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Abstract
Aim: Proper identification in real time of different types of tissues during intraoperative procedures represents a 
vital and challenging task. This paper addresses tissue segmentation in two different medical applications using 
hyperspectral imaging (HSI) and machine learning in two main steps.

Methods: The first step consists of data preprocessing designed to overcome the most common problems linked 
with HSI, involving inter- and intra-patient variability of the tissue spectra and the high dimensionality of the 
spectra. The preprocessing step involves outlier removal, spectral smoothing, normalization, and dimensionality 
reduction using principal component analysis applied in the spectral domain of HSI data. In the spatial domain, 
multiple levels of analysis are performed using Gaussian filters. The second step consists of tissue segmentation 
using an optimized machine learning model. The most suitable model was selected under statistical comparison of 
seven machine learning models involving three different levels of spatial analysis.

Results: According to the experimental results, the U-Net achieves the highest precision (0.908) for detection of 
liver, bile duct, artery, and portal vein tissues in a set of 18 HSI data, while the logistic regression with the elasticnet 
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regularization combined with multiscale spatial analysis obtains the highest F1-score (0.673) and segmentation 
accuracy (0.803) for thyroid and parathyroid glands segmentation in a set of 21 HSI data.

Conclusion: In addition to the computational experiments, combining machine learning with HSI represents a 
promising approach to perform image-guided surgery.

Keywords: Hyperspectral imaging, tissue segmentation, machine learning, deep learning

INTRODUCTION
Identification of distinct types of tissues is a challenging task carried out visually by surgeons during 
intraoperative procedures. In practice, differentiation of tissues depends on the anatomical knowledge 
and experience of the surgeon. Consequently, a computerized system for real-time segmentation of tissues 
combined with a non-invasive imaging method could be of high interest to support the surgeon during 
image-guided surgery.

Hyperspectral imaging (HSI) is a technique for electromagnetic spectrum sensing that has been used 
in multiple medical applications in the last decades. The most common applications include image-
guided surgery[1], monitoring of physiologic tissue parameters[2,3], and disease diagnosis[4]. Moreover, HSI 
provides a high-dimensional representation of the tissue spectra along with their corresponding spatial 
information, which makes it suitable for tissue localization in intraoperative applications. Many studies 
focus on the intraoperative detection of tumors, such as colorectal, brain, liver, or head and neck tumors, 
mainly based on ex vivo tissue specimens[5-10], while few studies address the problem of characterization 
and enhancement of healthy tissues, structures, and organs[6,11-14]. The purpose of such works is the 
intraoperative discrimination of thin health risk structures that are difficult to detect with the eye or under 
white light imaging, from surrounding tissue such as muscle, fat, and other organs. Nouri et al.[6] developed 
a method to visually enhance the contrast of the ureter and facial nerve by combining relevant spectral 
channels. Cooney et al.[12] analyzed the spectral data of the liver, bile duct, and gall bladder in ex vivo 
human and in vivo animal tissues with the goal to differentiate them later. They showed that hemoglobin 
contributes mainly to the spectral signature of the liver, while bile pigment biliverdin and structural protein 
collagen are components of the absorbance spectra of the bile duct and gall bladder.

However, problems linked with HSI represent a challenge for automatic tissue localization. The most 
common problems involve high intra- and inter-patient variance of the tissue spectra, spectral anomalies 
caused by external lighting conditions, blood presence, and influence of drugs administrated to patients 
on the tissues’ optical properties. In the literature, object localization in HSI data has been addressed using 
machine learning models, which are convenient to work with when dealing with high-dimensional data[15]. 
Again, most of the applications concern the automatic detection of tumors[10]. Two examples are given 
concerning thyroid and liver tumors, which represent the organs of interest of this paper. Halicek et al.[9] 
evaluated an inception-v4 convolutional neuronal network (CNN) to classify thyroid healthy tissue and 
tumors based on ex vivo tissue. Segmentation performed on HSI data and RGB images synthesized from 
the HSI data were compared. A more accurate pixelwise classification was obtained with the HSI data with 
an area under the curve of 0.90. Recently, Zhang et al.[8] evaluated a saliency-weighted method for the 
selection of the most relevant spectral channels, followed by a multitask U-Net framework to classify liver 
tumors. Overall sensitivity and specificity values of 94.48% and 87.22% were obtained on 36 ex vivo tumors 
from 19 patients. A limited number of studies evaluated such models for the automatic discrimination 
of healthy tissue and anatomical structures based on HSI. Schols et al.[11] used a support vector machine 
(SVM) approach to classify in vivo nerves and adipose tissue based on 36 gradient and amplitude difference 
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features computed on the spectra. The leave-one-out cross-validation (LOOCV) performed on the HSI data 
of 18 patients acquired during thyroid and parathyroid surgery provided a mean accuracy of 95%. A train-
test evaluation performed on the HSI data acquired during five carpal tunnel release procedures provided 
a mean accuracy of 100%. The same working group later evaluated the same classification approach for 
the discrimination of in vivo parathyroid, thyroid, and adipose tissue[14]. They obtained accuracy values of 
97% and 82% considering the classification of parathyroid vs. adipose tissue and parathyroid vs. thyroid, 
respectively. Maktabi et al.[13] evaluated different standard machine learning methods for the automatic 
segmentation of in vivo thyroid and parathyroid glands and recurrent laryngeal nerve. The best results were 
obtained using SVM with a radial basis function kernel and LOOCV, where a mean accuracy of 68% was 
obtained.

In this paper, machine learning methods are combined with HSI to address the tissue segmentation in two 
medical applications: liver and thyroid image-guided surgery. The goal is the automatic discrimination 
using HSI of the bile duct from the gallbladder and liver and the parathyroid gland from the thyroid gland, 
respectively. The bile duct and parathyroid gland are small and thin healthy structures that are hard to 
identify visually during surgery. Previous studies showed that their spectra are different from surrounding 
tissue[12]. Seven machine learning models including a CNN were evaluated using a LOOCV and four 
evaluation efficiency metrics. To our best knowledge, the application for the automatic identification of 
the bile duct is not reported in the literature yet. Moreover, significant improvements were achieved in 
the method in comparison to the work of Maktabi et al.[13] from the same working group. The data pre-
processing includes two additional steps: the removal of spectra outliers and the detection of image 
background. A principal component analysis (PCA) is performed to reduce the spatial dimension. Finally, 
spatial information is introduced along with the spectral data to improve tissue segmentation performance.

This paper is organized as follows. The medical HSI database is introduced in the Methods section, along 
with a description of the preprocessing steps. The Results section presents the statistical results obtained 
from comparing seven machine learning models combined with three levels of spatial analysis for tissue 
segmentation in HSI data. Finally, concluding remarks from the computational experiments carried out in 
the present work are provided in the Discussion section.

METHODS
Patients database
The HSI database used in the present work is formed by 18 HSI data of seven liver surgery patients and 21 
HSI data of seven different thyroid surgery patients. The current database was acquired using the TIVITA 
Tissue hyperspectral imaging system (Diaspective Vision GmbH, Am Salzhaff, Germany)[3]. This system 
generates HSI data with a spatial resolution of 640 × 480 pixels and a spectral resolution of 5 nm in the 
electromagnetic wavelength range from 500 to 1000 nm (100 channels). The regions containing tissues of 
interest have been annotated by a surgeon in both datasets to form the ground truth. The tissues labeled in 
the datasets involve liver, bile duct, artery, and portal vein for liver surgery and thyroid, parathyroid, and 
muscle for thyroid surgery. It is important to note out that the ground truth is sparsely labeled because only 
some regions have been annotated by the surgeon in each image. The main reason is that full labeling of 
the images is time consuming and exhaustive labor. Figure 1 illustrates two annotated hyperspectral images 
from each application addressed in this work.

HSI data preprocessing
The proposed preprocessing pipeline used in HSI data prior to the tissue segmentation step is illustrated in 
Figure 2. The pipeline consists of five main operations involving outlier removal, background identification, 
spectral smoothing, data normalization, dimensional reduction, and spatial smoothing. Each operation of 
the pipeline is described in detail below.
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Outlier removal
A frequent problem present in HSI data is that the spectra pattern of the different tissues can be affected by 
multiple factors during the acquisition process. Spectral abnormalities can be related to different lighting 
conditions, and tissues can be covered by blood. Besides, ground truth data can present unintended 
mislabeled regions that introduce variability to the spectra patterns of the corresponding tissues. In general, 
those reflectance spectra patterns can be considered as outliers. In the present method, a statistical analysis 
is carried out to determine reflectance spectra boundaries for the identification of outliers.

The lower boundary Lk(w) and upper boundary Uk(w) corresponding to tissues of class k are defined per 
wavelength unit w as follows:

                           (1)

                               (2)

where Q1 and Q3 are the first and third quartiles and IQR the interquartile range of the reflectance data Rk 
for the wavelength unit w.

Figure 1. Color representation of hyperspectral images from (A) one liver surgery patient and (B) one thyroid surgery patient, with their 
respective annotated tissues of interest.

Figure 2. Proposed HSI data preprocessing pipeline.
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Background identification
Identification of image background can reduce the number of irrelevant regions falsely detected by a 
segmentation method as tissues of interest. This is achieved by defining a single set of boundaries that 
works as threshold for the reflectance spectra of relevant features. The threshold is computed for each 
wavelength unit w using the maximum of the upper boundaries Uk(w) as U’(w) and the minimum of the 
lower boundaries Lk(w) as L’(w) of the k classes as follows:

                                                             (3)
and

                                                        (4)

A pixel is identified by the mask M1 as image background if it presents a reflectance pattern outside the U’(w) 
and L’(w) boundaries for any wavelength unit as follows:

                     (5)

where R(x, y, w) is the reflectance corresponding to the wavelength w at the position (x, y).

In addition, by analyzing the reflectance spectra of the HSI data of both applications, three simple rules 
were defined to identify specific objects in the scene. It was found that relevant tissues in both medical 
applications show reflectance spectra lower than 0.7 between 520 and 570 nm. Similarly, pixels in dark 
regions and shadows commonly present reflectance spectra less than 0.1 in the entire acquisition range 
(500-1000 nm). Moreover, metal instruments commonly present almost constant reflectance spectra in 
the ranges [520, 570] and [650, 710] nm in both medical applications. In this work, metallic objects are 
identified if their mean reflectance ratio between range [520, 570] and range [650, 710] nm is greater than 
0.9. The three rules defined in this work can be expressed in mask M2 as follows:

                   (6)

where [520,570](x, y), [650, 710](x, y), and [500,1000](x, y) are the mean reflectance values in the ranges [520, 
570], [650, 710], and [500, 1000] nm at the position (x, y), respectively. Finally, the image foreground is 
defined as the union of both masks M1(x,y) and M2(x, y) at each position (x, y).

Spectral smoothing and normalization
The Savitzky-Golay smoothing operator[16] is applied to reduce the noise introduced by distinct factors (e.g., 
noise of HSI camera system) during the acquisition of reflectance spectra. In addition, the standard normal 
variate transform is used to homogenize the data collected from hyperspectral images acquired under 
distinct conditions or from different patients. These two operations are applied pixelwise, allowing each 
hyperspectral image to be preprocessed independently.

Dimensionality reduction and spatial analysis
PCA is used to reduce the HSI dimensionality. This allows working with models of lower complexity for 
classification tasks[1,6,17]. In this work, PCA is used to extract three principal components from the HSI 
data, which on average explain more than 95% of the data variance. Subsequently, spatial filtering is applied 
using a Gaussian filter over each of the resulting three principal components of the HSI data. Additionally, 
multiscale spatial analysis can be performed using multiple values of the Gaussian filter parameter σ at one 
time. This allows the detection of anatomical structures of different sizes.
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Tissue segmentation using machine learning
Machine learning models
The seven machine learning models considered in the present work involve logistic regression (LR) with 
L1, L2, and elasticnet regularization techniques, SVM with linear and radial basis function (RBF) kernels, 
a multilayer perceptron (MLP), and the convolutional neural network U-Net[18]. With the exception of 
the U-Net, each model is combined with three levels of spatial analysis: no spatial analysis, single-scale 
analysis (σ = 2), and multiscale analysis (σ = {2, 5, 10}). The U-Net is excluded from the spatial analysis 
schemes because it performs an analysis in the spatial domain of the HSI data through its convolution 
operations. The spatial analysis constructs new features that are concatenated to the original 100 channels 
corresponding to the spectra of the HSI data for each pixel. The single-scale spatial analysis provides three 
new features (103 channels), whereas the multiscale analysis produces nine new features (109 channels). 
The three levels of spatial analysis applied to HSI data are illustrated on the right of Figure 2. The tissues 
segmentation task is performed pixel-wise, using the complete set of features constructed with each spatial 
analysis to classify any of the tissue classes of interest.

The logistic regression models and the support vector machine with linear kernel are trained using 
stochastic gradient descent. The SVM with the RBF kernel is trained using a quadratic programming 
algorithm. The architecture of MLP consists of 32 neurons in the first hidden layer and 16 neurons in the 
second hidden layer, which were selected in preliminary experiments. The hyperbolic tangent is used as 
the activation function in each layer and the L-BFGS algorithm is used to fit the artificial neural network 
parameters.

The U-Net architecture is adapted to work with the high dimensionality of the HSI data. Figure 3 presents 
the proposed configuration of the U-Net, where the main difference with the original architecture is 
that two-dimensional convolutions are replaced with three-dimensional ones. Additionally, the U-Net 
architecture is trained using a patch-based scheme, where the tissues segmentation task is performed using 
an overlapping sliding window of 8 × 8 pixels, with a stride of 2 pixels. This scheme is used because the 
number of HSI data available is insufficient to perform the proper training of a deep learning model over 
complete images. Once trained, the U-Net can be used to segment full images using the convolutional 

Figure 3. U-Net architecture for tissues segmentation in HSI data.
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kernels learned with the patch-based approach. Moreover, the weighted cross-entropy loss function is used 
for the error assessment of the segmentation result in each patch.

The weight assigned to each coordinate allows considering only labeled regions inside the current patch[19]. 
For unlabeled pixels, the cross-entropy weight wceij = 0, otherwise it is defined as follows:

wceij = Lx/(Cx Ci,j),                                                                 (7)
where Lx is the number of labeled pixels in the patch x, Cx is the number of different classes present in 
the patch, and Ci,j is the number of pixels labeled as the pixel at coordinate (i,j) in the current patch. The 
contribution of each parameter to the loss error is computed using a back-propagation algorithm. In this 
work, the ADAM method is used to fit the convolutional neural network parameters.

Table 1 presents a summary of the algorithms and machine learning models used in this work. Because the 
algorithms and models are used to perform different tasks, a brief description and primary use of each of 
them is provided in this table.

Evaluation metrics
To evaluate the performance of the segmentation models, a leave-one-out cross-validation scheme was 
adopted in the experiment. For each fold, the training dataset was formed with the HSI data of six patients 
and validated with the annotated information of the remaining patient. The leave-one-out scheme is 
illustrated in Figure 4.

The efficiency of the different machine learning models to carry out tissue segmentation in HSI data was 
evaluated in terms of the following four classification metrics:

Accuracy = (TP + TN)/(TP + FP + TN + FN),                                           (8)
Recall = TP/(TP + FN),                                                             (9)

Precision = TP/(TP + FP),                                                          (10)

Table 1. Algorithms and machine learning models used to perform HSI data preprocessing and tissues segmentation

Algorithm/model Primary use Description
Outlier removal HSI preprocessing Identifies and removes spectra abnormalities in HSI data to avoid their use to train the 

machine learning models
Background 
identification

HSI preprocessing Discriminates background from foreground in HSI data. This allows the reduction of false 
positives during the tissue segmentation step

Spectral smoothing 
and normalization

HSI preprocessing Reduces noise introduced to HSI during data acquisition and simplifies the combination of 
HSI data obtained from different patients

Dimensional reduction 
and spatial analysis

HSI preprocessing Aggregates information, in a low-dimensional space, from the neighborhood of each HSI 
data pixel. Because this operation introduces spatial context into the feature space, the 
pixel-wise tissue classification performance of machine learning models can be improved

Linear regression (LR) Pixel-wise tissue 
segmentation

Combines the spectra features with a linear transform, followed by a sigmoid function 
to compute the probability of each pixel belonging to a certain class of tissue. A sparse 
selection of the spectra features is obtained using the L1 norm regularization, while low 
sensitivity to changes is achieved with the L2 norm. Moreover, a combination of both 
behaviors can be obtained by using the elasticnet regularization

Support Vector 
Machine (SVM)

Pixel-wise tissue 
segmentation

Defines a hyperplane using a set of support vectors, selected from the training data that 
separates the tissue classes in the features space. A kernel function can be used to map 
the spectra features into a space where classes could be linearly separable

Multilayer Perceptron 
(MLP)

Pixel-wise tissue 
segmentation

Maps the spectra features of each pixel into a space where classes could be linearly 
separable. This mapping is performed using two layers of connected computing units 
(neurons). Neurons apply a linear transform to their respective input. A squashing function 
(e.g., a sigmoid or hyperbolic tangent function) is applied to the neuron responses in order 
to provide a nonlinear mapping of the feature space

U-Net Semantic tissue 
segmentation

Performs the semantic segmentation using a process involving encoding and decoding of 
the HSI data. The encoding step obtains a high-dimensional, low-resolution representation 
of the hyperspectral image using a sequence of convolution and downsampling operations. 
The decoding step upsamples the encoded representation to obtain an image of the 
same spatial resolution as the original HSI data. A bridge operation transfers information 
obtained through the encoding step to the decoding step. This allows keeping important 
features obtained at different resolutions to be used during the decoding step and final 
segmentation
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and
F1 = 2 TP/(2 TP + FP + FN),                                                        (11)

where TP, TN, FP, and FN are the total of pixels evaluated as true positives, true negatives, false positives, 
and false negatives according to the annotated regions in the ground truth of the corresponding HSI data, 
respectively. The metrics were computed for each HSI datum in the validation dataset independently. 
The overall performance achieved by each segmentation model is defined as the average value obtained 
for each of the four metrics in the validation dataset. Because the data are sparsely annotated, only the 
labeled regions in each hyperspectral image can be used to evaluate the segmentation performance. The 
segmentation of tissues outside the annotated regions can only be assessed qualitatively due to the lack of 
their respective labels.

The use of stochastic-based training methods introduces randomness to the performance obtained by a 
segmentation model. To overcome the introduced randomness, a statistical analysis was performed by 
repeating the training stage for each model 30 times, except for U-Net, for which the training execution 
time made its repetition prohibitive. In addition, the mean efficiency for the identification of specific tissues 
was evaluated using the average value obtained for each metric in the complete validation dataset.

RESULTS
This section presents the most relevant experimental results obtained from the statistical comparison of 
the machine learning models for tissue segmentation in the two medical applications. The segmentation 
methods were implemented using Python programming language and the Scikit-learn package[20], on an 
Intel Xeon E5, with 64 GB of RAM and a 2.20 GHz processor. The U-Net was implemented using the 
PyTorch library[21] on a NVIDIA Tesla K40c with 12 GB of V-RAM Graphics Processing Unit (GPU).

Tissue segmentation results
The possible outliers were removed from the present dataset by using the feature identification method 
described in the methods section. The proportion of identified outliers in the annotated HSI data 
corresponds to 0.58% in liver surgery and 1.47% in thyroid surgery. Figure 5 illustrates the distribution of 
the reflectance spectra of the predominant classes of tissues, along with the set of feature boundaries U’(w) 
and L’(w) computed for each medical application.

Figures 6 and 7 show the results of the proposed background identification method applied on liver and 
thyroid HSI data, respectively. It can be seen that in both applications most of the instruments, gauze, and 
the surgeon hands are correctly identified as image background.

Figure 4. Schematic representation of the experimental setup.
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Segmentation of tissues in liver surgery HSI data
The seven machine learning methods combined with three levels of spatial analysis were applied for tissue 
segmentation in HSI data of liver surgery. The median segmentation efficiency achieved by each model is 
presented in Table 2. According to the experimental results, the U-Net achieves the highest segmentation 
efficiency. Table 3 presents the average segmentation efficiency obtained using the U-Net model. The deep 
learning model can identify liver, bile duct, portal vein, and artery tissues with high accuracy (≥ 0.841). 
The second best performance was obtained with the SVM model with RBF kernel and combined with the 
multiscale spatial analysis. SVM is known to provide good results for the segmentation of HSI data[22]. This 
result demonstrates that the multiscale analysis can classify anatomical structures of different sizes in the 
data and can accurately extract thin and elongated structures such as the bile duct and blood vessels.

In Figure 8, the segmentation results of the U-Net with HSI data of three patients during liver surgery are 
illustrated. By visual inspection of Figure 8B, it can be noticed that U-Net provides correct identification of 
liver, bile duct, portal vein, and artery tissues.

Segmentation of tissues in thyroid surgery HSI data
For tissue identification in HSI data of thyroid surgery, Table 4 presents the median segmentation 
performance obtained by the seven machine learning models when combined with three levels of spatial 
analysis. In this application, the logistic regression with the elasticnet regularization (LR elasticnet), 
combined with multiscale spatial analysis, provides the highest segmentation efficiency.

Figure 5. Distribution of the reflectance spectra of (A) liver tissue and (B) thyroid tissue in HSI data.

Figure 6. (A) Color representation of four HSI data from liver surgery and (B) their respective foreground identification obtained with the 
method proposed in this work.
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In Table 5, the discrimination performance of this model is presented. The experimental results show 
that thyroid and parathyroid glands and muscle tissues can be detected in HSI data with high accuracy (≥ 
0.696). The lower precision on the detection of parathyroid glands is related to a relatively higher number 

Table 2. Median segmentation performance of the seven machine learning models combined with three levels of spatial analysis 
applied to HSI data of liver surgery

Model Spatial filtering F1-score Accuracy Recall Precision
U-Net - 0.815 0.836 0.81 0.908
SVM RBF σ = {2, 5, 10} 0.763 0.788 0.756 0.917
SVM RBF - 0.745 0.779 0.734 0.927
SVM RBF σ = 2 0.656 0.718 0.65 0.886
MLP - 0.655 0.698 0.652 0.875
MLP σ = {2, 5, 10} 0.618 0.631 0.597 0.899
LR L2 - 0.617 0.66 0.608 0.857
LR L1 - 0.617 0.663 0.613 0.866
LR elasticnet - 0.615 0.656 0.606 0.86
SVM σ = 2 0.589 0.653 0.627 0.816
SVM σ = {2, 5, 10} 0.58 0.64 0.615 0.833
LR L1 σ = 2 0.57 0.627 0.586 0.877
LR L1 σ = {2, 5, 10} 0.56 0.617 0.571 0.836
SVM - 0.555 0.632 0.601 0.829
MLP σ = 2 0.554 0.623 0.537 0.847
LR elasticnet σ = {2, 5, 10} 0.542 0.606 0.556 0.848
LR L2 σ = {2, 5, 10} 0.542 0.605 0.555 0.845
LR L2 σ = 2 0.537 0.605 0.558 0.866
LR elasticnet σ = 2 0.537 0.605 0.558 0.865

Table 3. Mean efficiency of the U-Net for identification of tissues in HSI data of liver surgery

Tissue F1-score Accuracy Recall Precision
Liver 0.841 0.841 0.844 0.981
Bile duct 0.787 0.901 0.849 0.78
Portal vein 0.702 0.855 0.803 0.774
Artery 0.567 0.854 0.510 0.848

Figure 8. (A) Color representation of the HSI data of three patients during liver surgery, with the annotated tissues of interest; and (B) the 
resulting tissue segmentation provided by U-Net (liver in green, bile duct in blue, portal vein in pink, and artery in red).
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of false positives than true positives in the segmentation results. U-Net provided slightly lower median 
values of the F1-score and recall than those of the LR model with elasticnet but larger median values of 
accuracy and precision. The performance of U-Net and LR elasticnet are similar. Moreover, the second best 
performances were obtained with different models but using the multiscale analysis. This shows again the 
relevance of the multiscale analysis.

The tissue segmentation results obtained by the LR elasticnet with multiscale spatial analysis are presented 
in Figure 9 for the HSI data of three patients during thyroid surgery. Visual inspection of the results shows 
that this model provides correct identification of thyroid, parathyroid, and muscle tissues. Misclassification 
of image background regions as thyroid and parathyroid glands can be attributed to the similarity of their 
spectra after the standard normal variate normalization.

Table 6 presents a statistical analysis of the execution time taken by the segmentation models considered 
in this work to segment a single hyperspectral image. In this table, the different models appear only once 
because their execution time is similar when applied in both applications. The only exceptions are the 
models based on SVM and the SVM with RBF kernel, the execution times of which varied according to 
the number of support vectors required during the segmentation process. The multiscale analysis increases 
slightly the running time, but it remains lower than 0.5 s. The SVM model with RBF kernel is the exception 
and requires longer computing time, between 4 and 14 min. The running time of U-Net is nearly 5 s, which 
is acceptable for its application during surgical interventions.

U-Net, which performs tissue segmentation in 4.954 (± 0.030) s when executed using a GPU, and the 
LR elasticnet with multiscale spatial analysis, which provides tissue segmentation in 0.393 (± 0.035) s, 
presented the highest tissue segmentation efficiency for HSI data for liver and thyroid surgery, respectively.

Table 4. Median segmentation performance of the seven machine learning models combined with three levels of spatial analysis 
applied to HSI data of thyroid surgery

Model Spatial filtering F1-score Accuracy Recall Precision
LR elasticnet σ = {2, 5, 10} 0.673 0.803 0.675 0.825
U-Net - 0.668 0.811 0.674 0.845
LR L2 σ = {2, 5, 10} 0.664 0.796 0.666 0.822
SVM σ = {2, 5, 10} 0.664 0.791 0.675 0.811
LR L1 σ = {2, 5, 10} 0.661 0.799 0.665 0.819
MLP σ = 2 0.639 0.755 0.641 0.798
SVM σ = 2 0.62 0.766 0.637 0.811
LR L2 σ = 2 0.618 0.763 0.629 0.827
LR elasticnet σ = 2 0.618 0.763 0.63 0.825
SVM RBF σ = {2, 5, 10} 0.598 0.751 0.611 0.815
LR elasticnet - 0.598 0.755 0.616 0.804
LR L2 - 0.597 0.756 0.615 0.802
SVM - 0.597 0.759 0.615 0.797
MLP σ = {2, 5, 10} 0.595 0.755 0.603 0.775
MLP - 0.583 0.731 0.586 0.759
SVM RBF - 0.57 0.734 0.596 0.763
LR L1 σ = 2 0.57 0.731 0.592 0.809
SVM RBF σ = 2 0.566 0.729 0.589 0.754
LR L1 - 0.558 0.723 0.584 0.798

Tissue F1-score Accuracy Recall Precision
Thyroid 0.663 0.888 0.657 0.75
Parathyroid 0.476 0.696 0.591 0.499
Muscle 0.524 0.873 0.53 0.725

Table 5. Mean efficiency of the logistic regression with the elasticnet regularization for identification of tissues in HSI data of thyroid 
surgery
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DISCUSSION
This work presents novel approaches using a combination of machine learning methods and multiscale 
spatial analysis to perform tissue segmentation on two medical applications. These are the identification 
of healthy anatomical structures in HSI data acquired intraoperatively during liver and head and neck 
surgeries. Bile duct and parathyroid glands are thin and small structures that can be hard to be detected 

Figure 9. (A) Color representation of the HSI data of three patients during thyroid surgery, with the annotated tissues of interest; and (B) 
the resulting tissue segmentation provided by the logistic regression with the elasticnet regularization combined with multiscale spatial 
analysis (thyroid in green, parathyroid in blue, and muscle in pink).

Table 6. Average execution time per image of the seven models combined with three levels of spatial analysis applied to HSI data

Model Spatial filtering Execution time (s)
SVM (Thyroid) - 0.078 (± 0.017)
LR L1 - 0.083 (± 0.017)
LR elasticnet - 0.084 (± 0.013)
LR L2 - 0.084 (± 0.015)
SVM (Liver) - 0.085 (± 0.009)
MLP - 0.225 (± 0.057)
LR L2 σ = 2 0.235 (± 0.024)
SVM (Thyroid) σ = 2 0.241 (± 0.031)
LR elasticnet σ = 2 0.241 (± 0.024)
LR L1 σ = 2 0.242 (± 0.026)
SVM (Liver) σ = 2 0.242 (± 0.020)
MLP σ = 2 0.379 (± 0.069)
SVM (Thyroid) σ = {2, 5, 10} 0.390 (± 0.038)
SVM (Liver) σ = {2, 5, 10} 0.393 (± 0.035)
LR elasticnet σ = {2, 5, 10} 0.393 (± 0.035)
LR L2 σ = {2, 5, 10} 0.394 (± 0.034)
LR L1 σ = {2, 5, 10} 0.396 (± 0.035)
MLP σ = {2, 5, 10} 0.555 (± 0.123)
U-Net - 4.954 (± 0.030)
SVM RBF (Thyroid) σ = {2, 5, 10} 240.669 (± 67.069)
SVM RBF (Thyroid) σ = 2 294.315 (± 99.520)
SVM RBF (Thyroid) - 325.903 (± 98.614)
SVM RBF (Liver) σ = {2, 5, 10} 574.009 (± 89.451)
SVM RBF (Liver) σ = 2 645.721 (± 150.838)
SVM RBF (Liver) - 823.531 (± 123.488)



Cervantes-Sanchez et al . Art Int Surg  2021;1:22-37  I  http://dx.doi.org/10.20517/ais.2021.05                              Page 13

visually. Computer-assisted tools can support the surgeon to automatically identify them. Different machine 
learning methods combined with a multiscale spatial analysis were evaluated. The best performances were 
obtained with U-Net and the LR model with elasticnet regularization technique. A leave-one-patient-
out cross-validation provided median values of the accuracy and F1-score of 0.901 and 0.787 for the 
segmentation of the bile duct and 0.696 and 0.476 for the segmentation of the parathyroid. For comparison, 
Table 7 provides the best results of existing studies that performed tissue segmentation based on HSI 
data in liver and head and neck surgery. The first three studies concern the classification of tumors and 
nerve, which are not addressed in this paper. Schols et al.[14] obtained robust results for the segmentation 
of parathyroid, thyroid, and adipose tissue using a SVM model. The HSI system used is a fiber probe 
equipped with two sensors, allowing the acquisition of wide-band reflectance spectra (350-1830 nm). This 
explains the discrepancies with our results. Maktabi et al.[13] obtained mean F1-scores and recall computed 
for each patient of the same dataset of 0.17-0.71 and 0.35-0.93, respectively, for the segmentation of the 
parathyroid using a SVM model with RBF kernel and a leave-one-patient-out cross-validation. Moreover, 
the model achieved a mean accuracy of 0.68 including the segmentation of thyroid, parathyroid, and nerve. 
These results are difficult to compare because, in contrast to Maktabi et al.[13], who presented the results by 
patient, the performance of each segmentation model was computed overall for all patients in this study. 
In comparison, we obtained an overall accuracy of 0.803 for the segmentation of thyroid, parathyroid, 
and muscle. Nevertheless, the multiscale analysis, which was added to the standard SVM, LR, and MLP 
methods, seems to improve the identification of small structures such as the parathyroid gland. The 
benefit of this additional analysis is clearer for the segmentation of the bile duct. U-Net, which performs 
a similar analysis through the convolution operations, provided good results as well. The improvement of 
the segmentation efficiency obtained by introducing the multiscale spatial analysis could be attributed to 
the fact that those tissues can be detected based on their apparent size in the scene. Therefore, machine 
learning models combined with HSI represent a promising method to perform image-guided surgery 
considering that the most relevant tissues were correctly detected in both medical applications.

Table 7. Description of the best classification performance results obtained by existing works in the field of HSI in liver and thyroid 
surgery

LOOCV: Leave-one-out cross-validation; RBF: radial basis function; AUC: area under the curve.

Segmentation model Examined tissue
Spectral range 
of the HSI 
system

Patient data Evaluation method Classification performance

Inception-v4 CNN
(Halicek et al.[9])

Ex vivo tumors of the 
thyroid

450-900 nm 200 tumors of 
76 patients

LOOCV AUC of 0.90

Multitask U-Net 
framework
(Zhang et al.[8])

Ex vivo liver tumors 400-1000 nm 36 tumors of 19 
patients

LOOCV Overall sensitivity and specificity 
of 94.48% and 87.22%

SVM with polynomial 
kernel
(Schols et al.[11])

Intraoperative in vivo 
nerve and adipose 
tissue

900-1700 nm 18 patients LOOCV (thyroid and 
parathyroid surgery)
Train-test (carpal 
tunnel release 
procedure)

Mean accuracy: 95% (LOOCV) 
and 100% (train-test)

SVM with polynomial 
kernel
(Schols et al.[14])

Intraoperative in vivo 
parathyroid, thyroid 
and adipose tissue

350-1830 nm 19 patients LOOCV Mean accuracy and sensitivity 
for the parathyroid-adipose 
classification of 97% and 100%, 
and for the parathyroid-thyroid 
classification of 82% and 86%

SVM with RBF kernel
(Maktabi et al.[13])

Intraoperative in vivo 
parathyroid, thyroid 
and nerve

500-1000 nm 9 patients LOOCV Mean patient accuracy including 
the three tissues: 68%
F1 value per patient for the 
classification of the parathyroid: 
0.17 ≤ F1 ≤ 0.71

U-Net and logistic 
regression (LR) with 
multiscale spatial 
analysis (Our method)

Intraoperative ex vivo 
liver, bile duct and 
blood vessels
Intraoperative in vivo 
parathyroid, thyroid 
and muscle

500-1000 nm 18 HSI data from 
7 patients (liver 
surgery) and 21 
HSI data of 7 
patients (liver 
surgery)

LOOCV Mean accuracy and F1 -scores of 
0.901 and 0.787 for the bile duct 
and of 0.696 and 0.476 for the 
parathyroid
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These promising results could still be improved. For some tissues, most of the segmentation models still 
present low-performance accuracy (e.g., parathyroid in thyroid surgery and arteries in liver surgery HSI 
data). This could be associated with different factors such as low representation of these tissues in the 
dataset and high similarity of their reflection spectra with other tissues. The high rate of false positives 
of the parathyroid tissues can be reduced by using more robust background identification methods. 
Moreover, because distinct tissues can be indistinguishable after the standard normal variate transform, 
different alternatives are necessary to perform normalization of HSI data acquired from distinct patients. 
The limitations of the proposed method are mostly related to extrinsic factors, such as the unintended 
mislabeling in the ground truth data. The problems related to intrinsic factors, such as the intra- and inter-
patient variability of the tissue composition, can be addressed by considering larger datasets of annotated 
HSI data.

In preliminary experiments, other convolutional neural network architectures were tested to perform 
tissues segmentation in HSI data. For this approach, the segmentation was performed using a 
neighborhood of each pixel in the HSI data. However, because of the small size of the database and the 
high dimensionality of the HSI data, those methods presented lower segmentation performance than the 
non-deep learning models. Consequently, it is expected that, by using larger datasets of patients for training 
purposes, the detection efficiency of the machine learning models can be improved.

Conclusions
In this paper, the segmentation of different tissues in HSI data is addressed using machine learning models. 
Two medical applications are considered: liver and bile duct segmentation in liver surgery and thyroid 
and parathyroid segmentation in thyroid surgery. In a preprocessing step, spectra pattern outliers are 
identified and removed from the training data. The high dimensionality of HSI data is reduced using PCA, 
the presence of noise is reduced with the Savitzky-Golay operator, and the spectra are normalized by the 
standard normal variate transform. In addition, a statistical analysis of the tissue segmentation efficiency 
of seven machine learning models combined with three levels of spatial analysis of the HSI data is carried 
out. According to the computational experiments using 18 HSI data from seven liver surgery patients and 
21 HSI data from seven thyroid surgery patients, the U-Net model and the logistic regression with the 
elasticnet regularization combined with multiscale spatial analysis achieved the highest tissue segmentation 
performance for each medical application, respectively. Finally, the results obtained in this work suggest 
that hyperspectral imaging combined with machine learning is suitable for performing tissue segmentation 
for image guided surgery applications.
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