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Abstract
The escalating adoption of high-throughput methods in applied materials science dramatically increases the 
amount of generated data and allows for the deployment and use of sophisticated data-driven methods. To exploit 
the full potential of these accelerated approaches, the generated data need to be managed, preserved and shared. 
The heterogeneity of such data calls for highly flexible models to represent the data from fabrication workflows, 
measurements and simulations. We propose the use of a native graph database to store the data instead of relying 
on rigid relational data models. To develop a flexible and extendable data model, we create an ontology that serves 
as the blueprint of the data model. The Python framework Django is used to enable seamless integration into the 
virtual materials intelligence platform VIMI. The Django framework relies on the Object Graph Mapper neomodel 
to create a mapping between database classes and Python objects. The model can store the whole bandwidth of 
the data from fabrication to simulation data. Implementing the database into a platform will encourage researchers 
to share data while profiting from rich and highly curated data to accelerate their research.
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INTRODUCTION
Accelerating the development of clean energy devices is pivotal for the energy transition. A significant 
proportion of development efforts in this realm is devoted to the complex materials, such as electrocatalysts, 
multifunctional electrodes and ionic and porous transport media. Integrating these materials into devices 
necessitates a symbiotic combination of their properties to achieve the target device functionality. The 
intertwined requirements define a need for energy materials to be comprehensively and thoroughly 
screened, characterized and fabricated. Consequently, this calls for the development and implementation of 
a holistic and seamless platform to manage and analyze the rapidly growing datasets along the materials-to-
device development workflow[1].

High-throughput methods in materials research have rapidly evolved in recent years and are expected to 
greatly speed up the rate at which novel materials are developed[2-5]. The screening for new energy materials 
and the optimization of manufacturing processes are already being conducted using high-throughput 
computation (HTC) and high-throughput experimentation (HTE). HTC is enabled by the steep growth in 
computing power along with the robust and efficient implementation of physics-based models[6-7]. HTC 
paves the way for the automated large-scale screening of materials with the desired combinations of 
properties[8-13]. HTE allows many experiments to be conducted in parallel, thereby enabling fast materials 
screening[14,15]. The further acceleration of scientific research can be achieved by automating fabrication 
workflows. Material acceleration platforms (MAPs) seek to enable closed-loop development by performing 
HTE in a fully autonomous fashion[16,17]. Most MAPs are deployed to optimize a set of materials or workflow 
parameters with respect to predefined target properties[18-21]. A high degree of autonomy calls for a 
sophisticated computational backend where data from previous fabrication cycles must be extracted and 
used to design the next cycle on-the-fly. Bayesian optimization is the most commonly used method in 
closed-loop experimentation[18]. These techniques generate a large amount of data along the materials 
development pipeline, thereby necessitating the need for efficient data management strategies[22,23].

The standard approach to data management is to build rudimentary data infrastructures suited to the needs 
of a particular project. This method is effective for studies of limited scope, where the collected data can be 
used for incremental improvements on specific materials classes or target applications. Since the data lack 
standardization, it becomes, however, challenging to compare them from various sources or to reuse data 
for other purposes with similar scope. An effective data management system should adhere to the FAIR 
principles, i.e., the data should be findable, accessible, interoperable and reusable[24,25]. Data FAIRification 
improves the reproducibility of scientific results and makes data accessible to the whole research 
community. Thus, FAIR data management enlarges the pool of available highly curated data and allows the 
application of a wider variety of data-driven methods[26,27]. Standardized formats that originate from 
following the FAIR principles require less processing to make data machine-readable and AI-ready[27].

In materials research and other fields, database projects have emerged to collect and manage increasing 
amounts of research data. Data types represented by these projects tend to be specific, with examples 
including the Materials Project[28], a database containing materials simulation data, and the Cambridge 
Crystallographic Data Centre (CCDC)[29], which gathers crystallographic data on materials. Enabling the full 
potential of data-driven approaches for accelerated materials discovery requires databases that include not 
only simulation data but also suitable fabrication and characterization data.



Page 3 of Dreger et al. J Mater Inf 2023;3:2 https://dx.doi.org/10.20517/jmi.2023.01 14

A suitable database must be flexible to effectively represent heterogenous data that contain insights into 
fabrication processes, measurements and simulations in materials research. Furthermore, materials, 
components and devices need to be described on multiple spatial and temporal scales. A database that is 
capable of storing data with such bandwidth could be the foundation of platforms that can orchestrate and 
accelerate materials research. These platforms can assist in the screening of materials, experimental design, 
the optimization of workflows and the orchestration of devices within self-driven labs. Our efforts in this 
regard tie in with the recently developed VIMI platform and offer data management for simulation and 
fabrication data, providing data-driven analytics, accelerated characterization and computer-aided materials 
design to its users[1].

In this communication, we present a flexible data management approach for energy materials platforms to 
accelerate the search for advanced materials by exploiting the full potential of data-driven research. Our 
approach contains the following:

● An extension of the European Materials Modelling Ontology (EMMO) to create a standardized 
representation of the energy materials domain for mandating FAIR data generation.

● A new graph data model based on the classes manufacturing, measurement, matter and property, as well 
as the relations between them. The data model provides an intelligible, flexible and extendable 
representation of fabrication workflows, measurements and simulation data.

● Data storage within the native graph database neo4j for efficient access to its highly connected content.

● An encapsulation of the database in a Django framework to allow a straightforward integration into VIMI 
or other platforms.

● A mapping from objects within the database to Python classes via an Object Graph Mapper (OGM).

METHODOLOGY
Ontology
Ontologies are a formal representation of knowledge that connect various metadata and make them 
machine-readable[30]. As shown in Figure 1, an ontology employs classes, which can have properties stored 
as key-value pairs. The classes within an ontology are connected via relationships and rules and constraints 
can be specified. Ontologies are crucial for representing domain knowledge in various scientific fields and 
provide the basis for data and knowledge exchange among researchers within a specific domain. Ontologies 
are particularly useful in the context of FAIR data generation since they standardize the knowledge 
representation of a domain.

The interdisciplinary nature of materials science renders the standardization of information imperative for 
communication. The European Materials Modelling Council[31] implements EMMO[32], which is a versatile 
ontology for materials sciences. EMMO consists of three levels. The top level defines real-world objects and 
introduces “perspectives” to reflect their pluralistic nature (e.g., materials can be defined via their 
composition or function). The middle level contains specific perspectives that make EMMO applicable to 
various domains. Each of the perspectives represents a different branch that defines objects from a holistic, 
physicalistic, semiotic or mereotopological perspective.



Page 4 of Dreger et al. J Mater Inf 2023;3:2 https://dx.doi.org/10.20517/jmi.2023.0114

Figure 1. A minimalistic example of an ontology. Instances of the Process class are connected to Object instances via the has Participant 
relationship. The Manufactured class is a child class of the Object class, meaning that all properties and relationships can be inferred 
from Object to Manufactured. A Manufactured object is composed of other Manufactured parts. This mereological perspective is 
represented by the hasPart relationship.

The different perspectives enable EMMO to represent the fabrication, characterization and simulation of 
materials up to the device scale on a very general level, as illustrated in Figure 2. The bottom level contains 
ontologies of specific materials science domains. Other projects that require domain-specific ontologies can 
extend the bottom level of EMMO, while the higher levels of EMMO offer a ruleset that can be inferred 
from these extensions. Projects that use EMMO-based ontologies include NOMAD[33,34], CHAMEO[35] and 
BigMap[36,37]. Building on EMMO to introduce an ontology substantially simplifies its creation since the 
basics for most application domains are already contained in the EMMO. An EMMO-based ontology can 
therefore rely on a variety of existing relationships/classes and constraints. Extending the EMMO branches 
allows properties, relationships and constraints from the parent classes, e.g., Manufactured is a subclass of 
Object, to be inferred and it therefore also has the hasParticipant relationship to Process classes [Figures 1 
and 2]. Creating an ontology relying on EMMO also improves interoperability with other EMMO-based 
ontologies, since they have the same structure and are following the same basic rule sets. In many aspects, 
ontologies are comparable to languages, centered around narrow domains, and like languages, the power of 
an ontology strongly relies on its level of adoption.

Database
At the core of the data infrastructure, a database is required to store fabrication, simulation and 
measurement data in a FAIR format. Furthermore, the metadata need to be sufficient to ensure the 
reproducibility of each entry in the database. Relational databases, such as MySQL or Postgres, are the 
current industry standards[38,39]. These databases contain tables, each of them representing a class of real-
world objects, e.g., materials or measurements. Each row within a table refers to a specific instance of these 
real-world objects, e.g., a specific material. Relationships between different objects are represented by 
joining tables with foreign keys. Relational databases excel when highly structured and sparsely connected 
data need to be stored. However, the usage of foreign keys makes processing these relationships slow and 
their table structure makes the data model rigid[40]. The differences in performance between relational 
databases and NoSQL databases have been investigated and benchmarked previously[41,42].

There is also a wide variety of NoSQL databases for the development of a more dynamic data model and 
these can be divided into document-oriented, key-value and graph databases. Document-oriented data 
storage uses documents in a specific encoding, such as XML, YAML, JSON or BSON. Each document is 
addressed via a unique key and can be related to other documents by joint keys. The difference to relational 
databases is the versatile structure of the documents, which allows for a more flexible data model[43]. The 
handling of relationships nevertheless remains inefficient, since documents are still joined via foreign keys, 
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Figure 2. A minimalistic example of the overall EMMO structure. The green shapes on the bottom level represent application domains 
that can use and extend the respective EMMO classes in the middle level. The top level is strongly simplified since it contains further 
fundamental classes, relationships and constraints that the rest of the EMMO is based on.

just as in the relational data model[40]. Key-value databases store data as a single opaque collection of key-
value pairs. This data structure also enables highly flexible data models, but its primitive structure needs to 
be extended for complex use cases[44,45].

In this work, we chose neo4j, a native graph database, for data storage. Native graph databases use graph 
theory to represent and store data. Graphs contain nodes that are connected via relationships[46]. They can 
be used to solve mathematical problems or to represent and store data using adjacency lists. Graphs can 
naturally represent complex domains inside the real world, allowing for data modelling without imposing 
layers of abstraction between the natural world and the associated data model. Directed graphs also contain 
valuable information since they can represent asymmetric relationships. The data structure of native graph 
databases allows for a highly efficient traversal of the graph along its relationships, which can be described 
as pointer hopping or dereferencing pointers. Since the adjacent nodes of each node are stored directly at 
the node itself, queries that require graph traversal via a path of relationships exhibit an O(1) complexity[40].

In neo4j, nodes and relationships can have properties stored as key-value pairs. Relationships in neo4j are 
always directed, which allows for the representation of asymmetric relations. These directed relationships 
provide more context, e.g., a simple workflow can be represented as several Process nodes, connected via 
followedBy relationships that need to be directed to fully represent the workflow. Relations between nodes 
of the same class are only unambiguous if they are intrinsically symmetric or if they are represented by 
directed relationships. Graph databases do not require a data schema since they are naturally additive, 
making them highly advantageous for storing heterogeneous data.

From a materials research perspective, fabrication workflows underline the heterogeneity of data in 
materials science research, since fabrication and characterization process data can contain a wide range of 
parameters, materials and subprocesses. These workflows and measurements can naturally be represented 
by graphs, since they are mostly sequences of subprocesses that have materials and parameters as inputs and 
manufactured materials or properties as outputs. A process can also be represented within a table, but it 
requires its structure to be predefined. If a process changes, its table must be altered or a new table must be 
created, leading either to massive, sparsely filled tables or many small tables representing variations of the 
same process. Graph databases store workflows as node sequences, one sequence for every stored workflow. 
Variations of these workflows do not require any changes to existing ones within the database since each 
workflow is stored as a separate sequence of nodes. Representing the workflows in Figure 3 within a graph 



Page 6 of Dreger et al. J Mater Inf 2023;3:2 https://dx.doi.org/10.20517/jmi.2023.0114

Figure 3. Schematic of fabrication workflows. The first row represents simplistic coating workflows. The workflows differ slightly since 
the left workflow contains an intermediate stirring and heating step. The fabrication workflows are represented as graphs and tables 
(bottom).

database would lead to two different sequences, which can both be accessed by queries that ask for 
workflows, leading from the given precursors to the corresponding product. The database is flexible in that 
regard since the data model does not predefine how a specific process is structured.

SYNERGIZING ONTOLOGIES AND GRAPH DATABASES
Ontology
Ontologies are naturally represented as graphs since they contain classes represented via relationships. The 
structure of an ontology makes it easily transferrable to a graph data model. The created ontology is an 
extension of the EMMO, which is already established as a highly sophisticated framework of classes, rules 
and constraints to represent materials science. The ontology with its central classes is shown in Figure 4.

The classes manufacturing and measurement both share the same parent class, Process. Matter represents 
all physical objects, from single atoms to manufactured components or devices. Property is a child class of 
PhysicalQuantity and is yielded by a Measurement process. Meta Data represents a collection of classes to 
make the scheme more understandable. It contains all classes that contain information stored as metadata 
to a specific process (e.g., measurement instruments, researchers or institutions, or experimental 
parameters). The Manufacturing, Measurement and Matter instances can be divided into components. The 
Matter instances are inputs to the Manufacturing and Measurement instances and outputs of the 
Manufacturing nodes. Processes can have metadata assigned to them and Measurement can have physical 
quantities as Property instances as outputs.

The ontology is tailored to the specific domain of energy materials by introducing domain-specific child 
classes. Most properties and relationships of these child classes can be inferred from the parent classes. Only 
specific properties and constraints need to be added to the class definition.

Currently, the EMMO extension focuses on fuel cell fabrication and characterization, but it can easily be 
extended to other technology domains. Classes of components, materials and fabrication procedures 
specific to the fuel cell domain were extracted from several well-cited fuel cell reviews. Therefore, the added 
taxonomy follows a widely accepted classification.

Data model
The original data model developed in this work is inspired by the open provenance model in which every 
simulation, measurement or fabrication process acts as a function[47]. It takes an input, e.g., a dataset or a 
selection of materials, to a function, e.g., a simulation or a fabrication step, and yields an output, e.g., a 
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Figure 4. High-level schematic of proposed EMMO-based data model.

manufactured material or a measurement result. Due to the directed nature of the neo4j graph database, 
each process can naturally be represented by a tuple comprising an input node, a process node and an 
output node.

The overall data model follows the flowchart in Figure 4, thereby making it highly flexible and adaptable. To 
improve the findability of the data, we imported specific parts of the ontology into the database, namely, the 
classes Process, Matter and Quantity, including all their subclasses. These ontology branches represent the 
abstract concept of the real-world objects we aim to store in our database. The database therefore contains 
an ontology domain of the abstract concepts and a real-world domain that contains the actual data. Each 
node of the real-world domain is a specific instance of an ontology class and can be linked to a 
corresponding node of the ontology domain. The ontology nodes are used as labels for the nodes in the 
real-world domain. The connectivity of the ontology nodes creates not only a single label but also 
alternative labels. A real-world node that represents H2O as a solvent would be connected to the ontology 
node called PolarSolvent, which is a subclass of Solvent. Therefore, H2O is labeled with PolarSovent and 
Solvent can be retrieved as an alternative label [Figure 5]. These alternative labels greatly improve the 
findability of the data and the ontology domain can be easily extended to maintain the flexibility of the 
database.

Furthermore, for the holistic perspective on objects, their mereological description is crucial since materials, 
components and processes span multiple spatial and temporal scales. Device fabrication is a process that 
contains subprocesses and each of these can be split into a sequence of subprocesses [Figure 6]. The 
mereological representation of processes and matter allows for the representation of these objects down to 
an arbitrary degree of precision. This method of fractioning creates tree-structured graphs. Trees are 
specific graphs in which two nodes are always connected by exactly one path, making it a connected acyclic 
graph. Each node within a tree can have an arbitrary number of child nodes but must have only one parent 
node, except for the root node, which has no parent node. Each node can be treated as the root node of its 
subtree, thereby allowing recursion to traverse a tree.

The data model must represent experimental setups to enforce the reproducibility of the measurements and 
fabrication workflows. This ability will be crucial when the database is employed as part of a data 
infrastructure with an interface to automated labs. The scientific setup can be represented as a subgraph of 
connected nodes representing specific instruments/devices. Steps within fabrication workflows can then be 
mapped to the corresponding devices of the experimental setup, thereby allowing for precise process 
representations and enabling specific workflow optimization and troubleshooting. In the field of 
automation, challenging tasks include the orchestration of different devices and the exact positions of 
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Figure 5. Screenshot of the imported Matter ontology within the database (left). Flowcharts of the ontology and real-world domain 
within the graph database (right) with the mapping between these domains via the isA relationship. Inheritance in the ontology domain 
is represented via the EMMO_isA relationship. The real-world data represented here shows H2O and platinum on carbon catalyst (PtC) 
processed by an arbitrary Manufacturing step.

Figure 6. Schematic of the mereotopological structure of a process and its subprocesses (orange nodes) and a device, its components 
and their materials (purple, green and blue nodes, respectively).

samples and other moving or moveable parts of the setup at different times. This leads to the necessity to 
represent these workflows in extremely high granularity. The supplementary data generated by publications 
regarding automated labs show the level of detail that is needed to achieve automation[21,48,49]. Another 
important aspect of data management in automated labs is tracking the process itself in real-time[16]. 
Tracking and high-resolution representation could be intuitively accomplished using the proposed graph 
data model. Although a relational database could also satisfy these needs for a specific automated lab, it 
would be very complicated to use the same data model for a different setup.

The described data model is intuitive, meaning that the data model and the real-world domain are not 
separated by layers of abstraction that would add unnecessary complexity to the data model. It uses the 
middle-level classes and relationships of the EMMO ontology. Furthermore, using trees as data structures 
allows for the implementation of highly efficient queries along the hierarchical breakdown of objects into 
their components. Its performance concerning possible user requests must also be evaluated by a data 
model. The data model allows for intuitive querying for processing sequences or device compositions, as 
well as requests of fabrication workflows as sequences of input-function-output tuples.
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Object graph mapper
Researchers in materials science, as users of the database, should be able to upload and access data from 
fabrications, measurements and simulations. The data need to be retrievable in different formats, including 
in the form of Python objects. The usage of layers that connect the database with the platform it is 
embedded in, are a common practise. Platforms that rely on relational databases use object-relational 
mappers to map their database object and datatypes to a given programming language, e.g., the AiiDA 
platform for computational materials science employs an object-relational mapper to map from their SQL 
database[50].

We utilize the OGM neomodel to facilitate mapping between the objects and data types within a graph 
database and the Python programming language[51]. The neomodel library is also available as a Django 
plugin, as a robust Python framework to reduce the complexity of web application creation, making the 
OGM an ideal key component for an upcoming API implementation due to its Python compatible interface. 
The OGM allows for the introduction of domain-specific Python classes (e.g., Manufacturing Process). 
These classes contain properties and member functions, reflecting how they are defined within the 
ontology. The Python inheritance rules can create a hierarchy of classes. Neomodel enables mapping of the 
Python classes, including their properties and data types, to the classes within the database [Figure 7].

Neomodel can also be used to generate, modify and query in a high-level interface that is agnostic to 
database architectural details. Using neomodel enables query formulation following the Python syntax, 
thereby offering a Python-based interface to the database that makes interacting with it more intuitive due 
to the broad acceptance of the Python programming language in the scientific community.

Neomodel allows for the creation, deletion and update of the nodes and relationships within the database. 
For example, it might therefore be used to update the single information of single nodes. Nevertheless, the 
OGM lacks efficiency for large-scale database operations. Each node/relationship that is added leads to 
separate requests to the database, resulting in high costs for the ingestion of large datasets. Thus, for large 
chunks of data, neomodel allows for custom-made cypher queries to conduct complex operations in an 
efficient manner. To ingest a fabrication workflow, for example, requires a predefined cypher query since 
such a workflow contains multiple nodes with a high degree of connectivity. Using an OGM has the 
advantage that complex database operations can be wrapped into Python functions that have well defined 
input and output interfaces. Neomodel creates an additional abstraction layer between database operations 
and the data management system itself. Cypher queries for complex database operations are thoroughly 
tested, wrapped into a Python function and are ready to be used in a Python environment, thereby hiding 
their underlying complexity.

Database
The proposed data model is centered around the creation of node sequences. Labels are introduced to create 
sets of nodes that improve the structure within the database. These labels correspond to the Python classes 
created using neomodel and the classes defined within the ontology. Nodes can have multiple labels, e.g., a 
fuel cell node might have the labels Matter, Manufactured, Device and Electrochemical Device. The choice 
of indexing nodes of a specific label mainly depends on the nature of queries containing that label. Each 
label represents an entity containing attributes as key-value pairs necessary to identify that entity (e.g., 
unique identifiers or the SMILES representation of a molecule). Nodes that share one label can be indexed, 
thereby accelerating the node retrieval of a particular label. However, indexing has the drawback of slowing 
down the write efficiency and requires more storage capacity.
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Figure 7. Nodes and relationships within the database (A) can be mapped to Python classes (B).

The property space of materials, components and devices and the parameter space of processes in materials 
science is high dimensional and constantly expanding. These physical quantities are stored within external 
Property and Parameter nodes to allow for the representation of all parameters and properties. The 
externalization of these nodes also allows for the efficient querying of nodes that share the same or similar 
properties and fabrication workflows that share the same or similar parameters. The database stores 
measurement results, fabrication parameters or properties in the form of scalars or a scalar array.

The highly efficient traversal of relationships is made possible by the data structure of neo4j, which has a 
complexity of O(1). To further increase query efficiencies, neo4j physically stores adjacent nodes close to 
each other and tailors the database architecture specifically to frequently used queries. The caching during 
queries also improves the efficiency of reading, writing and matching commands.

Large binary data types, such as image data from imaging techniques, will be stored within an external file 
server and are only referenced as metadata for properties derived from the images (e.g., size distribution). 
Referencing of the image files is carried out via UML links. Externalizing large data types, such as images 
and videos, is a good practice for data modelling. It keeps the image files connected to their corresponding 
data while queries do not have to handle clunky image data chunks, thereby improving the overall 
performance of the database. Furthermore, keeping binary data chunks within the database does not yield 
benefits since the database itself cannot query, index or compare binary data.

The data management system will be implemented into the VIMI platform[1], so that researchers and users 
from industry can upload their data via well-defined interfaces, e.g., the dragging and dropping of CSV files. 
Furthermore, cooperations with automated labs are in place for which custom tailored APIs will be created 
to streamline their generated data directly to the database.

Data representation
To test the data model, a batch of data for the fabrication and characterization of fuel cells was stored. The 
batch spans data from the materials to the device including the data from various measurements on 
different length scales. The heterogeneity of the data and its high dimensionality makes them ideal for 
testing the proposed data model.

The data were ingested into the database via CSV files and represented following the proposed data model. 
Figure 8 shows the fabrication data and how they are stored in the graph database. Figure 8A shows a single 
fabrication workflow from the materials to the fuel cell device, and Figure 8B presents 25 fabrication 
workflows within the database. The screenshots were taken from the neo4j browser interface, which offers 
visual representations of the stored data.
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Figure 8. Representation of a single fabrication workflow from the starting materials to the fuel cell device (A) and 25 fabrication 
workflows and how they are linked to the ontology domain (yellow) within the database (B).

Ingesting sample data shows that the proposed data model is indeed able to represent complex fabrication 
workflows with a degree of detail. Even though the data model can represent these workflows, it is 
challenging to make them intuitively retrievable. The user of the data management system should be able to 
retrieve all variations of fabrication procedures for specific devices or components with a single command. 
This requires sophisticated queries scanning the database in an efficient manner to find the requested node 
sequences. The wider the bandwidth of the fabrication data stored within the database, the more challenging 
it will be to retrieve the requested data. These queries will be wrapped in Python functions and implemented 
into APIs to make the data accessible. We are currently cooperating with experimentalists from different 
parts of the energy materials domain to enrich our database, test our data model and especially improve and 
challenge our queries.

CONCLUSIONS
We propose a new data model as the basis of a highly adaptable data infrastructure for the fabrication,
measurements and simulations of energy materials. The data model is designed to represent workflows and
processes at an arbitrary level of complexity. It can be modified to incorporate new materials, components
or processes. The hydrogen technology domain, with an emphasis on fabrication and characterization, is
represented in the data model by introducing an EMMO-based ontology. The data are stored in the native
graph database neo4j and its structure allows for the efficient traversal of fabrication processes. To further
increase efficiency, tree data structures can be used to represent the fabrication workflows in their
subprocesses and the dissection of devices, components or materials into their constituent parts.

A use case for the proposed data management system is automated labs since they require automated data
management. Current automated labs usually create data management systems tailored to their specific labs,
thus, each automated lab requires a new data management system and a new data model. This creates
additional overhead when these labs are set up, and it leads to small unconnected data lakes that lack
standardization. The proposed data model is an answer to the growing number of automated labs and
their need for data management since it can represent given workflow in an arbitrary level of detail.
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For more advanced approaches to data-driven workflow optimization, it is essential to include data
FAIRification in experimental workflows. In particular, the data generated in fabrication processes lack
FAIR features due to their heterogeneous nature and the absent workflows for standardization. Storing data
that are both FAIR and suitable for AI-driven models is possible by abandoning the relational data model
and transit to the flexible, graph-based data model. Access to FAIR experimental data further pave the way
for data-driven techniques.

The next phases of this project involve the integration of graph databases into the VIMI platform. This will
make the database accessible to other users and the data infrastructure will be used to streamline data into
the generation of training datasets and the creation of machine learning models. Since the data model is
based on the concepts of the EMMO, it can represent characterization and fabrication of other domains in
materials science. Its flexibility also allows for applications in other related research domains, such as
batteries or solar cells.
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