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Abstract
Primary liver cancers constitute the fourth leading cause of cancer mortality worldwide, due to their high morbidity, 
late diagnosis and lack of effective treatments. Hepatocellular carcinoma (HCC) represents 80% and 
cholangiocarcinoma (CCA) 15% of liver cancers. Several genetic and epigenetic gene alterations (e.g., TERT, TP53 
or CTNNB1) are HCC drivers, although many additional gene alterations contribute to HCC initiation and/or 
progression. Rho and Ras GTPases have been widely implicated in tumorigenesis and their activators (GEFs) have 
recently emerged as putative key players in liver cancer. The Ras GEF, C3G (RAPGEF1), a GEF mainly for Rap 
proteins, has recently been uncovered as a relevant gene in HCC. Its upregulation promotes tumor growth, 
although a decrease in C3G levels favors migration/invasion and lung metastasis. Rap1A/1B/2A/2B are 
overexpressed in HCC tumors, but their effects are controversial and not equivalent to those of C3G. The C3G 
partner, CRKL, is also overexpressed in HCC, promoting proliferation, migration and invasion. Various Rho GEFs are 
also deregulated in liver cancer. Tiam1 and Tiam2 expression is upregulated in HCC, promoting proliferation, 
migration and metastasis. In addition, ARHGEF-10L/9/19/39 are overexpressed in HCC tumors, facilitating 
migration, invasion, metastasis and proliferation. Another Rho GEF, Vav2, is also involved in metastasis. Little is 
known about the participation of these GEFs and GTPases in CCA. However, analysis of cancer databases 
uncovered deregulations or genetic alterations in several of these genes, in both CCA and HCC. Hence, GEFs 
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function appear essential for liver homeostasis, although future studies are needed to define their precise function 
in liver cancer.
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INTRODUCTION
Primary liver cancer is the 6th most frequently diagnosed cancer and the 4th leading cause of cancer 
mortality worldwide[1]. It is refractory to most treatments, so life expectancy of patients is very low, with a 5-
year median survival of 18%[2].

The most common type of primary liver cancer is hepatocellular carcinoma (HCC), followed by 
cholangiocarcinoma (CCA), a highly heterogeneous group of malignancies generated in the biliary tree, 
which represents approximately 15% of primary liver tumors[3]. Some classifications also include 
hepatoblastoma and combined HCC and CCA[4]. All these primary liver cancers can potentially originate by 
hepatocytes, cholangiocytes, hepatoblasts and/or liver progenitor cells. However, the cell of origin is still 
controversial[4]. The combined effects of oncogenic driver genes (intrinsic factors) and tumor 
microenvironment (extrinsic factors) determine the cancer phenotype of hepatocyte-derived liver tumors.

HCC usually occurs in the context of chronic liver disease, originated by risk factors such as infection with 
hepatitis B (HBV) or C viruses, alcohol abuse and nonalcoholic hepatic steatosis[2]. HCC has high molecular 
heterogeneity at different levels: interpatient, intertumoral (in different nodules) and intratumoral (in the 
same nodule).

The most frequent alterations in HCC include mutations in the TERT promoter leading to TERT 
reactivation; TP53 alterations; CTNNB1 mutations; copy number variations in CCDN1, MYC, MET and 
ERBB2; and alterations in DNA methylation[2,5]. In addition, many more genes contribute to HCC 
progression, including Ras and other members of this superfamily of GTPases.

Proteins from Ras and Rho families belong to the Ras superfamily of GTPases and are closely related 
structurally. Based on their sequence homology and functionality, they are sorted into 5 families: Ras, Rho, 
Rab, Ran and Arf[6]. They act as molecular switches, cycling between inactive (GDP-bound state) and active 
(GTP-bound state) conformations. Guanine nucleotide Exchange Factors (GEFs) catalyze the release of 
GDP, favoring GTP binding. After the activation of effector pathways, GTP is rapidly hydrolyzed to GDP in 
a reaction accelerated by GAPs (GTPase activating proteins)[7]. Rho GTPases are also regulated by GDP-
dissociation inhibitors[6,8]. Although Ras proteins are more frequently mutated in human cancer[9], 
mutations in Rho family of GTPases, mainly Rho and Rac, have also been described[10-12]. In fact, Rho 
GTPase deregulation may contribute not only to cancer cell proliferation but also to invasion and 
metastasis[13].

In mammals, the Ras family comprises 36 members that regulate cell growth, differentiation and survival. 
Ras proteins are classified into 4 main subfamilies, namely Ras, Rap, Ral and R-Ras, each with several 
members[14]. They are activated by GEFs harboring a CDC25-homology domain that, together with the 
REM (Ras Exchange Motif) module, constitute the GEF-catalytic domain, which is conserved from yeast to 
humans[15]. Ras GEFs are classified into different protein families according to their specific, non-catalytic 
modules: C3G (RAPGEF1), PDZ-GEF1/2 (RAPGEF2/6), EPAC1/2 or cAMP-GEFI/II (RAPGEF3/4), MR-
GEF (RAPGEF5), SOS-1/2, Ras-GRF1/2, CalDAG-GEFII/I/III (RASGRP1/2/3), RasGRP4, RalGDS, RalGPS, 
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DOCK4 and PLC-epsilon-1 (PLCE1)[15-17].

Rho proteins (22 members in mammals) regulate actin cytoskeleton dynamics and vesicle trafficking[18]. 
They are activated by GEFs from either Dbl family (with 69 members), which contain a DH (Dbl-
homology) catalytic domain and a PH (plekstrin homology) domain[15,19], or DOCK family (with 11 
members), bearing a DHR2 (DOCK homology region 2) catalytic domain[20].

Both Ras GEF and Rho GEF families channel different signaling pathways that lead to the activation of 
specific GTPases, providing a fine-tuned regulation. In addition, their multi-domain structure allows 
complex autoregulatory mechanisms for the modulation of their target GTPases, some of which are still 
unknown. In the case of C3G, this mechanism has recently been uncovered[21]. Due to their function as 
specific GTPase activators, GEFs are susceptible nodes in the cell that modulate several signaling pathways 
such as MAPKs (ERKs, JNKs and p38 MAPKs) or PI3K. Consequently, their aberrant function is associated 
with a large number of human diseases, including cancer, where they may act as either promoters or 
suppressors of tumor growth and progression[22].

Some Ras and Rho proteins and their GEFs play specific roles in the liver. The cAMP/EPAC/Rap1 cascade 
is an important pro-survival pathway for hepatocytes with an inhibitory role in gluconeogenesis. In 
addition, EPAC1 acting through Rap1 protects from fibrosis by suppressing the activation and proliferation 
of hepatic stellate cells, while EPAC2/Rap1 plays a profibrotic role[23]. The EPAC2/Rap1 pathway also 
regulates lipid metabolism in the liver[24]. Moreover, Rap promotes proliferation during liver 
regeneration[23], and the Rho GEF, Ect2, also plays a role in liver regeneration[25].

The Rac GEF, Vav1, through a non-canonical p38MAPK pathway, decreases hepatocyte cell death during 
acute liver inflammation[26]. Another Rac GEF, P-Rex2, controls glucose homeostasis in the liver and 
inhibits PTEN in a Rac GEF-independent manner[27].

GEFs are deregulated in cancer through somatic mutations, changes in gene expression or post-translational 
modifications. Examples of Ras GEFs implicated in human cancer are RasGRF2, CalDAG-GEFI, CalDAG-
GEFII, RasGRP4 and Sos-1 (Ras subfamily); C3G, DOCK4 and PLC-ε-1(Rap subfamily); and RalGDS, 
Rgl1/2 and Rgr (Ral subfamily). Among Rho GEFs, aberrant activity of Mcf-2, Vav1-3, Bcr, ECT2, 
ARHGEF2/4/5/7/11/12/17, Trio, OBSCN, SPATA13, P-Rex1, P-Rex2a, Net1, AKAP13, Lfc, Tiam1, Ost, Clg 
(Dbl family) and DOCK1, 2/3/8/10 (DOCK family) has also been found in tumors[22,28-30].

Particularly, the deregulation of some of Ras and Rho GEFs has been associated with HCC progression and 
metastasis, justifying the growing interest. Here, we summarize the most remarkable data on this subject.

C3G AND OTHER RAS GEFS IN LIVER CANCER
C3G (Crk SH3-domain-binding guanine-nucleotide-releasing factor) is a GEF for Rap1 and other Ras 
proteins, such as R-Ras[31,32]. However, several C3G functions are not dependent on its GEF activity, but 
rather rely on its interaction with other proteins through its proline-rich domain and/or its ability to 
translocate to the nucleus[33-36]. There are two main C3G isoforms, A (the most common) and B, with 21 
amino acids replacing 3 from the N-terminal domain[37]. C3G is essential for embryonic development[38] and 
regulates several cellular functions such as adhesion, migration, apoptosis and differentiation[37,39] 
[Figure 1]. Its role in cancer depends on cellular context, tumor type and stage. C3G prevents malignant 
transformation induced by oncogenes in mouse fibroblasts[33,40] and its expression decreases in cervical 
squamous cell carcinoma[41]. In colon carcinoma (CRC), C3G plays a dual role, inhibiting migration and 
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Figure 1. C3G cellular functions. The scheme shows the positive (green) or negative (red) regulation of different cellular functions by 
C3G.

invasion, while favoring tumor growth[42]. C3G also reduces migration in highly invasive breast cancer 
cells[43]. In non-small-cell lung cancer, C3G levels increased[44], suggesting a role as a tumor promoter. In this 
line, p87C3G isoform (lacking the most N-terminal region) is upregulated in chronic myeloid leukemia 
(CML) and associated with this disease[45].

Until very recently, there was no information in the literature supporting a role for C3G in liver cancer. The 
first data were obtained from different human cancer databases and indicate that RAPGEF1 mRNA levels 
increase in samples from HCC patients and in patient-derived xenografts, as compared to non-pathological 
liver samples[23]. Later, new analyses of cancer databases revealed that RAPGEF1 mRNA levels gradually 
increase in HCC patients as the disease progresses (from stages I to III), being also higher in HCC cell lines 
as compared to adult hepatocytes[46] [Table 1]. This increase in C3G levels is associated with a lower 
survival[46], as is the presence of somatic mutations and other genetic alterations in RAPGEF1 gene 
(amplification, deletion, etc.)[23]. C3G protein levels also increase in HCC cells, as compared to adult 
hepatocytes, and its downregulation by gene silencing reduces their tumorigenic properties, both in vitro 
and in vivo[46]. However, the reduction in C3G levels enhances the pro-migratory and pro-invasive capacity 
of HCC cells by favoring the acquisition of a more mesenchymal phenotype. Hence, low levels of C3G 
correlate with lung metastasis, although its growth is associated to the recovery of a high C3G expression. 
Moreover, C3G is required for the correct activation of HGF/MET signaling in HCC cells[46]. All these data 
indicate that C3G plays a key role in HCC, promoting tumor growth, and the regulation of its levels may 
facilitate HCC growth and progression. However, the potential contribution of the main C3G target, Rap, to 
these actions of C3G remains unclear.

Little is known about Rap function in HCC and the available data are controversial. Transfection of Rap1 
decreases proliferation of Hep3B cells by reducing ERKs activation and suppresses tumor growth[47]. In 
contrast, Rap1B is upregulated in HBV-induced HCC, promoting proliferation and migration[48]. More 
recent studies also revealed an upregulation of either RAP2B[49] or RAP1B expression[50] in human HCC 
samples and in some cell lines, which leads to an increased proliferation, tumor growth and migration. In 
addition, our analyses of data from HCC patient samples obtained from TCGA database also show no 
changes in RAP2C, but an increase in RAP1A/1B/2A/2B mRNA levels that reaches statistical significance in 
the case of RAP2A, as compared to non-pathological samples [Figure 2]. This is associated with a significant 
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Table 1. Ras and Rho GEFs involved in primary liver cancer

Gene Family Effect Ref.

Ras GEFs

RAPGEF1 (C3G) Ras (Rap) Upregulation (potential prognosis marker). 
Regulates tumor growth and inhibits migration and invasion

[46]

RAPGEF3 (EPAC1) Ras (Rap) Regulates liver fibrosis [51]

RASGRP1 Ras (Ras) Its upregulation promotes proliferation [52]

RASGRP3 Ras (Ras) Upregulation (potential prognosis marker) [53]

PLCE1 Ras (Ras) Upregulation (potential prognosis marker) [53]

Rho GEFs

TIAM1 Rho (Dbl) Upregulation and/or increased activity [70,72-82]

TIAM2 Rho (Dbl) Upregulation and/or increased activity [83,84]

VAV2 Rho (Dbl) Its downregulation decreases metastatic abilities [98]

VAV3/KLF6 Rho (Dbl) Increased activity [97]

ARHGEF2 (GEFH1) Rho (Dbl) Its downregulation decreases metastatic abilities [103]

Upregulation [91]ECT2 Rho (Dbl)

Its downregulation decreases metastatic abilities [92-94]

AKAP13 (LBC) Rho (Dbl) Upregulation (potential prognosis marker) [95]

ARHGEF39 Rho (Dbl) Upregulation (potential prognosis marker) [87,88]

FGD1 Rho (Dbl) Upregulation [99]

ARHGEF19 Rho (Dbl) Its activity promotes metastasis [89]

TRIO Rho (Dbl) Upregulation [104]

NET1 Rho (Dbl) Upregulation (potential prognosis marker) [101]

ARHGEF10L Rho (Dbl) Upregulation (potential prognosis markers) [85]

Ras and Rho GEFs with a deregulated expression in liver cancer (HCC and/or CCA) are included. It is indicated for each one whether its 
expression is upregulated or downregulated, its effect, its potential value as a prognostic biomarker and the reference(s). HCC: Hepatocellular 
carcinoma; CCA: cholangiocarcinoma.

reduction in the overall survival, while no differences in disease-free survival are observed. RAP1A/1B/2A/
2B/2C genes also present amplifications or other genetic alterations in HCC [Figure 3].

The effects of C3G and Rap proteins are not equivalent, suggesting that C3G might have Rap-dependent 
and -independent actions in HCC. Other Rap GEFs such as EPAC1/2 could contribute to regulate Rap 
activity. Although there are no data about them, EPAC1/2 regulate liver fibrosis[51] [Table 1], a previous step 
towards HCC development.

Concerning the potential role of other Ras GEFs in HCC, RASGRP1 is upregulated in HCC patient samples 
and human HCC cell lines, promoting proliferation[52]. RASGRP3 and PLCE1 are also upregulated[53]. Other 
Ras GEFs, such as RALGPS2 or RGL1, could play a role, based on genetic alterations found in TCGA 
[Figure 3].

In CCA, the function of C3G and/or Rap remains unknown. Using data from a TCGA cohort of patients 
with CCA, we found a significant increase in the mRNA levels of C3G (RAPGEF1), RAP1A/1B and RAP2A/
2B, but not of RAP2C, in tumors as compared to non-pathological liver samples [Figure 4] and genetic 
alterations [Figure 3]. Surprisingly, in contrast to HCC data, the increased levels of RapGEF1 and Rap 
family members are not associated with a lower overall survival. These results reinforce the idea that, 
although hepatocytes and cholangiocytes share a common liver bipotential progenitor, HCC and CCA are 
clinically two distinct entities in terms of mechanisms, diagnosis and treatment[54]. Hence, more studies are 
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Figure 2. RAP GTPases mRNA expression in HCC patients and its relationship with survival. From top to bottom, RAP1A, -1B, -2A, -2B 
and -2C: Box plots (left) show mRNA levels expressed as log2 (TPM + 1) in tumor (red) and adjacent liver non-pathological (blue) 
samples. Kaplan-Meier curves show overall survival (middle) and disease-free cumulative survival (right), comparing patients with high 
(red) vs. low (blue) expression levels for each analyzed gene (median TPM cutoff was chosen). All data were generated through 
GEPIA2 portal (Gene Expression Profiling Interactive Analysis; http://gepia2.cancer-pku.cn/#index). Log rank value is indicated for 
each curve. GEPIA2 mRNASeq dataset analyses are based on UCSC Xena project (http://xena.ucsc.edu) TCGA-LIHC [Liver 
Hepatocellular Carcinoma (HCC)] cohort for (50 normal and 371 tumor samples) patients. Results are considered statistically 
significant for P values ≤ 0.05 (*).

necessary to uncover the specific characteristics of CCAs. Additionally, the limited number of CCA samples 
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Figure 3. Frequent genetic alterations in Ras GEFs, Rap and CRK genes in HCC and CCA. The percentage of patients (for Ras GEFs only 
when ≥ 4%) with genetic alterations for genes from Ras GEFs, Rap and CRK family are shown. The type of these alterations is indicated 
by the color, as specified in the legend. Mutation data from whole exome sequencing were taken from cBioportal 
(https://www.cbioportal.org/) from Liver Hepatocellular Carcinoma [TCGA (TCGA-LIHC), Firehose Legacy, 442 samples] and 
Cholangiocarcinoma [TCGA (TCGA-CHOL), Firehose Legacy, 51 samples]. HCC: Hepatocellular carcinoma; CCA: cholangiocarcinoma.

available in the TCGA-CHOL dataset can bias result interpretation.

Regarding the potential regulation of C3G expression by miRNAs, it is important to mention that, although 
bioinformatic tools, such as TargetScanHuman database (www.targetscan.org), predict potential 
interactions of different miRNAs with RAPGEF1 gene, there are no publications validating in vitro or in 
vivo the existence of these interactions in any model. However, miR-27a, which reduces viral replication and 
infectivity of HBV in human hepatoma cells, can repress RAPGEF2 in Huh7.5 HCC cells[55].

On the other hand, considering that the aberrant activation of the Ras pathway is a common feature in 
HCC, downregulation of Ras GAPs such as RASAL1, DAB2IP or NF1 was found in HCC samples, in the 
absence of Ras mutations, being associated with reduced patient survival[56].
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Figure 4. RAPGEF1 and RAP GTPases mRNA expression in CCA patients and its relationship with survival. From top to bottom, RAPGEF1, 
RAP1A, -1B, -2A, -2B and -2C: Box plots (left) show mRNA levels expressed as log2 (TPM + 1) in tumor (red) and adjacent liver non-
pathological samples (blue) samples. Kaplan-Meier curves show overall survival (middle) and disease-free cumulative survival (right), 
comparing patients with high (red) vs. low (blue) expression levels of each analyzed gene (median TPM cutoff was chosen). All data 
were generated through GEPIA2 portal (Gene Expression Profiling Interactive Analysis; http://gepia2.cancer-pku.cn/#index). Log rank 
value is indicated for each curve. GEPIA2 mRNASeq dataset analyses are based on UCSC Xena project (http://xena.ucsc.edu) TCGA-
CHOL (9 normal and 36 tumor samples) from patients. Results are considered statistically significant for P values ≤ 0.05(*). CCA: 
Cholangiocarcinoma.
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CRK, A C3G BINDING PROTEIN WITH A ROLE IN HCC
CRK (CT10 regulation of Kinase) proteins are adaptors involved in the activation of several signaling 
pathways[57]. This family of proteins encompasses two alternative spliced isoforms, CRKI and CRKII, and 
the related CRKL [v-crk sarcoma virus CT10 oncogene homolog (avian)-like] protein. They are 
ubiquitously expressed and conserved throughout eukaryotes. CRK proteins harbor one N-terminal Src 
homology 2 (SH2) domain and one (in CRKI) or two (in CRKII and CRKL) C-terminal Src homology 3 
(SH3) domain[58], which are essential to interact with a great number of signaling molecules such as Sos, 
Gab1, Bcr-Abl, p130Cas and C3G. This allows the integration of a great variety of signals, leading to the 
regulation of several cellular functions. In cancer, CRK proteins play important roles. CRKL is 
overexpressed in a number of cancers such as gastric cancer, glioblastoma, lung cancer, CML and HCC[59]. 
Moreover, in breast cancer patients, high soluble CRKL levels are found in the serum, associated with 
advanced stages of the disease[60].

CRKL has been proposed as a prognostic biomarker for HCC based on its high expression in patient 
samples and its inverse correlation with the overall survival of HCC patients[61]. In addition, CRKL promotes 
migration in HCC cells. Several studies have demonstrated that CRKL is overexpressed in HCC, inducing 
migration, invasion and proliferation[62-64]. In agreement with this, our analysis using TCGA data revealed an 
increase in CRKL mRNA levels in HCC patient samples as compared to control liver [Figure 5]. Moreover, 
high CRKL levels are associated to a lower survival. In CCA, CRK and CRKL expression is increased, being 
statistically significant for CRKL [Figure 5].

Some of the mechanisms responsible for CRKL regulation have been uncovered. It is noticeable that CRKL 
expression is tightly regulated by different miRNAs in the liver and this regulation is altered in HCC. 
Hence, p53-induced miRNA-215 downregulates CRKL, acting through the long non-coding RNA PCAT-1, 
which decreases proliferation, tumor growth and migration/invasion of hepatocytes[63]. However, in HCC 
cells, this mechanism fails. Similarly, miR-429 negatively regulates CRKL expression post-transcriptionally, 
a mechanism altered in HCC, leading to an increased migration and invasion mediated by CRKL 
upregulation[62]. ERKs activation and epithelial-mesenchymal transition (EMT) contribute to these actions 
of the miR-429-CRKL axis. Furthermore, the upregulation in HCC of the transcription factor E-Twenty-Six 
variant gene 6, a negative regulator of miR-429 expression, leads to CRKL overexpression and enhances 
migration and invasion[64]. Additionally, CRKL downregulates miR-429 expression. On the other hand, the 
long non-coding RNA AFAP1-AS1 (Actin filament-associated protein 1 antisense RNA 1), upregulated in 
HCC, also induces HCC proliferation, migration and invasion through increasing CRKL levels, leading to a 
higher AFAP1-AS1 expression[65]. In contrast to all this, a previous work showed that CRKL overexpression 
decreased in vitro proliferation, migration and invasion in the murine hepatocarcinoma Hca-P cell line[66].

Another member of the CRK family, CRKII, could also contribute to promote HCC progression based on 
the increased proliferation, migration and invasion induced by CRKII overexpression in Hca-P cells[67]. In 
agreement with this, the induced upregulation of CRKI/II and Rac1 by Annexin 5 in HCC mediates 
proliferation and invasion of Hca-P cells and xenograft tumor growth[68].

In CCA, data from TCGA indicate the existence of deep deletions in CRK and missense mutations in CRKL 
[Figure 3].

In conclusion, although CRK is a C3G partner, its role in HCC is not necessarily associated with C3G, but it 
may depend on complex interactions with different proteins.
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Figure 5. CRK and CRKL mRNA expression in HCC and CCA patients and its relationship with survival. Box plots (left) show CRK and 
CRKL mRNA levels expressed as log2 (TPM + 1) in tumor (red) and adjacent liver non-pathological samples (blue) samples. Kaplan-
Meier curves show overall survival (middle) and disease-free survival probability (right) comparing patients with high (red) vs. low 
(blue) expression levels of each analyzed gene (median TPM cutoff was chosen). All data were generated through GEPIA2 portal (Gene 
Expression Profiling Interactive Analysis; http://gepia2.cancer-pku.cn/#index). Log rank value is indicated for each curve. GEPIA2 
mRNASeq dataset analyses are based on UCSC Xena project (http://xena.ucsc.edu) TCGA-LIHC and TCGA-CHOL, for HCC (50 
normal and 371 tumor samples) and CCA (9 normal and 36 tumor samples) patients, respectively. Results are considered statistically 
significant for P values ≤ 0.05(*). HCC: Hepatocellular carcinoma; CCA: cholangiocarcinoma.

RHO GEFS IN LIVER CANCER
As mentioned above, alterations of Rho and Ras GEFs have been frequently reported in liver cancer, being 
protein levels upregulation or hyperactivity the most reported events. In addition, we found several genetic 
alterations in our analyses of databases in both HCC and CCA [Figure 6]. We summarize here the most 
significant Rho GEFs involved in liver cancer [Table 1].
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Figure 6. Frequent genetic alterations in Rho GEFs genes in HCC and CCA. The percentage of patients (when ≥ 4%) with genetic 
alterations for genes from Rho GEF family are shown. The type of these alterations is indicated by the color, as specified in the legend. 
Mutation data from whole exome sequencing were taken from cBioportal (https://www.cbioportal.org/) from Liver Hepatocellular 
Carcinoma (TCGA, Firehose Legacy, 442 samples) and Cholangiocarcinoma (TCGA, Firehose Legacy, 51 samples). HCC: 
Hepatocellular carcinoma; CCA: cholangiocarcinoma.

Tiam1 (T-cell lymphoma invasion and metastasis 1) protein is a Rac GEF that belongs to Dbl protein 
family[69]. It was identified as an invasion- and metastasis-promoting gene in a murine T-lymphoma cell 
line[70]. Tiam1 activates Rac1, inducing migration, invasion and metastasis of many tumor cells[71,72]. 
Furthermore, Tiam1 has a significant role in promoting tumor progression in a variety of cancers, such as 
breast cancer, CRC and lung cancer[13,73,74]. Tiam1 is much more strongly expressed in almost all HCCs than 
in normal liver and cirrhotic liver tissues[75]. Furthermore, Tiam1 and Rac1 expression is upregulated in 
HCC, which correlated with advanced clinical stages[75-77] and a significant reduction in disease-specific 
survival[75]. However, the precise molecular mechanisms of Tiam1 actions in HCC tumorigenesis are still 
unknown. Overexpression of Tiam1 increases proliferation, migration and invasion in HCC cell lines[77]. 
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Moreover, in vivo functional studies showed that Tiam1 upregulation enhances tumorigenicity and 
metastatic potential, while Tiam1 knockdown delays tumor growth and inhibits metastases formation[77]. A 
recent report also showed that Tiam1 expression can be epigenetically regulated in HCC by KDM6B 
demethylase leading to invasion and metastasis[78,79]. MicroRNAs also regulate HCC migration and 
proliferation by modulating Tiam1 expression[80,81]. Interestingly, Tiam1 expression is also increased in 
CCA, correlating with a higher degree of malignancy[82]. Furthermore, Tiam1 inhibition prevented CCA cell 
proliferation and migration[82].

TIAM2 gene is a homolog of TIAM1, a Rac GEF with important roles in neuron development and human 
malignancies[69]. Tiam2 short form (TIAM2S) is upregulated at both protein and mRNA levels in HCC[83]. 
Posttranscriptional regulation, mainly achieved by SP1 transcription factor, induces TIAM2S mRNA 
expression in HCC cell lines[84]. TIAM2S promotes cell growth and invasion through EMT regulation, being 
associated with a metastatic phenotype of HCCs[83].

ARHGEF10L (Rho guanine nucleotide exchange factor 10-Like) is a specific GEF for RhoA. ARHGEF10L is 
upregulated in HCC, especially at stage III[85], promoting HCC proliferation and invasion through activation 
of the RhoA-ROCK1-ERM (ezrin/radixin/moeisin) pathway and EMT induction[85].

ARHGEF39 (or C9orf100) is a member of the human Dbl family of Rho GEFs[86]. ARHGEF39 mRNA and 
protein levels are upregulated in HCC samples compared to non-pathological adjacent liver tissue[87,88], and 
its expression correlates with worse prognosis[87]. ARHGEF39 promotes cell proliferation and migration in 
HCC cell lines[88].

Another ARHGEF, ARHGEF19, promotes HCC cell proliferation and invasion[89]. Interestingly, the 
microRNA miR-503 inhibits HCC invasion and metastasis through inhibition of ARHGEF19 expression[89].

ARHGEF9 is a Rho GEF able to activate the Rho GTPase Cdc42. CHD1L (Chromodomain helicase/ATPase 
DNA binding protein 1-like gene) induces ARHGEF9 transcription, leading to Cdc42 activation, which 
promotes filopodia formation and EMT induction, enhancing HCC invasion and metastasis generation[90]. 
Hence, overexpression of ARHGEF9 positively correlates with CHD1L upregulation and poor disease-free 
survival[90].

ECT2 (Epithelial cell transforming sequence two protein) is significantly associated with early recurrent 
HCC disease and poor survival[91,92]. Its knockdown prevents the activation of Rho/ERKs signaling, enhances 
apoptosis and reduces migration and invasion of HCC cells[91]. Furthermore, the microRNA miR-490-5p 
reduces HCC metastasis and stemness through ECT2 inhibition[92,93]. In addition, in CCA cells, miR‐194 
promotes apoptosis and inhibits proliferation and migration through ECT2 downregulation and Rho 
signaling blockade[94].

Lbc (Lymphoid blast crisis, or AKAP13) is a Rho GEF[69], originally isolated as an oncogene with increased 
GEF activity[95]. Lbc is not expressed in adult liver under physiological conditions. However, it is 
upregulated in HCC[96]. Lbc increases HCC cell growth and induces Bcl-2 expression and BAD 
phosphorylation, which is involved in the generation of HCC resistance to doxorubicin[96].

VAV2/3 are GEFs for RhoA, RhoG and Rac1 that modulate their activity, which is important for HCC cell 
migration. VAV3 expression its downregulated in HCC by the transcription factor KLF6. Thus, KLF6 
depletion increases Rac1 activity in a VAV3-dependent manner[97]. VAV2 promotes Rac1 and Cdc42 



Page 13 of Porras et al. Hepatoma Res 2021;7:40 https://dx.doi.org/10.20517/2394-5079.2021.16 17

activation, leading to lamellipodia formation, facilitating metastasis of HCC cells. Interestingly, miRNA‐195 
suppresses angiogenesis and metastasis of HCC by inhibiting the expression of VEGF, VAV2 and Cdc42[98].

Several other GEFs are upregulated in HCC and might play a role as potential diagnosis and prognosis 
biomarkers of this cancer. Among them, FGD1, GEF-H1 and NET1 from Rho-GEF family can be 
highlighted[53,99-104].

In contrast to Rho GEFs, Rho GAPs, such as DLC1 (Deleted in Liver Cancer 1) and DLC2, act as tumor 
suppressors in HCC. DLC1 gene is inactivated in hepatocarcinogenesis[105], suppressing cell proliferation and 
migration[106]. DLC2 expression is also downregulated in HCC[107,108], which is associated with cell 
differentiation and poor prognosis[108].

CONCLUSION
GEFs are frequently deregulated and appear to be essential mediators in liver cancer. They may represent 
diagnosis biomarkers and attractive targets for liver cancer therapy. However, future studies are needed to 
establish their precise role in liver cancer. This would allow determining the potential relevance of targeting 
GEFs in HCC treatment, probably through the design of inhibitors for specific domains, as some of these 
proteins can act through GEF dependent and independent mechanisms.
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