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Abstract
Aim: This study explored the prognostic value of N-glycan biosynthesis (NGB) in lower-grade glioma (LGG) and 
aimed to develop a machine learning model for enhanced prognostic accuracy.

Method: LGG patient transcriptome data were analyzed to identify NGB-related genes. Consensus clustering 
identified subgroups based on NGB expression. A prognostic NGB signature (pNGB) was developed using machine 
learning. The pNGB score's association with cell proliferation, inflammation, treatment response, tumor recurrence, 
and the immune microenvironment was also explored.

Results: A 22-gene pNGB signature was identified, with MGAT1 and TUSC3 having the highest and lowest hazard 
ratios, respectively. Two distinct clusters (C1 and C2) with differential pNGB expression and survival outcomes 
were revealed. NGB pathway analysis indicated an overall poor prognosis, except for MGAT4C and TUSC3. The 
Enet-based survival model showed superior discriminatory power and reliability. The NGB risk score correlated 
with increased cell proliferation, inflammation, and altered immune landscape. Additionally, the score is linked to 
treatment response and tumor recurrence.

Conclusion: This study highlights the critical role of NGB in LGG progression and proposes a pNGB-based model 
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for prognosis. The NGB risk score shows promise as a prognostic biomarker and potential therapeutic target in 
LGG.

Keywords: Low-grade glioma, N-glycan biosynthesis, machine learning, metabolic dysfunction, tumor recurrence

INTRODUCTION
Lower-grade gliomas (LGGs), comprising grade I and II gliomas according to the World Health 
Organization (WHO) classification, constitute approximately 7.6% of all brain tumors and 31.8% of 
gliomas[1]. Within five years, recurrence occurs in about 52%-62% of patients[2-4]. Among these recurrences, a 
subset progresses to high-grade gliomas (HGGs, WHO III-IV), estimated at 17%-32%[5-7]. The poorer 
prognosis of recurrent LGGs primarily stems from their malignant transformation. The primary treatment 
modality for LGG entails surgical resection, followed by radiation and chemotherapy; nevertheless, the 
prognosis remains unfavorable, with an average survival of seven years[8,9]. A significant disparity exists 
between clinical intervention and molecular pathological understanding. Therefore, investigating the 
intricate molecular pathology of LGG patients is imperative to impede or halt progression to HGG, deter 
recurrence, and enhance clinical outcomes. With the advancement of bioinformatics and machine learning, 
there is promising potential to comprehensively decipher molecular pathology and predict prognosis in 
oncological research[10,11].

Glycosylation stands as the most prevalent and well-recognized post-translational modification reaction, 
likely surpassing phosphorylation in frequency, the latter being involved in numerous cellular processes[12]. 
Within cancer, aberrant glycosylation is a common occurrence, representing not only a hallmark of cancer 
cells but also a feature of the tumor microenvironment[13]. Among glycosylation types, asparagine-linked 
(N-linked) protein glycosylation holds paramount importance. The N-glycan biosynthesis (NGB) entails 
multiple steps spanning different cellular compartments. After transcription and translation, proteins 
translocate to the endoplasmic reticulum (ER) lumen to acquire specific glycan chains, typically a 
tetradecasaccharide. Subsequent modifications occur in the ER lumen and Golgi apparatus before proteins 
reach their intended destinations[13]. Dysregulated NGB has been associated with various facets of cancer 
progression, including cell adhesion, migration, and immune evasion[14-16]. However, the precise 
involvement of N-glycan biosynthesis in LGG pathogenesis and its clinical ramifications remain 
inadequately elucidated.

In this study, we explore the prognostic significance of NGB signature in LGG using integrative 
bioinformatics approaches. By analyzing large-scale transcriptomic data from The Cancer Genome Atlas 
(TCGA), we identify a prognostic NGB signature (pNGB) comprising genes associated with patient 
survival. Leveraging machine learning algorithms, we construct and validate pNGB-based survival models 
to improve prognostic prediction in LGG. Patients with a higher risk score according to NGB-based 
survival model were characterized by enhanced proliferation and inflammation. Additionally, we investigate 
the association between NGB and clinical parameters, including treatment response, tumor recurrence, and 
the immune microenvironment. By integrating multi-omics data from TCGA and Chinese Glioma Genome 
Atlas (CGGA), we delineate the relationship between NGB dysregulation and LGG progression, providing 
insights into potential prognostic biomarkers and therapeutic targets. Thus, our study unraveled the 
intricate interplay between NGB and LGG biology, offering novel avenues for prognostic assessment and 
therapeutic intervention in this challenging disease context.



Page 3 of Zhu et al. J Cancer Metastasis Treat 2024;10:23 https://dx.doi.org/10.20517/2394-4722.2024.32 12

MATERIALS AND METHODS
LGG transcriptome data acquisition and processing
The RNA sequencing data of the TCGA LGG study was obtained through the use of the R package 
TCGABiolinks[17]. Additional clinical information, such as survival statistics and tumor stage, was obtained 
from the Genomic Data Commons (GDC) Data Portal (https://gdc.cancer.gov/about-data/publications/
pancanatlas). The transcriptome datasets of the Chinese Glioma Genome Atlas (CGGA) study were 
acquired from the CGGA website (http://www.cgga.org.cn) using the dataset IDs mRNA_seq325 and 
mRNAseq_693. To harmonize the three LGG datasets, all of them were log2(x + 1) transformed, checking 
missing values and quartile normalized. Hierarchical clustering was employed to detect outliers, and no 
obvious outliers were identified. We used common genomic annotations and platforms to align the datasets, 
ensuring that the same genes are consistently labeled across both datasets. Batch correlation was applied by 
the R package limma normalizeBetweenArrays function. The R package biomaRt was utilized to convert 
ENSEMBLE IDs to gene symbols[18].

Single sample gene set enrichment analysis
R package GSVA was employed to perform Single sample gene set enrichment analysis (ssGSEA) analysis 
with parameters of method = “ssgsea”, kcdf = “Gaussian”, and abs.ranking = TRUE[19]. We chose the “ssgsea" 
method because it is well-suited for analyzing individual samples in our study, allowing for the 
quantification of gene set enrichment scores on a per-sample basis. This is particularly useful for identifying 
pathway activation patterns within individual samples, which is crucial for our analysis. The Gaussian 
option is appropriate for continuous expression data, such as log2(x + 1)-transformed RNA-seq data. 
Hallmark gene sets were chosen because they represent well-defined biological states and processes that are 
curated to minimize redundancy and enhance interpretability. Moreover, Hallmark gene sets are 
particularly relevant as they include pathways critical to cancer biology, such as MYC targets, E2F targets, 
epithelial-mesenchymal transition, and various inflammation pathways. These pathways are integral to 
understanding tumor behavior, progression, and response to therapy, aligning with our study. Hallmark 
gene sets were downloaded from the GSEA website (https://www.gsea-msigdb.org/gsea/index.jsp).

Survival analysis
The Cox hazard analysis and Kaplan-Meier (KM) survival analysis were carried out using the R package 
survival. The high and low groups in the KM analysis were determined by the median value as well as 
surv_cutpoint suggested optimal cutpoint of relative condition. The surv_cutpoint function from R package 
survminer is an outcome-oriented method providing a value of a cutpoint that corresponds to the most 
significant relation with survival.  The results were comparable and the median value was selected as the 
final optimal cutpoint. The KM survival plot was then visualized using the “ggsurvplot” function in the 
R package survminer.

Cells infiltration estimation
The immune cell relative infiltration in LGG transcriptome, including TCGA and CGGA datasets, was 
quantified by R package xCell[20].

Consensus clustering
The 22 significant survival genes of NGB were utilized in uncovering sub-clusters within the TCGA LGG 
cohort through the use of a resampling method known as consensus clustering. The optimal number of 
clusters was determined through a synthesis of the consensus score matrix, CDF curve, PAC score, and 
Nbclust. The R package ConsensusClusterPlus was employed for this analysis[21]. The differential expression 
genes (DEGs) were determined by R package limma[22].

https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
http://www.cgga.org.cn
https://www.gsea-msigdb.org/gsea/index.jsp
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NGB-based machine learning survival model construction and validation
The concept originated from a previous study[23]. We integrated 10 machine learning algorithms and 22 
algorithm combinations, including random survival forest (RSF), elastic network (Enet), Lasso, Ridge, 
stepwise Cox, CoxBoost, partial least squares regression for Cox (plsRcox), supervised principal 
components (SuperPC), generalized boosted regression modeling (GBM), and survival support vector 
machine (survival-SVM). The survival model construction and validation procedure was as follows: (1) 22 
NGB genes identified in the TCGA LGG cohort by survival analysis were selected as features in machine 
learning survival model; (2) 22 algorithm combinations were applied to build survival models within the 
TCGA LGG cohort; (3) All models were tested in TCGA LGG training set and two CGGA validation sets; 
and (4) The Harrell's Concordance Index (C-index) and Area Under the Curve (AUC) for 1, 3, and 5 years 
were calculated for each model across both training and validation datasets. Based on the top values of 
C-index and AUCs and considering the principle of Occam's razor, the Lasso model was chosen as the most 
optimal solution.

Statistical analyses
R (Version 4.1.2) was used for all statistical tests. Spearman correlation analyses were conducted using R. 
The statistical analysis of ssGSEA scores between different conditions was performed using the Wilcoxon 
test. P-values of multiple testing were adjusted by false discovery rate (FDR). All P-values or FDR were 
considered significant if less than 0.05.

RESULTS
Identify prognostic NGB signature in the TCGA LGG cohort
The study's overall design is illustrated in Figure 1. Initially, we established a prognostic NGB signature 
through survival analysis of the TCGA LGG transcriptome. Among 50 NGB genes examined, 22 exhibited 
significance in both Kaplan-Meier (KM) and Cox tests, constituting the prognostic NGB (pNGB) signature 
[Figure 2A and B]. Notably, MGAT1 and TUSC3 displayed the highest and lowest hazard ratios (HR), 
respectively [Figure 2B]. Utilizing the pNGB genes, we conducted a consensus cluster analysis, categorizing 
TCGA LGG tumor subjects into k clusters, with a value of k = 2 being optimal based on the proportion of 
ambiguous clustering (PAC) statistic [Figure 2C and D]. The resulting two consensus clusters (C1 and C2) 
exhibited significant differences in pNGB expression, with C2 displaying notably higher overall infiltration 
abundance than C1 [Figure 2E]. Additionally, Kaplan-Meier analysis indicated significantly poorer overall 
survival in cluster C2 compared to C1 [Figure 2F]. Furthermore, the NGB pathway demonstrated a 
generally poor prognosis, except for MGAT4C and TUSC3, with MGAT4C showing a favorable prognosis 
and promoting N-Glycan degradation, suggesting a pivotal role for N-Glycan biosynthesis in LGG 
progression [Figure 2G].

Construct and validate the NGB-based intergraded machine learning survival models
Subsequently, we aimed to develop a pNGB-based survival model to enhance LGG outcomes. Twenty-two 
pNGBs underwent a machine learning-based integrative procedure to construct 22 candidate survival 
models. The initial application of the procedure in the TCGA LGG dataset involved training via the leave-
one-out cross-validation (LOOCV) framework, followed by calculation of the C-index for each model in the 
TCGA LGG training set and two CGGA validation datasets [Figure 3A]. Intriguingly, 15 out of 22 candidate 
models demonstrated good discriminatory power (C-index > 0.7), predominantly Enet-related models 
[Figure 3A]. Further evaluation through ROC analysis revealed favorable performance of the Enet (α = 0.4) 
model, with higher ranks in both C-index and AUCs across training and validation datasets [Figure 3B]. 
Since the parsimonious nature of the Enet model aligns with Occam's razor principle, Enet can perform 
variable selection by driving some coefficients to exactly zero. This helps to identify the most relevant 
features in the model. Therefore, Enet (α= 0.4) survival model was picked up for further analysis for its 
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Figure 1. The Workflow of the study.

simplicity and predictive accuracy. Within this model, optimal λ was determined via LOOCV, with seven 
pNGBs employed, notably ALG6 showing the highest coefficient, indicating its importance as a feature 
[Figure 3C and D]. The 1-, 3-, and 5-year AUCs for the training TCGA dataset were 0.852, 0.848, and 0.75, 
respectively [Figure 3E-G]. Comparable AUCs were observed for the CGGA325 and CGGA639 datasets, 
indicating a high degree of reliability in the survival model across training and validation sets [Figure 3E-G]. 
Additionally, patients in the high-risk group demonstrated significant reliability in the survival model across 
both training and validation sets (P < 0.0001), confirming its robustness [Figure 3H-J].

NGB high-risk patients were enriched in cell proliferation and inflammation
To further elucidate the NGB-related molecular signature, DEG analysis was conducted between high- and 
low-risk LGG patients across three datasets. A total of 349 and 399 DEGs were identified as enriched and 
suppressed in high-risk patients, respectively [Figure 4A and B]. Upregulated DEGs in high-risk patients 
were enriched in immune response pathways, such as Th1, Th2, and Th17 cell differentiation, antigen 
processing and presentation, and ECM-receptor interaction, whereas downregulated DEGs were primarily 
associated with normal neuroactive processes [Figure 4C and D]. Subsequent evaluation of hallmark 
signaling heterogeneity between high- and low-risk groups revealed higher levels of proliferation, 
inflammatory response, and epithelial-mesenchymal transition in high-risk patients [Figure 4E]. These 
results underscored the significant association between NGB and cancer cell proliferation, as well as the 
inflammatory tumor microenvironment.

NGB risk score is associated with first treatment response, tumor recurrence and immune 
microenvironment remodeling
We further investigated the NGB risk score with other clinical and immune signatures of LGG. 
Interestingly, compared to the progressive disease, the response and stable disease state had a significantly 
lower risk score (P < 0.0001, Figure 5A), highlighting that NGB might play an important role in first-
treatment outcomes. Moreover, in TCGA and CGGA datasets, the NGB risk score was all higher in 
recurrent tumors compared to primary tumors [Figure 5B-D]. Last but not least, we applied the co-analysis 
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Figure 2. Prognostic Impact of N-Glycan Biosynthesis Gene Signature in LGG. (A) Venn plot displaying the overlap among N-Glycan 
Biosynthesis (NGB) pathway genes, Kaplan-Meier (KM)-significant genes, and univariate-COX-significant genes. (B) Dot plot 
illustrating cluster number and the proportion of ambiguous clustering. (C) Consensus score matrix for all samples at k = 2. A lower 
consensus score indicates a higher likelihood of samples being grouped into the same cluster in different iterations. (D) Forest plot 
presenting prognostic NGB signatures. HR > 1 indicates a poor prognosis, while HR < 1 signifies the opposite. (E) Heatmap depicting 
prognostic NGB genes in the two clusters identified by ConsensusClusterPlus. Relative sample information is annotated on the top. (F) 
Kaplan-Meier curves for overall survival between the two sub-clusters. (G) NGB pathway representation for the two clusters. HR values 
are color-annotated, with red indicating poor prognosis and blue indicating the opposite.

of the NGB risk score with the immune microenvironment. It was worth noting that the NGB risk score was 
consistently positively correlated with macrophages, DC, monocytes, mast cells, CD4+ memory T cells, 
Tgd cells, Th2 cells, and B cells except regulatory T cells (Tregs) [Figure 5E]. These results implied that the 
NGB might affect the LGG progress in various aspects.
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Figure 3. Construction and Validation of N-Glycan Biosynthesis (NGB)-Based Integrated Machine Learning Survival Models. (A) 
Heatmap displaying the Concordance Index (C-index) of 33 prediction models using Leave-One-Out Cross-Validation (LOOCV) in the 
TCGA training dataset and two CGGA validation datasets. Mean C-index is presented on the right. (B) Heatmap illustrating the Area 
Under the Curve (AUC) of 33 prediction models via LOOCV in the TCGA training dataset and two CGGA validation datasets. (C) Plot 
of Partial Likelihood Deviance against log(lambda) in the Lasso model. Vertical dotted lines indicate lambda values with the minimum 
error and one standard error (SE) of the minimum. (D) Coefficients of the Lasso model. (E-G) ROC curves at 1, 3, and 5 years for the 
Lasso model in TCGA (E), CGGA325 (F), and CGGA693 (G). Colors represent the relative time. (H-J) Kaplan-Meier curves for the risk 
score predicted by the Lasso model in TCGA (H), CGGA325 (I), and CGGA693 (J).

DISCUSSION
Our study offers a comprehensive investigation into the prognostic significance and functional implications 
of NGB in LGG, a topic not previously explored. N-glycosylation significantly impacts cancer by initiating 
oncogenic signaling pathways, including Wnt/β-catenin, Hippo, PI3K/Akt, JAK/STAT, TGF-β/Smad, and 
Notch. Evidence suggests that abnormal modifications of cell surface proteins, such as transmembrane 
proteins and growth factor receptors, promote tumor growth, invasion, and metastasis through the 
activation of these signaling cascades[24]. Through integrated analyses utilizing three transcriptomic datasets 
from the TCGA and CGGA LGG cohorts, we have delineated the prognostic role of NGB in LGG, 
established an NGB-based prognostic model, and characterized the molecular and tumor 
microenvironment heterogeneity between high- and low-risk groups. The prognostic relevance of NGB in 
LGG is highlighted by the identification of a 22-gene signature (pNGB), demonstrating significant 
associations with patient survival outcomes. Notably, among the pNGB genes, MGAT1, the most 
malignant, has been reported to be enriched in glioblastoma and promote glioma cell proliferation through 
the upregulation of glucose transportation[25]. In contrast, TUSC3 sensitizes glioblastoma to temozolomide 
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Figure 4. The elevated NGB risk score was linked to increased levels of both cell proliferation and inflammation. (A and B) The Venn 
plot of enriched (A) and suppressed (B) DEGs in high-risk patients among the TCGA and CGGA cohorts. (C and D) The dot plot of 
shared enriched (C) and suppressed (D) DEGs KEGG enrichment analysis. (E) The heatmap illustrates the statistical differences in 
ssGSEA scores between the high- and low-risk groups across both the TCGA and CGGA cohorts.

by epigenetic reprogramming, and reverses the effects of miR-UL112-3p on GBM progression via the AKT 
signaling pathway[26,27].  Importantly, our study also revealed that patients at higher risk exhibited enhanced 
glycolysis, further supporting the role of NGB in metabolic alterations associated with LGG pathogenesis. 
Furthermore, other pNGB genes, such as MGAT4B, ALG3, and DDOST, have been identified as playing 
significant roles in shaping the immunosuppressive microenvironment[28-30]. Our study also revealed a 
correlation between the NGB risk score and tumor microenvironment remodeling, specifically highlighting 
associations with inflammatory phenotypes (M1 macrophages, cDCs) and immune regulatory phenotypes 
(Th2 cells and Tregs). Notably, Tregs showed a negative correlation with the NGB risk score, indicating 
their potential role as immune inhibitory components in the tumor microenvironment, warranting further 
investigation. These findings suggest that NGB is closely related to LGG metabolism and the immune 
microenvironment, potentially serving as metabolic checkpoints in both molecular pathology and clinical 
practice.

Building upon these prognostic insights, we developed and validated machine learning-based survival 
models integrating pNGB signatures, demonstrating robust discriminatory power across multiple datasets. 
Surprisingly, the pNGB signature exhibited high accuracy and sensitivity among various machine learning 
models, supporting the notion that NGB is a critical signature in LGG prognosis. Moreover, the 
parsimonious nature of the Enet model aligns with Occam's razor principle, emphasizing its simplicity and 
predictive accuracy. The superior performance of the Enet survival model underscores its potential clinical 
utility in predicting LGG patient outcomes.
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Figure 5. Association of Lasso Model-Predicted Risk Score with Treatment Response, Tumor Recurrence, and Immune Infiltration. (A) 
Boxplot illustrating the distribution of risk scores in differential responses to the first treatment. (B-D) Boxplots presenting the 
distribution of risk scores in primary and recurrent tumors in TCGA (B), CGGA325 (C), and CGGA693 (D) datasets. (E) Heatmap 
showing Spearman correlation of risk scores with immune infiltration in TCGA and CGGA datasets. Significance levels: *P < 0.05, 
**P < 0.01, ***P < 0.001, ****P < 0.0001.

To further elucidate the molecular underpinnings of NGB in LGG, we compared molecular, tumor 
microenvironment, and clinical features between high- and low-risk LGG patients. Functional analyses 
revealed the enrichment of pathways related to immune response, cell proliferation, and inflammatory 
signaling in high-risk patients. Specifically, TNF, IL6, TGF-β, and IFN signaling were all upregulated in the 
high-risk group. Previous studies have demonstrated that inflammatory responses, such as IFN-γ and 
TGF-β, are associated with unfavorable prognosis in LGG and are related to specific mutation profiles[31,32]. 
Moreover, the relationship of inflammatory response with epithelial-mesenchymal transition (EMT), 
hypoxia, and angiogenesis was observed in our study. The modification of key proteins, such as E-cadherin, 
N-cadherin, and epithelial cell adhesion molecule (EpCAM), plays crucial roles in the transition of normal 
liver cells to mesenchymal cells, contributing to cancer metastasis[33,34]. Additionally, lower risk scores were 
associated with better first treatment response, while higher scores were linked to tumor recurrence. 
Furthermore, the NGB risk score positively correlated with the infiltration of specific immune cell 
populations, including macrophages, DCs, and memory T cells, suggesting a potential role of NGB in 
shaping the LGG immune landscape. Both macrophages and DCs are recognized as being reprogrammed 
within the glioma microenvironment, contributing to the suppression of the immune response and 
facilitating tumor progression[35,36]. These findings highlight a complex interplay between NGB dysregulation 
and tumor microenvironment dynamics, providing potential therapeutic targets and avenues for further 
investigation.

To further extend the clinical translation value of our study, we systematically searched DrugBank, 
ApexBio, DGIdb, HMDB, and Tocris, identifying several candidates targeting the relevant genes. The details 
are listed in the Supplementary Table 1. Among these, Asparagine demonstrated the most credible 
treatment potential, targeting RPN2, DDOST, STT3A, DPAGT1, and MAN2A1. Additionally, Acarbose and 
Beta-D-Glucose also showed some approved treatment potential [Supplementary Table 1].

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202407/jcmt4032-SupplementaryMaterials.xlsx
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202407/jcmt4032-SupplementaryMaterials.xlsx
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However, our research has some limitations. Firstly, while the study identified an NGB signature associated 
with prognosis, in vitro and in vivo functional validation is needed to elucidate the mechanistic link 
between NGB dysregulation and LGG progression. Secondly, the cellular sources of NGB were not 
investigated in the current study, requiring advanced research methods such as single-cell RNA sequencing 
or experiments. Lastly, the NGB-based model requires validation in larger and more diverse patient cohorts 
to ensure generalizability.

In conclusion, our study provides comprehensive insights into the prognostic significance and functional 
implications of NGB in LGG. By integrating multi-omics data and machine learning approaches, we have 
elucidated the intricate interplay between N-Glycan biosynthesis, tumor biology, and clinical outcomes, 
paving the way for further research and therapeutic interventions in LGG management.
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