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Abstract
The detection of rare diseases utilizing advanced artificial intelligence (AI) techniques has garnered considerable 
attention in recent years. Numerous approaches have been proposed to detect diverse rare diseases by leveraging 
a range of medical data, including medical images, electronic health records, and sensory data. In order to 
safeguard the privacy of health data, considerable investigation has been undertaken on a novel learning paradigm 
known as federated learning, which has been applied to the domain of rare disease detection. Nonetheless, this 
nascent research direction remains in its infancy, necessitating greater scrutiny and attention. Within this survey, 
our primary focus lies in providing fresh perspectives, deliberating the challenges, and enumerating potential 
research directions concerning the application of federated learning techniques in rare disease detection. 
Furthermore, we provide a succinct summary of existing advancements using AI techniques for rare disease 
detection, as well as the utilization of federated learning within healthcare informatics. Moreover, we furnish a 
compilation of publicly available datasets that can be employed to validate novel federated learning algorithms for 
the purpose of detecting rare diseases.
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INTRODUCTION
A rare disease is defined as a condition that affects a small number of people compared to the general 
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population. According to the U.S. Food and Drug Administration (FDA), a disease is considered rare if it 
affects fewer than 200,000 individuals in the country[1]. However, different countries may have their own 
official definitions of a rare disease. For instance, the European Union defines a disease as rare when it 
affects fewer than 1 in 2,000 people[2].

Although the number of patients with rare diseases is small, the range of rare diseases is extensive, resulting 
in a significant overall number. There are several important facts to consider: to date, over 6,000 different 
rare diseases have been identified worldwide, currently affecting approximately 3.5% to 5.9% of the global 
population[3]. In the United States alone, there are more than 10,000 known rare diseases that affect about 1 
in 10 people, totaling approximately 30 million individuals[4]. Due to the low prevalence of each disease, 
expertise in their diagnosis and treatment is limited, knowledge about them is scarce, care offerings are 
inadequate, and research is often restricted.

However, the detection of rare diseases presents considerable challenges, particularly during the early stages. 
Let us take pancreatic cancer as an exemplar, which stands as an exceedingly lethal form of cancer with a 
mere 11% overall five-year relative survival rate in the United States, the lowest among all cancer types[5]. 
Patients typically exhibit nonspecific symptoms, such as jaundice, fatigue, alterations in bowel habits, and 
indigestion, thereby complicating the differentiation from non-malignant diseases[6]. Furthermore, the 
identification of early-stage pancreatic disease is hampered by the absence of reliable biomarkers. While 
carbohydrate antigen 19-9 represents the most extensively validated biomarker for pancreatic cancer, it falls 
short in terms of screening accuracy and specificity[7,8]. Thus, the imperative development of innovative 
techniques for the detection and comprehension of rare diseases assumes profound and practical 
significance.

Recently, the medical field has widely adopted AI techniques to aid in the detection of rare diseases using 
diverse data sources, such as medical images[9-11] and electronic health records (EHR)[12-14]. However, the 
training of AI models, especially deep learning-based ones, typically requires a large amount of data. The 
challenge lies in accessing rare disease data from different institutions due to concerns over data privacy. 
This obstacle hinders the development of new AI techniques. Fortunately, the emergence of federated 
learning techniques offers a solution to address the data privacy issue[15,16]. Federated learning is a novel 
learning paradigm that enables collaborative training of machine learning models without sharing data with 
others. Although several approaches have been proposed for utilizing federated learning in solving medical 
problems, limited work has been dedicated to rare disease detection. However, to our best knowledge, there 
are no existing surveys focusing on the specific domain of rare disease detection with federated learning. 
Therefore, research questions arise: (1) what are the state-of-the-art research works about rare disease 
detection with federated learning? (2) What data and techniques are utilized in the related research works? 
(3) Are there any promising future research directions in this domain?

This survey primarily focuses on discussing the fundamental challenges of applying federated learning to 
detect rare diseases and explores potential research directions. Prior to that, we provide a brief overview of 
existing work in AI for rare diseases and the application of federated learning in healthcare informatics. 
Additionally, we present a list of commonly used datasets for rare disease detection, which can be employed 
for simulating experiments involving federated learning models.
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METHODS
Search strategy
We identified the related research works by conducting a comprehensive search in the search engines and 
databases, including but not limited to Google Scholar, IEEE Xplore, ACM Digital Library, and arXiv. We 
used the following key words to obtain our inclusive searching results: “machine learning in rare disease 
detection”, “AI in rare disease detection”, “federated learning in healthcare informatics”, and “rare disease 
detection in federated learning”. This search was conducted up to 14 May, 2023 and all the research works 
which meet the inclusion criteria were under consideration.

Selection criteria
Inclusion requirements are (1) original research articles; (2) published in English; (3) full-text access; (4) 
significant contributions; (5) on the topics of machine learning in rare disease detection, healthcare 
informatics in federated learning, and rare disease detection in federated learning. Exclusions for this survey 
are: (1) articles not published in English; (2) full-text access not available; (3) without clear evaluation, 
constructive discussion, or convincing statement.

Screening process
Based on the search strategy using the databases and key words, we found 1,040,300 records. After removing 
the duplicated search results, considering the relevance, and filtering with the selection criteria, we have 
included 91 research works, datasets, web resources, and related tools for this survey. The screening process 
is shown in Figure 1.

MACHINE LEARNING FOR RARE DISEASE DETECTION
Rare disease
The definition of rare diseases varies across different countries. In the United States of America, a disease is 
considered rare if the number of affected individuals is less than 200,000[17]. Conversely, the European 
Union defines rare diseases as those that either affect 0.5% of the population or are life-threatening, 
debilitating, or chronic[18]. Rare diseases are often classified into several categories, including metabolic 
disorders, neuromuscular disorders, blood disorders, cardiovascular and respiratory disorders, autoimmune 
diseases, skin diseases, and rare neoplasms[19].

Patients with rare diseases face unique challenges compared to those with more common conditions. These 
challenges arise due to limited research studies, small patient communities, and a lack of attention and 
funding for treatment development due to economic constraints. For more detailed information on rare 
diseases, existing rare disease surveys can be consulted[20].

AI for rare disease detection
AI has the capability to extract hidden patterns and analyze complex relationships in data using machine 
learning (ML) or deep learning (DL) methods. With the increasing availability of EHR, it has become easier 
to access, process, and analyze patient data. However, EHR data contains diverse types of information, such 
as age, gender, hospital visits, diagnosis records, and lab test results. Consequently, it becomes challenging 
to comprehensively analyze and identify the relationships between rare diseases and these various features.

Numerous research works have focused on rare disease detection using AI. In[21], a complementary pattern 
augmentation framework is proposed, combining ideas from adversarial training and max-margin 
classification. As for adversarial training, there are several research works[22-24] using generative adversarial 
networks to do rare disease detection. From the methodology perspective, multiple deep learning techniques 
are also applied in rare disease detection. For instance, representation learning is utilized to detect rare 
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Figure 1. Overview of the screening process.

disease-associated cell subsets[25]. Few-shot learning is applied to help generate radiology reports from 
radiology data to support the rare disease diagnosis[26]. In[27], reinforcement learning is used to design a tool 
to conduct a rare disease diagnostic task using expert knowledge and clinical data with the minimum 
number of medical tests. In[28], natural language processing (NLP) techniques are applied to extract the 
relevant information of rare diseases and identify the clinical manifestations. RareBERT[29] is another 
research work that applies transformer-based techniques to identify rare diseases using administrative 
claims. In[30], a difficulty-aware meta-learning approach is used to conduct the rare disease classification 
with the consideration of learning task importance. In[31], a transfer learning approach is applied to obtain a 
machine-learning model from a sex-identification model to detect the Phospholamban mutation. Another 
research work[32] also employs transfer learning by training a model on a large public medical dataset and 
transferring it to rare disease datasets, demonstrating the algorithm's effectiveness compared to training 
solely on a given dataset. From the data type perspective, there are existing research works using EHR 
data[12-14], image data[9-11], and other formats of medical-related data (online searching data[33] or replies to 
questionnaires[34]). Finally, there are several surveys[35-46] of AI for rare diseases from different perspectives.

FEDERATED LEARNING FOR HEALTHCARE
Federated learning
Federated learning (FL) enables multiple parties to cooperate to train machine learning models without 
sharing data. FL is initially proposed in[47], where authors introduce a classic algorithm named FedAvg. 
There are several steps in FedAvg: (1) Step 1: each party trains its model using local data; (2) Step 2: active 
clients upload model parameters back to the server; (3) Step 3: the server aggregates the model parameters 
to obtain one global mode; (4) Step 4: the server distributes the global model parameters back to the active 
client at the next communication round as their initialization to train their local models. This process will 
continue until the system reaches convergence or the required communication rounds. The demonstration 
can be found in Figure 2.

FL has gained significant attention from researchers in academia and industry due to its advantages in 
distributed data utilization and data privacy preservation. Till this research, FL has been explored in 
multiple directions including but not limited to heterogeneity[48,49], security[50] and privacy[51], robustness[52] 
and fairness[53], and application domains including but not limited to healthcare[54], computer vision[55], 
urban computing[56], and finance[57]. Additionally, there are companies and communities providing 
packages, platforms, and open-source support for conducting FL industry products and research works, e.g., 
IBM[58], Google Cloud[59], and TensorFlow Federated[60].

Healthcare informatics in federated learning
With the development of technology, more and more healthcare-related information can be acquired, 
saved, and analyzed, including but not limited to electronic health records, medical images, and claim data. 
However, most of the patients’ data are sensitive and subject to strict legal and policy regulations. FL offers a 
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Figure 2. Federated learning paradigm.

promising approach for healthcare data holders, such as hospitals or medical research institutions, to 
collaborate in training machine learning models without the need to share the data itself. This enables 
distributed data analysis while preserving data privacy.

Several surveys[61-66] have been conducted on healthcare informatics in the context of federated learning. In 
the survey[61], the authors discuss the existing algorithms and application of federated learning on electronic 
health records. Other surveys[62,63,65] provide general systematic reviews of federated learning for healthcare 
informatics. There is also another survey[64] that talks about the federated learning research works in clinical 
studies with structured medical data. Furthermore, the future directions of digital health with federated 
learning have been discussed as well in a recent work[66]. In the following discussion, we will explore existing 
applications of FL in healthcare from the perspective of data types.

Medical image
Medical imaging plays a crucial role in capturing patients' information, enabling doctors, researchers, and 
scientists to perform diagnoses, treatments, and research. However, different institutes may possess varying 
types or quantities of medical images, making collaboration essential. FL facilitates cooperation among these 
institutions, allowing them to work together on tasks such as COVID-19 diagnosis, cancer detection, heart 
disease detection, and thyroid diagnosis[67].

In[68], the cooperation of brain tumor segmentation across multiple institutes is enabled via FL. The authors 
propose a FL framework in[69] for detecting COVID-19 infections using Chest X-ray images from different 
data holders. In[70], the authors utilize FL frameworks to conduct a diagnosis of hypertrophic 
cardiomyopathy with magnetic resonance imaging (MRI) data.

Electronic health records
EHR contains patients’ information including but not limited to hospital visits, diagnosis records, 
medication records, laboratory results, allergies, immunization status, and basic personal information. 
EHRs describe patient information in a textual format, capturing their medical history in a time-series 
manner, which can reveal changes in their health status over time. Deep learning techniques can be 
leveraged to uncover hidden relationships among the various types of data in EHRs and provide related 
analyses.

However, conducting FL on distributed EHR data poses significant challenges in the real world, particularly 
due to issues such as data imbalance and missing data. In[54], the authors propose a systematic strategy to 
address the challenges of EHR data size imbalance and label imbalance in FL. Their focus is on providing 
COVID-19 vaccine side effect prediction. In another COVID-19-related work[71], the authors predict 
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mortality for COVID-19 patients using the EHR data from five hospitals. In the context of predictive 
models in FL, a federated optimization scheme is proposed to predict whether patients with heart-related 
diseases will be hospitalized within a target year using EHR data. To enhance the security and privacy of 
EHR data in FL, a more secure system is proposed in[72] to store the data, ensuring confidentiality while 
enabling collaborative analysis.

IoT data
With the increasing capabilities of internet of things (IoT) devices, health-related data collection has 
expanded, including periodic heart rate and blood oxygen measurements. These data can be utilized for 
body condition monitoring, fitness tracking, and elderly care[73]. Since the collected data is often distributed 
across multiple devices, FL enables the utilization of this data to train machine learning models without the 
need for data to leave the devices.

In one existing research work[74], a deep FL (DFL) framework is proposed for healthcare data monitoring 
and analysis in an IoT setting. The framework is tested on a skin disease detection task, and experimental 
results are provided. In another work[75], an in-home health monitoring system is proposed based on 
personalized FL. FL frameworks are also proposed to identify individuals' movements using data collected 
from wearable sensors[76]. Furthermore, several privacy-preserving FL IoT-related healthcare research 
works[77-79] address privacy and security concerns in IoT-based healthcare by combining FL with blockchain 
technology[80].

FEDERATED LEARNING FOR RARE DISEASE DETECTION
State-of-the-art work
The issue of imbalance in rare disease detection becomes even more challenging in the FL setting. In reality, 
each data holder may possess extremely limited patient data related to rare diseases. The distribution of rare 
disease data can be influenced by factors such as demographics and geographic information. For instance, 
larger hospitals may have more extensive rare disease data compared to smaller hospitals.

To the best of our knowledge, till this paper, there are limited research works specifically focusing on rare 
disease detection in FL. In[81], the authors discuss the challenges of EHR data heterogeneity and class 
imbalance in rare diseases. They propose an FL framework to mitigate the bias caused by imbalanced 
training data of rare diseases. Specifically, they propose to alleviate the attribute and class biases of the rare 
disease data by calibrating the feature extractor and the classifier of the models participating in the FL 
paradigm. In[82], an FL framework is presented for detecting glioblastoma sub-compartment boundaries 
using data from 6,314 glioblastoma patients across 71 geographically distinct sites spanning six continents. 
The authors provide detailed descriptions, observations, discussions, and supplementary information 
regarding their method. Their work shows the utility of federated learning at such scale and task complexity 
with multiple clients’ collaboration without sharing sensitive data. In[83], the authors focus on the inaccuracy 
tasks and participation of models with different qualities raised by the date property. They apply meta-
leaning in the FL framework to predict the rare disease via a proposed dynamic attention and aggregation 
mechanism, which boots the performance with respect to accuracy and time consumption. In[84], the authors 
explore the training of ECG and echocardiogram models for hypertrophic cardiomyopathy detection across 
different institutions in the FL setting. In particular, they combine both ECG and echocardiogram together 
to help hypertrophic cardiomyopathy detection and show the generalizability across multiple cohorts. In[85], 
a weakly supervised FL framework for computational pathology is proposed, addressing tasks such as multi-
class classification, binary classification, and survival prediction. As in the real-world setting, requiring all 
the data to be fully labeled is impractical. In addition, the proposed approach provides the capability for 
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each participant to preserve differential privacy by adding random noise. We summarize the existing related 
works from the dataset, task, and main technique perspectives in Table 1 and will keep maintaining it in the 
GitHub repository[86].

Future directions and discussion
In this subsection, we discuss the future possible directions of rare disease research in FL.

Lifelong and online machine learning for rare disease in FL
Indeed, the relationships between patients' features and rare diseases are complex and often hidden. 
Furthermore, the collection of patients' information in each participant within the FL framework occurs 
over a long period, representing a continuous process. This continuity presents an opportunity to improve 
the comprehensiveness and accuracy of rare disease diagnosis results.

Lifelong machine learning[87] and online machine learning[88] offer potential solutions for training machine 
learning models with continuously updated and accumulated data. In the FL setting, participants receive 
data continuously over the long term. They can update their local models using the accumulated patients' 
data. Simultaneously, FL allows for further updates through global model aggregation on the server side, 
followed by distributing the updated models to the client side. This mechanism facilitates the capture and 
exchange of the latest information on patients with rare diseases. Consequently, it enhances the effectiveness 
and timeliness of rare disease diagnosis within the FL framework. The integration of lifelong machine 
learning, online machine learning, and FL leverages the continuous and evolving nature of patient data to 
improve the accuracy and relevance of rare disease diagnosis.

Multi-modality rare disease detection in FL
As medical technology advances, the ability to collect data from different modalities has increased, 
providing better support for rare disease detection. However, research institutes, hospitals, and other data 
holders often possess different modalities of data, such as image data, EHR data, and IoT data. Furthermore, 
due to the unique properties of rare diseases, there may exist unrevealed and hidden relationships between 
different features extracted from patients' data.

However, it is unrealistic to assume that each data holder possesses or has the capability to process all 
modalities of patients' data. Therefore, there is a growing need to develop FL frameworks that can handle 
different modalities of medical data across various institutions. This framework should aim to maximize the 
utilization of available data and capture the hidden relationships to effectively support rare disease 
detection. By leveraging FL, institutions can collaborate and collectively train machine learning models 
without the need to share sensitive data. The FL framework enables the aggregation of knowledge from 
different modalities while preserving data privacy and security. This approach allows for a more 
comprehensive and holistic understanding of rare diseases by integrating diverse data sources. The 
development of an FL framework that supports multiple modalities of medical data across institutions holds 
great promise for advancing rare disease detection and improving patient outcomes.

Multi-task rare disease diagnosis in FL
Disease detection is a complex process that often requires collaboration between multiple research resources 
and knowledge from different domains. This collaboration can involve various departments within the same 
institution or across different institutions. Each party involved may be responsible for one or more specific 
tasks, such as analyzing lab results, segmenting X-ray scans, or classifying MRI images. In such scenarios, 
each participant in FL can utilize their local data to train machine learning models and contribute to 
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Table 1. Comparison of existing selected related work in rare disease detection with federated learning

Research work Dataset Task Main techniques

Federated learning with imbalanced and agglomerated 
data distribution for medical image classification[81]

1. Real multi-source dermoscopic image 
datasets 
2. Intracranial hemorrhage classification 
3. Skin Lesion Classification

Classification Feature learning, 
classifier learning

Federated learning enables big data for rare cancer 
boundary detection[82]

1. Private data 
2. International brain tumor segmentation 
(BraTS) 2020 challenge

Boundary 
detection

Data processing, 
low-resource model 
running design

DFML: Dynamic federated meta-learning for rare disease 
prediction[83]

1. Arrhythmia[83] 
2. Noninvasive fetal ECG: the 
physionet/computing in cardiology 
challenge 2013

Prediction Meta-learning

Multinational federated learning approach to train ECG 
and echocardiogram models for hypertrophic 
cardiomyopathy detection[84]

Private data Detection Model generalizability

Federated learning for computational pathology on 
gigapixel whole slide images[85]

1. Date from the cancer genome atlas 
2. Private data

Prediction Weakly-supervised 
Learning, 
differential privacy

collective knowledge without compromising data privacy.

From a global perspective, the server in the FL framework can aggregate the contributions from each 
participant and generate a comprehensive diagnosis for the targeted rare disease based on the collected 
information. This aggregation process allows for a holistic view of the disease and leverages the expertise of 
multiple participants. From the perspective of each participant, the FL framework offers several benefits. 
Participants can perform their tasks locally, leveraging their own data, expertise, and resources. The FL 
framework ensures data privacy and security by allowing participants to keep their data within their own 
environments without the need for direct data sharing. Additionally, participants can benefit from the 
collective knowledge and insights gained through the collaboration with other participants, enhancing the 
accuracy and effectiveness of their individual tasks. Overall, an FL framework facilitates efficient 
collaboration among participants, enabling comprehensive disease diagnosis while preserving data privacy 
and benefiting each participating party.

Rare disease in heterogenous FL
Rare disease detection in the medical and FL domains presents unique challenges due to its high level of 
heterogeneity. At the patient level, individuals with the same rare disease can exhibit diverse characteristics, 
including age, gender, and medical history. Furthermore, at the institutional level, each participant may 
possess different types and sizes of datasets, with the occurrence and frequency of specific rare disease cases 
varying based on geographic location and population density[89]. In addition, the popularity density will also 
have effects on the cases that each institute is able to collect.

Addressing the heterogeneity challenge in rare disease detection requires the design of an FL framework 
that can effectively handle these variations. The framework should consider the diverse characteristics of 
patients and their associated data, as well as the differences in rare disease cases and dataset sizes across 
participating institutions. Strategies need to be developed to accommodate modality missing, task diversity, 
and variations in data availability to ensure accurate and reliable detection and diagnosis performance. 
Overcoming heterogeneity in rare disease detection within an FL setting is crucial for leveraging the 
collective knowledge and resources of participants, ultimately leading to improved outcomes for patients 
with rare diseases.
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Large model-enhanced rare disease diagnosis in FL
In recent years, large models have garnered significant attention and achieved remarkable results in various 
domains, attracting both industry and academia. These models exhibit the capability to handle diverse types 
of data and perform complex tasks such as recognition, summarization, generation, question-answering, 
and even basic communication with humans. Their success can be attributed to the wealth of knowledge 
they acquire from extensive training data. However, when it comes to the medical field, particularly in the 
context of rare disease diagnosis, large models often lack specific domain knowledge and access to 
distributed data held by multiple entities.

The sensitive nature of medical data, coupled with strict data privacy regulations, imposes limitations on 
directly feeding medical data into large models. Nevertheless, FL presents a promising solution by allowing 
each local client to leverage the powerful capabilities of large models while preserving data privacy. FL 
enables collaborative learning across multiple institutions or data holders, where each participant can utilize 
its local data to contribute to the training process without sharing the actual data. This way, large models 
can be effectively applied to medical domains, including rare disease diagnosis, by leveraging the expertise 
and insights gained from clinical notes, EHR data, medical images, and other relevant information. FL 
bridges the gap between the power of large models and the privacy requirements of medical data, enabling 
the development of robust and accurate rare disease diagnosis systems.

Human-involved rare disease diagnosis in FL
In the context of rare disease diagnosis, the involvement of human experts, such as doctors, researchers, and 
domain specialists, is crucial due to the complexity and uniqueness of rare diseases. Considering two 
practical scenarios, where participants are either hospitals with medical experts or entities with only data 
and machine learning capabilities, two research directions can be explored to cater to these scenarios.

In the first scenario, where participants have both data and medical experts, it is important to design a 
mechanism that facilitates the aggregation of comprehensive diagnosis from both machine learning models 
and human experts in a privacy-preserving manner. One possible approach is to leverage large language 
models on the server side to aggregate and extract accurate information without directly exchanging 
sensitive patient data. The server can utilize these models to analyze the local diagnoses provided by each 
participant, extract relevant insights, and generate feedback to refine and improve the local diagnoses. This 
collaborative approach ensures that valuable expertise from human professionals is combined with the 
power of machine learning models, leading to more accurate and comprehensive rare disease diagnosis 
within each participating institution. In the second scenario, where participants lack local medical experts 
but possess data and machine learning capabilities, the focus is on leveraging FL mechanisms to support 
diagnosis by providing additional information and insights. Local models can collaborate through FL to 
generate diagnostic support, such as uncertainty scores and interpretations, which can be shared with 
human experts on the server side. This collaboration helps bridge the expertise gap by empowering human 
professionals with valuable insights from machine learning models. By incorporating the information 
derived from FL-based models, experts can make more informed decisions and enhance the accuracy and 
efficiency of rare disease diagnosis.

Both research directions aim to capitalize on the strengths of machine learning models and human expertise 
in rare disease diagnosis. By carefully designing mechanisms for information aggregation, feedback 
generation, and collaborative decision-making, FL can facilitate a synergistic relationship between machines 
and humans, leading to improved diagnosis outcomes while ensuring the privacy and security of sensitive 
patient data.
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PUBLIC DATASETS FOR RARE DISEASE DETECTION
In this section, we will share several existing public rare disease datasets.

Orphanet
Orphanet[90] was established by French National Institute for Health and Medical Research (INSERM) and 
has been a European endeavor since 2000. It has abundant rare disease resources to support rare disease-
related research, diagnosis, treatment, and patient care. Statistically, there are 6,172 rare diseases, 5,835 
genes, 8,238 expert centers, and 45,734 diagnostic tests.

OMIM
Online mendelian inheritance in man[91] (OMIM) is a compendium of human genes and genetic 
phenotypes, which is open access. The database was initially created in the early 1960s and evolved into its 
online version, OMIM, in 1985, becoming available on the Internet in 1987. It provides online searching 
functions, basic statistics, and downloads via registration or API access.

MESSIDOR
MESSIDOR stands for Methods to Evaluate Segmentation and Indexing Techniques in the field of Retinal 
Ophthalmology (in French), which is for computer-assisted diagnoses of diabetic retinopathy. There are 
1,200 images from three ophthalmologic departments using a color video 3CCD camera. For each image, 
there are two diagnoses from the medical experts: retinopathy grade (0,1,2,3) and risk of macular edema 
(0,1,2). Till this paper, this dataset was last updated on 31 August, 2016.

Others
There are several existing research works where authors combine, organize, link, and extract the existing 
databases to create easy-to-use datasets. In[92], the authors collected 4,166 rare monogenic diseases and 
linked them to 3,163 causative genes, which utilizes the information from OMIM, PubMed, Wikipedia, 
whonamedit.com, and Google Scholar. In the paper, they described the data collection, technical validation, 
and usage notes.

CONCLUSION
This survey encompasses a comprehensive summary of prevailing AI techniques employed in the detection 
of rare diseases, alongside an examination of federated learning methodologies within the domain of 
healthcare informatics. Moreover, we provide an overview of cutting-edge advancements utilizing federated 
learning for the purpose of rare disease detection, and explore potential topics for future research. To 
facilitate the validation of newly developed federated learning models, we also compile a selection of 
relevant datasets. The application of federated learning techniques to the detection of rare diseases not only 
offers a practical solution but also holds profound significance. We ardently hope that this survey will 
inspire an increased number of researchers to dedicate their efforts to this vital area of investigation.
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