (25)

where ℓ(𝑥, 𝑦) = col
(
𝜙𝑚 , 𝜙𝑝 , 𝜙𝑚 (𝑥 − 𝛽𝑎 (𝑥), 𝑦), 𝜙𝑝 (𝑥 − 𝛼𝑎 (𝑥), 𝑦), 𝑓 (𝜙𝑝 (𝑥 − 𝛼𝑎 (𝑥), 𝑦)), 𝜕𝜙𝑚𝜕𝑥 ,

𝜕𝜙𝑝

𝜕𝑥

)
.

Therefore, combining the above analysis, one can conclude that the error system (9) is asymptotically stable.
The proof is complete. ■

Having performed the stability analysis in Theorem 1, we will deal with the design of a non-fragile estimator.
The following theorem gives a solution for designing a non-fragile estimator.

Theorem 2. Given positive constants 𝜓1𝑎 , 𝜓2𝑎 , 𝜛, 𝛾1, 𝛾2, and matrix N, the error system (9) is asymptotically
stable if there exist positive matrices 𝑃𝑙𝑎 , 𝐹𝑙 , 𝑄𝑙 , Γ𝑙𝑎 , (𝑙 = 1, 2) with suitable dimensions, symmetric matrices
𝑊𝑎 ∈ <𝑛×𝑛 and �̄�𝑎 ∈ <𝑛×𝑛, and the diagonal matrix 𝑅1 > 0 ∈ <𝑛×𝑛, which makes the below LMIs feasible:



Ψ̂ 𝛾1A1𝑎 C𝑇1𝑎 𝛾2A2𝑎 C𝑇2𝑎
∗ −𝛾1𝐼 0 0 0
∗ ∗ −𝛾1𝐼 0 0
∗ ∗ ∗ −𝛾2𝐼 0
∗ ∗ ∗ ∗ −𝛾2𝐼


≤ 0, (26)

where Ψ̂ = Ψ1 + Ψ̂1 + Ψ̂2, A1𝑎 =

[
− 𝐴𝑇1𝑎𝑄𝑇1 0 0 . . . 0︸            ︷︷            ︸

6 times

]𝑇
, C1𝑎 =

[
𝐶1𝑎𝑁 0 0 . . . 0︸            ︷︷            ︸

4 times

𝐶1𝑎𝑁 0
]
,
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A2𝑎 =

[
0 − 𝐴𝑇2𝑎𝑄𝑇2 0 0 . . . 0︸            ︷︷            ︸

5 times

]𝑇
, C2𝑎 =

[
0 𝐶2𝑎 �̄� 0 0 . . . 0︸            ︷︷            ︸

4 times

𝐶2𝑎 �̄�

]
, and

Ψ1 =sym{𝜁𝑇1 𝑃1𝑎𝜁6 + 𝜁𝑇2 𝑃2𝑎𝜁7} + 𝜁𝑇1
∑
𝑏=<𝑎

𝑟

𝜋𝑎𝑏 (𝑃1𝑏 +𝑊𝑎)𝜁1 + 𝜁𝑇2
∑
𝑏=<𝑎

𝑟

𝜋𝑎𝑏 (𝑃2𝑏 + �̄�𝑎)𝜁2 + 𝜁𝑇1 𝐹1𝜁1 + 𝜁𝑇2 𝐹2𝜁2

− (1 − 𝜓2𝑎)𝜁𝑇3 𝐹1𝜁3 − (1 − 𝜓1𝑎)𝜁𝑇4 𝐹2𝜁4 + sym{𝜁𝑇5 𝑅1(N𝜁4 − 𝜁5)},

Ψ̂1 = − sym{𝜁𝑇1𝑄1𝐵𝑎𝜁1} − sym{𝜁𝑇1
𝜋2

𝜛2𝑄1𝐸𝜁1} − sym{𝜁𝑇1𝑄1𝐵𝑎𝜁6} + sym{𝜁𝑇1𝑄1𝐺𝑎𝜁5} − sym{𝜁𝑇1𝑄1𝜁6}

+ sym{𝜁𝑇5𝑄1𝐺𝑎𝜁6} − sym{𝜁𝑇6𝑄1𝜁6} − sym{𝜁𝑇1 Γ1𝑎𝑁𝜁1} − sym{𝜁𝑇1 Γ1𝑎𝑁𝜁6},

Ψ̂2 = − sym{𝜁𝑇2𝑄2�̄�𝑎𝜁2} − sym{𝜁𝑇2
𝜋2

𝜛2𝑄2�̄� 𝜁2} − sym{𝜁𝑇2𝑄2�̄�𝑎𝜁7} + sym{𝜁𝑇2𝑄2�̄�𝑎𝜁3} − sym{𝜁𝑇2𝑄2𝜁7}

+ sym{𝜁𝑇3𝑄2�̄�𝑎𝜁7} − sym{𝜁𝑇7𝑄2𝜁7} − sym{𝜁𝑇2 Γ2𝑎 �̄�𝜁2} − sym{𝜁𝑇2 Γ2𝑎 �̄�𝜁7}.

Furthermore, the other parameters are consistent withTheorem 1, and the estimator gainmatrices are obtained
by 𝐾1𝑎 = �̄�−1

1 Γ1𝑎 and 𝐾2𝑎 = �̄�−1
2 Γ2𝑎 .

Proof. Based on (8) and the proof procedure of Theorem 1, one obtains that

Θ = Ψ̂ + A1𝑎Λ1𝑎C1𝑎 + CT1𝑎ΛT
1𝑎A

T
1𝑎 + A2𝑎Λ2𝑎C2𝑎 + CT2𝑎ΛT

2𝑎A
T
2𝑎 ≤ 0. (27)

Since ΛT
1𝑎 (𝑥)Λ1𝑎 (𝑥) ≤ 𝐼 and ΛT

2𝑎 (𝑥)Λ2𝑎 (𝑥) ≤ 𝐼 , by using Lemma 2, one obtains

A1𝑎Λ1𝑎C1𝑎 + CT1𝑎ΛT
1𝑎A

T
1𝑎 ≤ 𝛾1A1𝑎A

T
1𝑎 + 𝛾−1

1 C
T
1𝑎C1𝑎 , (28)

and

A2𝑎Λ2𝑎C2𝑎 + CT2𝑎ΛT
2𝑎A

T
2𝑎 ≤ 𝛾2A2𝑎A

T
2𝑎 + 𝛾−1

2 C
T
2𝑎C2𝑎 . (29)

According to (27), (28), and (29), by using Lemma 3, we can get

Θ ≤ Ψ̂ + 𝛾1A1𝑎A
T
1𝑎 + 𝛾−1

1 C1𝑎C
T
1𝑎 + 𝛾2A2𝑎A

T
2𝑎 + 𝛾−1

2 C2𝑎C
T
2𝑎 ≤ 0, (30)

where A1𝑎 , A2𝑎 , C1𝑎 , and C2𝑎 are already given in the statement of Theorem 2.

By combining (14)–(24) and (27)–(30), it can be proved that

¤𝑉 (𝑥) ≤
∫
Ω
ℓ𝑇 (𝑥, 𝑦)(Ψ̂ + 𝛾1A1𝑎A

𝑇
1𝑎 + 𝛾−1

1 C1𝑎C
𝑇
1𝑎 + 𝛾2A2𝑎A

𝑇
2𝑎 + 𝛾−1

2 C2𝑎C
𝑇
2𝑎)ℓ(𝑥, 𝑦)𝑑𝑦

+
∫
Ω

∑
𝑏=<𝑎

𝑢𝑟

𝜋𝑎𝑏𝜙
𝑇
𝑚 (𝑃1𝑏 +𝑊𝑎)𝜙𝑚 +

∑
𝑏=<𝑎

𝑢𝑟

𝜋𝑎𝑏𝜙
𝑇
𝑝 (𝑃2𝑏 + �̄�𝑎)𝜙𝑝𝑑𝑦, (31)
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Table 1. The mode-dependent time-varying delays and related parameters

𝜶𝒂 (𝒙) 𝜷𝒂 (𝒙) 𝜶𝒂 𝜷𝒂 𝝍1𝒂 𝝍2𝒂

𝑎 = 1 0.3 + 0.3 sin(𝑥 ) 0.25 + 0.25 sin(𝑥 ) 0.6 0.5 0.3 0.25

𝑎 = 2 0.4 + 0.4 sin(𝑥 ) 0.35 + 0.35 sin(𝑥 ) 0.8 0.7 0.4 0.35

𝑎 = 3 0.5 + 0.5 sin(𝑥 ) 0.45 + 0.45 sin(𝑥 ) 1 0.9 0.5 0.45

where ℓ(𝑥, 𝑦) = col
(
𝜙𝑚 , 𝜙𝑝 , 𝜙𝑚 (𝑥 − 𝛽𝑎 (𝑥), 𝑦), 𝜙𝑝 (𝑥 − 𝛼𝑎 (𝑥), 𝑦), 𝑓 (𝜙𝑝 (𝑥 − 𝛼𝑎 (𝑥), 𝑦)), 𝜕𝜙𝑚𝜕𝑥 ,

𝜕𝜙𝑝

𝜕𝑥

)
, we employ

Schur’s complement, which can convert the inequality (30) into (26).

Combining the above analysis, we can conclude that the system (9) is asymptotically stable when the inequal-
ities (12) and (26) hold. The proof is complete. ■

4. SIMULATION EXAMPLE
In this section, a numerical simulation is provided to illustrate the validity of the theoretical results in this
paper. The corresponding parameters of the system (1) are selected as:

𝐵1 =


0.74 0 0

0 0.72 0
0 0 0.65

 , 𝐵2 =


0.69 0 0

0 0.75 0
0 0 0.71

 , 𝐵3 =


0.71 0 0

0 0.74 0
0 0 0.67

 , 𝑁 =


1.0 0 0
0 0.8 0
0 0 1.1

 ,
�̄�1 =


0.75 0 0

0 0.69 0
0 0 0.62

 , �̄�2 =


0.77 0 0

0 0.71 0
0 0 0.68

 , �̄�3 =


0.72 0 0

0 0.76 0
0 0 0.72

 , �̄� =


1.1 0 0
0 1.3 0
0 0 0.9

 ,
𝐺1 =


0.49 −0.29 0.43
−0.52 0.91 0.63
0.51 0.34 −0.62

 , 𝐺2 =


0.53 −0.34 0.42
−0.52 0.94 0.61
0.53 0.31 −0.63

 , 𝐺3 =


0.55 −0.36 0.41
−0.53 0.97 0.67
0.56 0.37 −0.68

 ,
�̄�1 =


0.7 0 0
0 0.7 0
0 0 0.6

 , �̄�2 =


0.6 0 0
0 0.6 0
0 0 0.6

 , �̄�3 =


0.5 0 0
0 0.5 0
0 0 0.5

 , 𝐸 =


0.15 0 0

0 0.16 0
0 0 0.13

 ,
�̄� =


0.2 0 0
0 0.21 0
0 0 0.19

 .
The selection of the transfer matrix with partially unknown probabilities is shown below:

Π =


−0.8 0.5 0.3

? −1.0 ?
0.8 ? ?

 ;

based on the above transfer matrix, the process of switching between modes is shown in Figure 1.

The mode-dependent time-varying delays and related parameters are shown in Table 1.
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Figure 1. Switching Modes of the system.

The parameters of the estimator gain perturbation are chosen as:

𝐴11 =


0.25 0 0

0 0.16 0
0 0 0.19

 , 𝐴12 =


0.31 0 0

0 0.18 0
0 0 0.23

 , 𝐴13 =


0.35 0 0

0 0.25 0
0 0 0.25

 ,
𝐴21 =


0.33 0 0

0 0.26 0
0 0 0.18

 , 𝐴22 =


0.28 0 0

0 0.22 0
0 0 0.17

 , 𝐴23 =


0.26 0 0

0 0.19 0
0 0 0.23

 ,
𝐶11 =


0.55 0 0

0 0.45 0
0 0 0.45

 , 𝐶12 =


0.35 0 0

0 0.31 0
0 0 0.31

 , 𝐶13 =


0.42 0 0

0 0.33 0
0 0 0.35

 ,
𝐶21 =


0.45 0 0

0 0.35 0
0 0 0.35

 , 𝐶22 =


0.38 0 0

0 0.32 0
0 0 0.35

 , 𝐶23 =


0.51 0 0

0 0.43 0
0 0 0.45

 ,
Λ1𝑎 (𝑥) = Λ2𝑎 (𝑥) =


sin 𝑥 0 0

0 sin 𝑥 0
0 0 sin 𝑥

 , 𝑎 = 1, 2, 3.

Let 𝛾1 = 𝛾2 = 0.5, 𝜛 = 1, N = 0.65𝐼3, and regulation function 𝑓 (𝜖) = 𝜖2

1+𝜖2 , by solving the LMIs in Theorem 2,
it can prove that the LMIs (12) and (26) of this paper are feasible; the estimator gain matrices are derived:

𝐾11 =


0.9024 −0.4021 −0.1306
−0.3080 2.1696 −0.2721
−0.1623 −0.3567 1.1212

 , 𝐾21 =


0.0671 −9.0706 −5.7745
−8.5686 0.0830 −4.1928
−5.7549 −5.9144 0.0639

 ,
𝐾12 =


0.9036 −0.4430 −0.1300
−0.2972 2.2427 −0.2630
−0.1473 −0.3743 1.0542

 , 𝐾22 =


0.0703 −7.1541 −3.5354
−7.5068 0.1065 −3.5237
−3.7345 −5.1003 0.1021

 ,
𝐾13 =


0.5541 −0.4042 −0.1278
−0.2766 1.6326 −0.2426
−0.1444 −0.3375 0.7699

 , 𝐾23 =


0.0110 −6.1614 −4.1572
−6.2536 0.0032 −1.0914
−5.7068 −2.1649 −0.0302

 .
Based on the obtained estimator gain matrix, Figures 2-5 illustrate the simulation results we obtained. Fig-
ures 2 and 3 demonstrate the estimation errors for mRNA and protein, respectively. To observe the trend of
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Figure 2. The evolution of mRNA estimation errors.

Figure 3. The evolution of protein estimation errors.

the estimation errors more clearly, we take the spatial point at 𝑦 = 0.2 as the example and display the trajectory
plots of the estimation errors of mRNA and protein in Figures 4 and 5, respectively. The above simulation re-
sults show that the estimation errors are asymptotically stable, thus proving the effectiveness of the non-fragile
state estimator designed in this paper.
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Figure 4. The trajectories of mRNA estimation errors 𝜙𝑚ℎ , ℎ = 1, 2, 3.
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Figure 5. The trajectories of protein estimation errors 𝜙𝑝ℎ , ℎ = 1, 2, 3.

5. CONCLUSIONS
This paper has investigated the non-fragile state estimation forMarkovian jumpRDGRNswithmode-dependent
time-varying delays. Moreover, the switching topology of the system satisfies the Markov chain with partial
unknown transfer probabilities. By utilizing the suitable LKFs, sufficient conditions that guarantee the asymp-
totic stability of the error system were established. Ultimately, a numerical example was used to demonstrate
the validity of the designed non-fragile state estimator. Nonetheless, some limitations of this paper still exist.
For example, the measurement methods adopted in this paper are costly and challenging to implement. There-
fore, we will employ point measurements to reduce the measurement cost in future work.
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