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Abstract
Multi-vehicle pursuit (MVP) is one of the most challenging problems for intelligent traffic management systems due
tomulti-source heterogeneous data and its mission nature. While many reinforcement learning (RL) algorithms have
shown promising abilities for MVP in structured grid-pattern roads, their lack of dynamic and effective traffic aware-
ness limits pursuing efficiency. The sparse reward of pursuing tasks still hinders the optimization of these RL al-
gorithms. Therefore, this paper proposes a distributed generative multi-adversarial RL for MVP (DGMARL-MVP)
in urban traffic scenes. In DGMARL-MVP, a generative multi-adversarial network is designed to improve the Bell-
man equation by generating the potential dense reward, thereby properly guiding strategy optimization of distributed
multi-agent RL. Moreover, a graph neural network-based intersecting cognition is proposed to extract integrated fea-
tures of traffic situations and relationships among agents from multi-source heterogeneous data. These integrated
and comprehensive traffic features are used to assist RL decision-making and improve pursuing efficiency. Extensive
experimental results show that the DGMARL-MVP can reduce the pursuit time by 5.47% compared with proximal
policy optimization and improve the pursuing average success rate up to 85.67%. Codes are open-sourced in Github.

Keywords: Generative multi-adversarial reinforcement learning, graph neural network, intersecting cognition, multi-
vehicle pursuit
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1. INTRODUCTION
Enabled by novel sensing technology [1] and the self-learning ability of reinforcement learning (RL) [2], the
intelligent traffic management system is enjoying a significant upgrade and showing great potential to solve
various problems in intelligent transportation systems (ITS) [3]. As a complex special scene, multi-vehicle
pursuit (MVP) describes the problem of multiple vehicles capturing several moving targets [4], represented by
the New York City Police Department guideline on the pursuit of suspicious vehicles [5]. Moreover, various
military intelligence combat scenes can also be modeled as MVP [6]. Effective reward guidance [7] and compre-
hensive perception [8] of complex and dynamic urban traffic environments are the keys to solving the MVP
problem and are gradually becoming hot topics.

Aiming at the MVP problem, Garcia et al. extended classical differential game theory and devised saddle-
point strategies [9] to address multi-player pursuit-evasion problems. Xu et al. considered greedy, lazy, and
traitorous pursuers during the pursuit and rigorously re-analyzed Nash equilibrium [10]. A graph-theoretic
approach [11] was employed to study the interactions of the agents and obtain distributed control policies for
pursuers. A region-based relay pursuit scheme [12] was designed for the pursuers to capture one evader. Jia
et al. proposed a policy iteration method-based continuous-time Markov decision process (MDP) [13] to opti-
mize the pursuer strategy. However, these classical methods for MVP are not competent for complex traffic
scenes with more constraints due to poor robustness. De Souza et al. introduced distributed multi-agent RL
and curriculum learning to MVP problems [14]. To improve pursuing efficiency, Zhang et al. constructed a
multi-agent coronal bidirectionally coordinated with a target prediction network [15] based on the multi-agent
deep deterministic policy gradient. For efficient cooperation among pursuers, Yang et al. designed a hierar-
chical collaborative framework [16]. Zheng et al. extended multi-to-multi competition to air combat among
unmanned aerial vehicles [17]. However, due to the mission nature of MVP, the pursuers only obtain a sparse
reward after successfully capturing an evader. None of the aforementioned RL-based methods have addressed
the sparse reward problem. This issue blurs the direction of the gradient descent of neural networks and seri-
ously affects the strategy optimization. In addition, the lack of dynamic and effective awareness in the above
MVP methods limits pursuing efficiency.

Due to powerful capabilities of distribution feature extraction and data generation, generative adversarial net-
works (GANs) have drawn growing interest in recent years [18] and have been combined with RL to optimize
strategies. To address the problem of incomplete observation of traffic information,Wang et al. used GANs for
traffic data recovery to assist in deep RL (DRL) decision-making [19]. A GAN-assisted human preference-based
RL approach [20] was proposed that adopted a GAN to learn human preferences. Li et al. designed a condi-
tional deep generative model to predict future trajectory distribution [21]. The adversarial training of GANs
was introduced into the policy network and critic network [22] to optimize RL training. Zheng et al. developed
a reward-reinforced GAN [23] to represent the distribution of the value function. However, mission-critical
requirements of MVP pose significant challenges to these methods. The problem of the sparse reward remains
unsolved, hindering the RL optimization.

Graph neural networks (GNNs) have an excellent ability to handle unstructured data and are widely applied to
modelingmulti-agent interactions and feature extraction of traffic information. Liu et al. modeled the relation-
ship between agents by a complete graph [24] to indicate the importance of the interaction between two agents.
For cooperation among heterogeneous agents, Du et al. proposed a heterogeneous graph attention network [25]
to model the relationships among these diverse agents. GNNs were employed to model vehicle relationships
and extract traffic features to enhance autonomous driving [26,27]. A GNN with spatial-temporal clustering [28]

was designed for traffic flow forecasting. However, the single-layer GNN structure in the above methods did
not couple the interaction model and traffic information of agents, which affects the RL collaborative game
decision-making in complex urban traffic scenes.
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Figure 1. Architecture of DGMARL-MVP. Urban traffic environments for MVP (A) provide complex pursuit-evasion scenes and interactive
environments for RL. Every pursuing vehicle targets the nearest evading vehicle and launches a collaborative pursuit. GNN-based intersect-
ing cognition (B) couples the traffic information and multi-agent interaction features to assist GMAN boosting reinforcement learning (C)
in decision-making. GMANs (D) to guide RL strategy optimization via generating dense rewards, replacing the approximation of Bellman
updates. MVP: Multi-vehicle pursuit; GNNs: graph neural networks; GMAN: generative multi-adversarial network.

In summary, as for the existing approaches for MVP, sparse reward and the lack of comprehensive traffic cog-
nition severely limit the collaboratively pursuing efficiency. To address these problems, this paper proposes
distributed generative multi-adversarial RL for MVP (DGMARL-MVP) in urban traffic scenes, as shown in
Figure 1. Firstly, a generative multi-adversarial network (GMAN) is designed to guide RL strategy optimiza-
tion via generating dense rewards, replacing the approximation of Bellman updates. The generative multi-
adversarial RL can be applied to a wide range of multi-agent systems with sparse rewards to improve task-
related performance. Moreover, a proposed GNN-based intersecting cognition promotes deep coupling of
traffic information and multi-agent interaction features. The contributions of this paper are summarized as
follows.

• This paper proposes DGMARL-MVP in urban traffic scenes. In DGMARL-MVP, a GMAN is designed to
improve the Bellman equation by generating the potential dense reward, thereby properly guiding strategy
optimization of distributed multi-agent RL (MARL).

• GNN-based intersecting cognition is proposed to promote deep coupling of traffic information and multi-
agent interaction features to assist in improving the pursuing efficiency.

• This paper applies DGMARL-MVP to the simulated urban roads with 16 junctions and sets different pur-
suing difficulty levels with variable numbers of pursuing vehicles and evading vehicles. In the three tested
difficulty levels, DGMARL-MVP reduces the pursuit time by 5.47% on average compared to proximal pol-
icy optimization (PPO) and improves the pursuing average success rate to 85.67%. Codes are open-sourced
at https://github.com/BUPT-ANTlab/DGMARL-MVP.

The rest of this paper is organized as follows. Section II describes MVP in an urban traffic scene and models
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the MVP problem based on the MDP. Section III presents generative multi-adversarial RL (GMARL) and its
training process. Section IV presents distributed GMARL with GNN-based intersecting cognition for MVP.
Section V gives the performance of the proposed method. Section VI draws conclusions.

2. MULTI-VEHICLE PURSUIT IN DYNAMIC URBAN TRAFFIC
This section first introduces the details of the complex urban traffic environment for the MVP problem. Then,
the modeling process of the MVP problem is stated as an MDP, and the basic Q-learning algorithm focusing
on the update process is introduced.

2.1. Complex urban traffic environment for MVP
This paper focuses on the problem ofMVP under the complex urban traffic and constructs amulti-intersection
traffic scene. Each road is set to bidirectional two lanes and fixed-phase traffic lights at each intersection. In
this scene, there are 𝑀 pursuing vehicles, 𝑁 evading vehicles (𝑀 > 𝑁), 𝐵 background vehicles, and 𝐿 lanes.
Specifically, the background vehicles follow the randomly selected routes, and the evading vehicles randomly
select the routes from the preset routes. The pursuing vehicles share the companies and target information
via road side units. Each pursuing vehicle integrates multi-source heterogeneous data to make decisions dis-
tributedly. If the evading vehicles are not totally captured within 𝑠𝑡 time steps, the MVP task fails. When all
evading vehicles are captured or the time steps reach 𝑠𝑡, the pursuit is Done.

Furthermore, the following constraints are set in the MVP environment: (1) All vehicles obey the traffic rules
for collision-free driving; (2) The maximum speed 𝑣max, maximum acceleration 𝑎𝑐max, and maximum decel-
eration 𝑑𝑒max of all pursuing vehicles and evading vehicles are set to be consistent; (3) Pursuing vehicles and
evading vehicles are randomly initialized at the edge of the traffic map, respectively.

2.2. MDP-based MVP problem formulation
In this paper, the decision-making of each pursuing vehicle only depends on the current state, so the decision
process can be modeled as the MDP defined by a tuple {𝑆, 𝐴, 𝑃, 𝑅}. 𝑠𝑡 ∈ 𝑆, 𝑎𝑡 ∈ 𝐴 denote the state and action
at time step 𝑡. 𝑃 is the state transition probability from the current state 𝑠𝑡 to the next state 𝑠𝑡+1 by executing
the action 𝑎𝑡 . 𝑟𝑡 ∈ 𝑅 : 𝑎𝑡 × 𝑠𝑡 → R is a real valued reward.

RL provides an excellent solution to MDP games. As an advanced RL algorithm for the problem with discrete
action space, Q-learning enables decision-making without exact state transition probability and initial state.
For a Q-learning-based agent, the expectation values 𝑞 of all actions in state 𝑠𝑡 are evaluated by 𝑄𝜋 (𝑠𝑡 , 𝑎)
function, and the optimal strategy 𝜋 chooses the action 𝑠𝑡 with the greatest expectation to execute. Through the
continuous interaction between the agent and the environment, the𝑄𝜋 (𝑠, 𝑎) function is updated, achieving the
purpose of selecting the optimal strategy finally. According to the Bellman equation, the optimal state-action
value function can then be derived as

𝑄𝜋∗ (𝑠𝑡 , 𝑎𝑡) = E𝑠𝑡+1∼𝑃(.| 𝑠𝑡 ,𝑎𝑡 ) (𝑟𝑡 + 𝛾max
𝑎𝑡+1

𝑄𝜋 (𝑠𝑡+1, 𝑎𝑡+1)). (1)

And the updating process of Q-learning can be expressed as{
𝑄𝑡𝑎𝑟𝑔𝑒𝑡 (𝑠𝑡 , 𝑎𝑡) = 𝑟𝑡 + 𝛾max

𝑎𝑡+1
𝑄𝜋 (𝑠𝑡+1, 𝑎𝑡+1),

𝑄𝜋 (𝑠𝑡 , 𝑎𝑡) ← 𝑄𝜋 (𝑠𝑡 , 𝑎𝑡) + 𝛼[ 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 (𝑠𝑡 , 𝑎𝑡) −𝑄𝜋 (𝑠𝑡 , 𝑎𝑡)],
(2)

where 𝛼 is the learning rate and 𝛾 is the discount factor, indicating the impact of future earnings on the current
expectation value. For pursuing vehicle 𝑚, the function 𝑄𝜋 (𝑠𝑡 , 𝑎) calculates the expectation values of turning
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left, turning right turn and going straight according to the current state 𝑠𝑡 to assist the vehicle in selecting the
optimal route to pursue the evader.

3. GENERATIVE MULTI-ADVERSARIAL REINFORCEMENT LEARNING
In order to effectively solve the reward sparsity problem of MVP, a GMAN is introduced to improve the Bell-
man equation by generating suitable potential dense rewards during optimizing RL. Section 3.1 describes the
principles and details of how a GMAN generates estimated rewards. Section 3.2 presents GMAN boosting RL
and its training process.

3.1. Generative multi-adversarial network for dense reward
As a special game task, the reward of MVP is extremely sparse. Only when the pursuing vehicle captures an
evading vehicle can the RL-based agent obtain a reward. The sparse reward blurs the optimization direction of
RL, thus seriously hindering the strategy update. In this paper, a conditional generative network𝐺 is designed
to estimate the potential future rewards and guide the RL training. Therefore, this paper adopts a GMAN to
train the generative network 𝐺 and generate appropriate dense rewards.

Suppose the state of the agent 𝑛 at time step 𝑡 is 𝑠𝑛𝑡 , the action is 𝑎𝑡 , and the cumulative rewards obtained by 𝑛
from 𝑡 until the end of the episode are

𝑅𝑡 =
∑
𝑇=𝑡+1

(𝛾) (𝑇−𝑡) 𝑟𝑇 . (3)

The optimization objective of the generative network is to learn the contribution of the cumulative rewards 𝑝𝑅
and make its output𝐺 (𝑧, [𝑠𝑡 , 𝑎𝑡]) fit 𝑅𝑡 , where 𝑧 ∼ 𝑝𝑧 is a simple fixed distribution that is easy to draw samples
from.

In GMAN, the generating network 𝐺 performs a max-min game with 𝐼 discriminators to update parameters.
For discriminator 𝐷𝑖 , the optimization objective is to distinguish data generated by 𝐺 from the original data,

arg max
𝐷𝑖

𝑉 ′𝑖 (𝐷𝑖 , 𝐺) = E𝑅∼𝑝𝑅 [log(𝐷𝑖 (𝑅))] + E𝑧∼𝑝𝑧 [log(1 − 𝐷𝑖 (𝐺 (𝑧, [𝑠, 𝑎])))] . (4)

In practice, training against a far superior discriminator can impede the learning of the generator. To solve
this problem and increase the stability of the generator, a classical Pythagorean mean is chosen as the fusion
function 𝐹𝑠𝑜 𝑓 𝑡 to soften 𝑉 ′𝑖 (𝐷𝑖 , 𝐺), which is parameterized by 𝜆 where 𝜆 = 0 corresponds to the mean and the
max is recovered as 𝜆→∞.

𝑉 = 𝐹𝑠𝑜 𝑓 𝑡 (𝑉 ′) = − exp(
𝐼∑
𝑖

𝑒𝜆𝑉
′
𝑖∑

𝑗 𝑒
𝜆𝑉 ′𝑗

log(−𝑉 ′𝑖 )). (5)

Then, the discriminator 𝐷𝑖 and generator 𝐺 are updated by descending their stochastic gradient,

∇𝜃𝐷𝑖

1
𝐾

𝐾∑
𝑘

[log(𝐷𝑖 (𝑅)) + log(1 − 𝐷𝑖 (𝐺 (𝑧, [𝑠, 𝑎])))], (6)

∇𝜃𝐺
1
𝐾

𝐾∑
𝑘

log(1 − 𝐹𝑠𝑜 𝑓 𝑡 (𝐷𝑖 (𝐺 (𝑧, [𝑠, 𝑎])))). (7)

Therefore, by training with historical experience replay, a GMAN is able to generate potential future rewards
𝐺 (𝑧, [𝑠𝑛𝑡 , 𝑎𝑛𝑡 ]) according to the current state and action of the agent. 𝐺 (𝑧, [𝑠𝑛𝑡 , 𝑎𝑛𝑡 ]) is used to boost the training
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process of RL and make its policy forward-looking. Meanwhile, the generated dense reward also effectively
promotes RL convergence.

3.2. GMAN boosting reinforcement learning
The sparsity of rewards is a great challenge for the optimization of RL. In MVP, the RL-based agent explores
many steps to obtain only one positive or negative reward, which leads to a vague direction of gradient descent
for the agent. Therefore, this paper proposes a novel GMAN boosting RL. GMAN boosting RL generates
reasonably dense rewards via virtue of the powerful generative power of the generative network. And the
generated reward also includes the potential future benefit of the RL decision to improve the learning efficiency
and the decision foresight of RL.

In GMAN boosting RL, the Bellman equation is modified using the generated reward. The approximation of
future reward is replaced by 𝐺 (𝑧, [𝑠𝑡 , 𝑎𝑡]). The equation for target Q after upgrading the Bellman equation is

𝑄𝑡𝑎𝑟𝑔𝑒𝑡 (𝑠𝑡 , 𝑎𝑡) = 𝑟𝑡 + 𝐺 (𝑧, [𝑠𝑡 , 𝑎𝑡]). (8)

In this paper, the deep neural network 𝑄 is employed to fit the values of actions. Therefore, the loss of the 𝑄
network is calculated as

𝑙𝑜𝑠𝑠 =
1
𝐾

∑
𝑘

(𝑄(𝑠𝑡 , 𝑎𝑡) −𝑄𝑡𝑎𝑟𝑔𝑒𝑡)2. (9)

Distributed on-policy training is adopted in the proposed GMAN Boosting RL.The overall training process is
shown in Algorithm 1. For every RL-based agent, the experience collected by the current policy is stored in the
replay buffer G. At the start of training, experience (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑅𝑡) is sampled from G. With the assistance
of the generative network, the parameters of RL are updated via Eq. (9). Finally, the discriminators and the
generator are trained in turn to help the generator learn the distribution of cumulative rewards under different
state-action pairs. Through multiple cycles of training, GMAN boosting RL can have a forward-looking and
optimal strategy to handle complex MVP problems with sparse reward.

Algorithm 1: Training Process of GMAN Boosting Reinforcement Learning
Input: RL-based agent 𝑄, generator 𝐺, 𝐼 discriminators, and the experience replay buffer G

collected by 𝑄
1 Sample (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑅𝑡) from G;
2 Generate potential dense reward 𝐺 (𝑧, [𝑠𝑡 , 𝑎𝑡]) by 𝐺;
3 Calculate the loss of 𝑄 via Eq. (9) and update 𝑄 network;
4 for i=1:I do
5 Update discriminator 𝐷𝑖 via Eq. (6);
6 end
7 Update generator 𝐺 via Eq. (7);
8 Clear 𝑅𝑏;

4. DISTRIBUTED GMARL WITH GNN-BASED COGNITION FOR MVP
To enhance comprehensive cognition of complex urban traffic inMVP, a novel double-layer intersecting GNN
is proposed to couple the traffic information and multi-agent interaction features. Section 4.1 mainly intro-
duces the details of GNN-based intersecting cognition. DGMARL-MVP is described in Section 4.2. Finally,
the decision-making and training flowchart of the proposed DGMARL-MVP is demonstrated in Section 4.3.

4.1. GNN-based intersecting cognition
In this paper, a double-layer intersecting graph network is used with a road graph to perceive the traffic con-
dition and a vehicle graph to extract efficient information for pursuing vehicles, as shown in Figure 2. And
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Figure 2. Architecture of GNN-based Intersecting Cognition. GNNs: graph neural networks.

the main idea of intersecting lies in using the perceived traffic information to construct the vehicle graph. It
enables a deep coupling of road information with vehicle information.

Each lane is modeled as a node on the first road graph, and the topological relationship of the road is regarded
as the edge of the graph. More formally, the constructed road graph is described as 𝐺1 = {𝑁1, 𝐴1}, where
𝑁1 = {𝑛1

𝑖 , 𝑖 ∈ {1, 2, . . . , 𝑙}} is a set of node attributes and 𝐴1 = {𝑒1
𝑖 𝑗 , 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑙}} is a set of edge

attributes. Specifically, 𝑛1
𝑖 = [𝑛𝑏𝑖 , 𝑛𝑝𝑖 , 𝑛𝑒𝑖] represents the node feature consisting of the number of three types

of vehicles (including background, pursuing and evading vehicles) in lane 𝑖, respectively. 𝑙 denotes the number
of nodes in the constructed graph that is equal to the total number of lanes. 𝑒1

𝑖 𝑗 denotes the edge value of lane
𝑖 and lane 𝑗 . 𝑒1

𝑖 𝑗 = 1when lane 𝑖 and lane 𝑗 are connected, while 𝑒1
𝑖 𝑗 = 0 lane 𝑖 and lane 𝑗 are not adjacent.

The first road graph network consists of fully connected layers (FC) Φ𝐹𝐶
1 and graph convolutional network

(GCN) Φ𝐺
1 . The node features are firstly input into the FC to assist GCN in understanding their semantic

information, represented as 𝑁1
𝐹𝐶 = Φ𝐹𝐶

1 (𝑁
1). Then, GCN merges the global traffic node information and

produces high-level semantic information. The process can be formulated as follows

𝐺_𝑜𝑢𝑡1 = Φ𝐺
1 .

(
𝑁1
𝐹𝐶 , 𝐴

1
)
= 𝐷

1
2
1 𝐴

1𝐷
− 1

2
1 𝑁1

𝐹𝐶𝑊 + 𝑏, (10)

where 𝐷1 is the degree matrix and 𝐷1
𝑖𝑖 =

∑
𝑗 𝐴

1
𝑖 𝑗 , and 𝑊 is the trainable weight matrix 𝐺_𝑜𝑢𝑡1 is set to the

shape of (𝑙 × 𝑙), representing the relationship between roads based on traffic density.

The vehicle graph𝐺2 = {𝑁2, 𝐴2} takes the ego pursuing vehicle and all evading vehicles as nodes 𝑁2 = {𝑛2
𝑖 , 𝑖 ∈

{1, 2, . . . , 𝑀 + 1}}, where 𝑀 is the number of evading vehicles, 𝑛2
𝑖 is the position embedding of pursuing vehi-
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cles or evading vehicles. Obviously, each pursuing vehicle obsesses an independent sub-graph. The adjacency
matrix 𝐴2 = {𝑒2

𝑖 𝑗 , 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑀 + 1}} is deliberately designed and significantly meaningful in this paper.
Given that 𝐺1 contains the relationship of each lane based on traffic density in our conception, a threshold 𝜀
is set to identify traffic-sensing connections between ego vehicles and each evading vehicle:

𝑒2
𝑖 𝑗 =

{
1 𝐺_𝑜𝑢𝑡1

(
𝐼𝑖, 𝑗

)
> 𝜀,

0 𝐺_𝑜𝑢𝑡1
(
𝐼𝑖, 𝑗

)
< 𝜀,

(11)

where 𝐼1 represents the number of the located lane of the ego pursuing vehicle, and 𝐼 𝑗 represents that of the
evading vehicle 𝑗 . The calculating process of the vehicle graph is the same as the traffic graph network. The
output of vehicle graph 𝐺2 is 𝐺_𝑜𝑢𝑡2 = Φ𝐺

2

(
𝑁2
𝐹𝐶 , 𝐴

2
)
, 𝑁2

𝐹𝐶 = Φ𝐹𝐶
2 (𝑁

2) is the output of FC Φ𝐹𝐶
2 .

4.2. Distributed GMARL for MVP
In this paper, a deep neural network is adopted to fit𝑄𝜋 (𝑠𝑡 , 𝑎𝑡). For the pursuing vehicle 𝑛, the GMARL-based
agent is used to plan the optimal pursuit route. The agent contains a neural network with a parameter 𝜃𝑛, an
online network𝑄𝜋

𝑛 (𝑠𝑛𝑡 , 𝑎𝑛𝑡 |𝜃𝑛), to estimate the𝑄 value of the action 𝑎𝑛𝑡 in the current state 𝑠𝑛𝑡 . The architecture
of DGMARL-MVP is shown in Figure 3.

Each pursuing vehicle distributedly makes decisions based on its own observations and shared information.
For pursuing vehicle 𝑛, its state 𝑠𝑛𝑡 consists of three parts, including its own position 𝑙𝑜𝑐𝑛𝑡 , the position of the
closest evading vehicles 𝑙𝑜𝑐𝑚𝑡 , and road-vehicle hybrid features 𝐺_𝑜𝑢𝑡2. In this paper, the location of vehicle 𝑛
is denoted by 𝑙𝑜𝑐𝑛𝑡 =

{
𝐶𝑜𝑑𝑒𝑙 , 𝑝𝑜𝑠

𝑛,𝑙
𝑡

}
. And the length of 𝑙𝑜𝑐𝑛𝑡 is denoted by 𝑙𝑒𝑛𝑙𝑜𝑐 . 𝐶𝑜𝑑𝑒𝑙 denotes the binary

code of lane 𝑙 where vehicle 𝑛 is located, and 𝑝𝑜𝑠𝑛,𝑙𝑡 denotes the distance between vehicle 𝑛 and the starting of
lane 𝑙 at time 𝑡.

Due to the constraints of the traffic scene, the action space of the pursuing vehicles contains three elements, i.e.,
turning left, turning right, and going straight at the next intersection. And the expectation values of turning left
𝑞
𝑛,𝑙𝑒 𝑓
𝑡 , turning right 𝑞𝑛,𝑟𝑖𝑔𝑡 , and going straight 𝑞𝑛,𝑠𝑡𝑟𝑡 are calculated according to the pursuing vehicle 𝑛’s current

state 𝑠𝑛𝑡 . The agent randomly chooses an action with probability 𝜖 to explore or exploit with probability 1 − 𝜖
by selecting the action with the largest q-value. In particular, if a vehicle encounters a T-junction that only
enables going straight and turning right and, unfortunately chooses to turn left, the agent will randomly select
the action to execute in the reasonable action space.

To motivate the capture of pursuing vehicles and incentivize efficient training, an elaborately designed reward
𝑟𝑛𝑡 consists of two parts.

1. Only the pursuing vehicle 𝑛 successfully captures an evading vehicle does it obtain a positive reward 𝑅𝑉 .

2. A distance-sensitive reward is set to improve the pursuing efficiency. When a pursuing vehicle reduces the
distance from the closest evading vehicle compared to that at the last time step, it will obtain a positive reward,
and conversely, it will be punished with a negative reward.

Therefore, the formulation of 𝑟𝑛𝑡 is expressed as

𝑟𝑛𝑡 =

{
𝑅𝑉 if successful pursuit,
𝜎
(
𝑑𝑛,𝑚𝑡 − 𝑑𝑛,𝑚𝑡−1

)
else, , (12)

where 𝜎 is a negative reward factor, and 𝑑𝑛,𝑚𝑡 denotes the distance of the pursuing vehicle 𝑛 from the closest
evading vehicle 𝑚 at the time step 𝑡.
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Figure 3. Architecture of Distributed GMARL for MVP. MVP: Multi-vehicle pursuit.

Each agent is updated by gradient descent in distributed training. Specifically, 𝜃𝑛 is iteratively updated through
stochastic gradient descent (SGD) using random samples from the experience replay buffer. Suppose the sam-
ple data is denoted as

{
𝑠𝑛𝜏 , 𝑎

𝑛
𝜏 , 𝑟

𝑛
𝜏 , 𝑠

𝑛
𝜏+1

}
. The gradient of online network 𝑄𝜋

𝑛 (𝑠, 𝑎 |𝜃𝑛) is delivered as

∇𝜃𝑛 𝐽 =
1
𝐾

∑
𝜏

∇𝜃𝑛
(
𝑟𝑛𝜏 + 𝐺 (𝑧, [𝑠𝑛𝜏 , 𝑎𝑛𝜏]) −𝑄𝜋

𝑛

(
𝑠𝑛𝜏 , 𝑎

𝑛
𝜏 |𝜃𝑛

) )2 (13)

4.3. Decision-making and training process of DGMARL-MVP
This part presents the overall decision-making and online training process of DGMARL-MVP, as shown in
Algorithm 2. At the beginning of each episode, the urban pursuit-evasion environment and the local state of
all agents are initialized. Then, the road information and the position information of vehicles are fed into the
intersecting graph network outputting 𝐺_𝑜𝑢𝑡2, which extracts integrated features of the traffic situation and
agent relationships from multi-source heterogeneous data. Equipped with 𝐺_𝑜𝑢𝑡2, 𝑛 agents form their own
local state using the other position information, individual position information 𝑙𝑜𝑐𝑛𝑡 , and position information
of evading vehicles 𝑙𝑜𝑐𝑚𝑡 . And each pursuing vehicle 𝑛 selects an action 𝑎𝑛𝑡 according to the current policy 𝑄𝜋

𝑛

with the local state. The local state will be updated and the reward will be feedback after each agent performs 𝑎𝑛𝑡 .
Each transition (𝑠𝑛𝑡 , 𝑎𝑛𝑡 , 𝑟𝑛𝑡 , 𝑠𝑛𝑡+1) is then stored in the separate replay buffer G𝑛.The potential future rewards 𝑅𝑛𝑡
are generated by a conditional generative network. 𝑅𝑛𝑡 is appended to the experience replay buffer to estimate
and guide the RL training. Then, the training processes of the distributed networks are according to Algorithm
1.
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Algorithm 2: DGMARL-MVP Decision-making and Online Training Algorithm
1 Initialize 𝑁 DGMARL-based agents with GNN-based cognition, generator 𝐺, and discriminators
{𝐷𝑖 , 𝑖 ∈ {1, 2, . . . , 𝐼}} ;

2 Initialize experience replay buffers {G𝑛, 𝑛 ∈ {1, 2, . . . , 𝑁}} ;
3 for e=1:max_epoch do
4 Initialize an urban pursuit-evasion environment and obtain initialized state {𝑠𝑛𝑡 };
5 for n=1:N do
6 Get 𝐺_𝑜𝑢𝑡2 by GNN-based intersecting cognition;
7 Choose the nearest evading vehicle 𝑚 as pursuing vehicle 𝑛’s target;
8 𝑠𝑛𝑡 ← [𝐺_𝑜𝑢𝑡2, 𝑙𝑜𝑐𝑛𝑡 , 𝑙𝑜𝑐𝑚𝑡 ];
9 end
10 for t=1:st do
11 for n=1:N do
12 Obtain 𝑎𝑛𝑡 by 𝑄𝜋

𝑛 (𝑠𝑛𝑡 |𝜃𝑛 );
13 end
14 Perform the strategy {𝑎𝑛𝑡 , 𝑛 ∈ {1, 2, . . . , 𝑁}} and observe {𝑠𝑛𝑡+1, 𝑛 ∈ {1, 2, . . . , 𝑁}};
15 Get 𝐺_𝑜𝑢𝑡2 by GNN-based intersecting cognition;
16 𝑠𝑛𝑡+1 ← [𝐺_𝑜𝑢𝑡2, 𝑙𝑜𝑐

𝑛
𝑡+1, 𝑙𝑜𝑐

𝑚′
𝑡+1];

17 Append (𝑠𝑛𝑡 , 𝑎𝑛𝑡 , 𝑟𝑛𝑡 , 𝑠𝑛𝑡+1) to G𝑛;
18 {𝑠𝑛𝑡 } ← {𝑠𝑛𝑡+1} ;
19 if 𝐷𝑜𝑛𝑒 then
20 break;
21 end
22 end
23 for n=1:N do
24 Calculate cumulative future rewards 𝑅𝑛𝑡 in every time step;
25 Append 𝑅𝑛𝑡 to the experience replay buffer;
26 Train the agent 𝑛 via Algorithm 1;
27 end
28 end

In the decision-making process of DGMARL-MVP, collaboration among agents is performed in the infor-
mation sharing. During the pursuit process, every pursuing vehicle shares its own position and observation
information with other pursuing vehicles for collaboration. The shared information is used to develop GNN-
based intersecting cognition and gain effective and comprehensive awareness of the agent relationships and
traffic situations.

5. EXPERIMENTS AND RESULTS
5.1. Simulator and parameter settings
As a MARL algorithm, DGMARL-MVP collects training data and updates parameters by interacting with the
simulated urban traffic environment. This paper constructs a complex urban traffic environment based on
SUMO [29] to verify the effect of the DGMARL-MVP. The environment with 3 × 3 grid-pattern urban road
structure simulates continuous dynamic random traffic flow. In the simulated closed scene, there are four
intersections and eight T-junctions. During the simulation process, the number of background vehicles is
fixed, and the background vehicles follow randomly selected routes. Moreover, to evaluate the robustness of
DGMARL-MVP, this paper designs three different difficulty levels of MVP tasks with variable numbers of
pursuing vehicles 𝑁 and evading vehicles 𝑀 , respectively, four pursuing vehicles chasing two evading vehicles
(P4-E2), five pursuing vehicles chasing three evading vehicles (P5-E3) and seven pursuing vehicles chasing
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Figure 4. Traffic Simulation Environment for MVP. MVP: Multi-vehicle pursuit.

Table 1. Simulation settings

Parameters Values
Maximum time steps 𝑠𝑡 800
Maximum speed 𝑣max 20 𝑚/𝑠
Maximum acceleration 𝑎𝑐max 0.5 𝑚/𝑠2

Maximum deceleration 𝑑𝑒max 4.5 𝑚/𝑠2

Number of lanes 𝐿 48
Length of location code 𝑙𝑒𝑛𝑙𝑜𝑐 7
Number of junctions 16
Length of each lane 500 𝑚

Number of background vehicles 200

Table 2. Parameter settings

Parameters Values Parameters Values
𝛼 10−4 𝑅𝑉 500
𝛾 0.9 𝜀 0
𝜆 0.5 𝜎 5
𝜖 0.05 𝑚𝑎𝑥_𝑒𝑝𝑜𝑐ℎ 2600

Table 3. Structure of the deep Q network

Layers Deep Q network
Input (batch size, (𝑀 + 1)2 + 2 × 𝑙𝑒𝑛𝑙𝑜𝑐)

Dense Layer 1 ((𝑀 + 1)2 + 2 × 𝑙𝑒𝑛𝑙𝑜𝑐 , 32 )
Activation Function 𝐸𝑙𝑢

Dense Layer 2 (32,48)
Activation Function 𝐸𝑙𝑢

Dense Layer 3 (48,32)
Activation Function 𝐸𝑙𝑢

Dense Layer 4 (32,16)
Activation Function 𝐸𝑙𝑢

Dense Layer 5 (16,3)
Activation Function 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥

Output (batch size, 3)

four evading vehicles (P7-E4). All evading and pursuing vehicles randomly select their initialization locations,
as shown in Figure 4. The GPU used to train our model is NVIDIA Tesla T4. Notably, all algorithms in
our experiments are trained in the same environment and evaluated by averaging various metrics for 100 test
epochs, including the average reward, the average time steps, and the success rate. The simulation parameters
are shown in Table 1. And the parameter settings of DGMARL-MVP are shown in Table 2. The internal
structures of Deep Q Network (DQN) and discriminators are shown in Table 3 and Table 4, respectively.
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Table 4. Structure of the discriminator

Layers Discriminator
Input (batch size, 1)

Dense Layer 1 (1,128)
Activation Function 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑢(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑠𝑙𝑜𝑝𝑒 = 0.02)

Dense Layer 2 (128,64)
Activation Function 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑢(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑠𝑙𝑜𝑝𝑒 = 0.02)

Dense Layer 3 (64,1)
Output (batch size, 1)

Table 5. Evaluation results

N-M P4-E2 P5-E3 P7-E4

Evaluate metrics
Average
Reward

Average
Time Steps

Success
Rate

Average
Reward

Average
Time Steps

Success
Rate

Average
Reward

Average
Time Steps

Success
Rate

DGMARL-MVP 8.688 644.96 0.91 8.827 698.20 0.85 9.213 731.64 0.81
a 7.407 695.33 0.86 8.592 728.53 0.81 8.791 751.32 0.78
b 8.094 684.01 0.87 8.692 714.36 0.82 8.959 739.55 0.80

DQN 6.953 736.09 0.81 7.195 763.31 0.72 8.122 749.76 0.76
PPO 7.513 717.41 0.86 8.368 731.88 0.80 8.844 745.51 0.78
QMIX 6.339 745.27 0.77 8.645 749.09 0.74 8.725 755.48 0.73

1 a: DQN equipped with GNN-based intersecting cognition; b: GMARL without GNN-based intersecting cognition.

5.2. Ablation experiments
The ablation experiments are conducted to further demonstrate the effectiveness of the proposed method and
examine the impact of the GMAN boosting RL and GNN-based intersecting cognition in the DGMARL-MVP.
Specifically, a is the method that DQN is only equipped with GNN-based intersecting cognition, and b is the
method that GMAN boosting RL is not equipped with GNN-based intersecting cognition. The results are
shown in Table 5.

Compared with a, the average reward of DGMARL-MVP is increased by 17.29%, 2.74%, and 4.80% in P4-E2,
P5-E3, and P7-E4 scenes, respectively. DGMARL-MVP exhibits fewer average time steps than a in the same
scene. Specifically, compared with a, the average time steps of DGMARL-MVP are reduced by 7.24% in the
P4-E2 scene at most, reduced by 2.62% in the P7-E4 scene at least, and 4.68% in all scenes on average. Also,
DGMARL-MVP has the highest success rate, which is 5.81%, 4.94%, and 3.85% in P4-E2, P5-E3, and P7-
E4 scenes, respectively. These results reveal that the proposed GMAN boosting RL algorithm can effectively
alleviate the problem of sparse reward caused byMVP under urban environments and successfully indicate the
optimization direction of the RL policy through the suitable potential dense reward generated by the GMAN,
thus enhancing the optimality of the agent policy.

In addition, it can be obtained that the proposed DGMARL-MVP shows a higher average reward than b from
Table 5, exactly 7.38%, 1.55%, and 2.84% higher than that of b in P4-E2, P5-E3, and P7-E4 scenes, respec-
tively. Also, the average timesteps of DGMARL-MVP are separately 5.71%, 2.26%, and 1.07% less than that
of B in P4-E2, P5-E3, and P7-E4 scenes, respectively. As for the success rate, DGMARL-MVP also shows a
delightful superiority over b. Concretely, compared with b, the success rate of DGMARL-MVP increases by
4.60% in the P4-E2 scene at most, 1.25% in the P5-E3 scene at least, and 3.17% in all scenes on average. This
phenomenon demonstrates that the proposed GNN-based intersecting cognition can effectively assist pursu-
ing vehicles dealing with multi-source heterogeneous data from complex dynamic environments and enable
agents to adaptively extract the situation information of other vehicles and the interaction features among
agents so as to improve the pursuing efficiency.

Furthermore, Figure 5 depicts the bar chart comparison of the three metrics, average reward, time steps, and
success rate, for DGMARL-MVP, a, and b in P4-E2, P5-E3, and P7-E4 scenes, offering a more intuitive illustra-
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Figure 5. Results of Ablation Experiments. (A): Average Reward of Ablation Experiments. (B): Average Time Steps of Ablation Experiments.
(C): Success Rate of Ablation Experiments.

tion of the effectiveness of the proposed modules. It is evident that DGMARL-MVP has the best performance
for all metrics in any scene. The ablation experiments confirm that the proposed GMAN boosting RL al-
gorithm can generate appropriate potential dense rewards, which makes RL more forward-looking in policy
updating and correctly guides the optimization direction of RL policy, thereby improving the stability of dis-
tributedmulti-agent system and enhancing the optimality of agent decision-making. Meanwhile, the proposed
GNN-based intersecting cognition can adequately couple the interaction features of agents with traffic infor-
mation and enhance their ability to handle multi-source heterogeneous data so as to promote the adaptability
of the agents to the dynamic environment and improve the pursuing efficiency.

5.3. Comparison with other methods
This part demonstrates the performance of applying DGMARL-MVP and other algorithms to three scenes of
MVP problems. This paper uses DQN, QMIX [30], and PPO for comparison. The details are shown in Table 5.

In the MVP problem of P4-E2, three metrics show consistency in performance evaluation. It is clear that
DGMARL-MVP is noticeably the strongest performer on all of the metrics, which indicates the superiority
of our proposed DGMARL-MVP. The success rate is an appreciable 91%, which is 12.35% higher than DQN,
5.81% higher than QMIX, and 5.81% higher than PPO. In the evaluation of the three metrics, the proposed
DGMARL-MVP shows the most significant advantage in the average reward metric, with 15.64% higher than
the sub-optimal algorithm PPO.This indicates that the proposed DGMARL-MVP can provide better guidance
for agents in the pursuing process, in other words, make better local decisions and also lead to better final
results. For other comparison algorithms, QMIX performs the worst of all the algorithms on all metrics in this
scene, and PPO shows a sub-optimal performance.

Upgrading the difficulty to P5-E3, the proposed DGMARL-MVP algorithm still shows superior performance
among other comparison algorithms. This superiority is specifically manifested in that our algorithm is 2.1%,
4.60%, and 6.25% better than the sub-optimal algorithm on average reward, average time steps, and success
rate, respectively. The largest performance gap can be seen on the average reward metric compared with DQN,
which is an exceedance of 22.68%. From this data, DGMARL-MVP performs better on the metric of the
success rate than the other two metrics, which indicates that our algorithm DGMARL-MVP has high stability
in a relatively difficult scene, resulting in an improvement in success rate. In this scene, other comparison
methods have shown instability on three metrics to some extent. DQN performs worst on all metrics. QMIX
is inferior to PPO in terms of success rate by 2.35%, although it is suboptimal in terms of rewards.

The difficulty setting of P7-E4 is approximately the same as that of P5-E3, but the increase of vehicles in both
the pursuing team and the evading team increases the difficulty of global scheduling. However, from Table 5,
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Figure 6. Results of Comparison Experiments. (A): Average Reward of Comparison Experiments. (B): Average Time Steps of Comparison
Experiments. (C): Success Rate of Comparison Experiments.

the proposed DGMARL-MVP still shows satisfactory optimal performance among three other algorithms. In
terms of the average reward metric, DGMARL-MVP is 4.17% better than the sub-optimal algorithm PPO
and 13.43% better than the worst algorithm DQN. In terms of the average time steps, the difference between
DGMARL-MVP and other algorithms is not that huge, but compared with the sub-optimal algorithm, there
is also a 1.86% improvement with 14.12 time steps, which illustrates that DGMARL-MVP can steadily take
its decision-making advantages in more difficult global scheduling scenes. In addition, DGMARL-MVP per-
forms better by 7.05% on the success rate than the other algorithms on average. PPO shows the suboptimal
performance on all three metrics.

By comparing the performance of all algorithms in these three scenes, the proposed DGMARL-MVP is the
most stable algorithm and also performs the best. In spite of this stable performance, there are differences in
the performance of DGMARL-MVP in the three scenes. As the difficulty of the scene increases, for example,
from P4-E2 upgrading to P5-E3, the success rate of the pursuit decreases by 7.06%, and the average time steps
decrease by 8.25%. It illustrates that the negative impact of increasing pursuing difficulty on success rates is
indisputable, but the proposed DGMARL-MVP is more stable than other comparison algorithms. It is worth
mentioning that DQN, which is the basis of DGMARL-MVP, is the worst performer in all three scenes. From
this perspective, it indicates the proposed DGMARL-MVP makes considerable improvements.

In order to show the performance variation and comparison of all algorithms more clearly, a bar chart is used
to show the changing trend of the three metrics in three scenes, as shown in Figure 6. Intuitively, as the num-
ber of evading vehicles increases, the average reward increases at the same time. In Figure 6A, unexpectedly,
the average reward of the proposed DGMARL-MVP presents the highest rewards but a slight increase, and
QMIX presents the largest increase. An inference of the reason could be that DGMARL-MVP provides better
decisions during the pursuit, resulting in a high reward accumulation. As the difficulty increases in Figure 6B,
DGMARL-MVP has a larger increase than other algorithms on the metric of average time steps, which illus-
trates that DGMARL-MVP presents more advantages in a sample scene than in difficult scenes. In terms of
the success rate in Figure 6C, DGMARL-MVP, with the other algorithms, shows a downward trend, although
DGMARL-MVP reaches the highest, except DQN, which shows a rise of performance as the scene changes
from P5-E3 to P7-E4. The negative impact of increasing pursuing difficulty on success rates is indisputable, but
the performance of DGMARL-MVP presents more stable, which shows the generalization of DGMARL-MVP.

5.4. Convergence comparison during training
In order to more convincingly prove the advantages of the proposed method, Figure 7 describes the conver-
gence curves of average reward with training steps for various methods, including DGMARL-MVP, a, PPO,
and QMIX, in P4-E3, P5-E3, and P7-E4 scenes. In Figure 7A, in the P4-E2 scene, it can be seen that com-
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Figure 7. Convergence Process During Training. (A): Convergence Process of Average Reward for Methods in P4-E2. (B): Convergence
Process of Average Reward for Methods in P5-E3. (C): Convergence Process of Average Reward for Methods in P7-E4.

pared with a, of which the fluctuation has a slight advantage over other methods in the last stage of training,
DGMARL-MVP has better performance in convergence rate and convergence target. For the P5-E3 scene, as
shown in Figure 7B, although all the methods showed similar convergence stability at the last stage of training,
our method has a better convergence trend, which has a growing trend and a higher convergence target during
the training. Figure 7C depicts the convergence curve of average reward with training steps in the P7-E4 scene,
presenting that DGMARL-MVP has superior performance over other methods in both convergence rate and
convergence trend. In conclusion, Figure 7 illustrates that compared with PPO and QMIX, which are sepa-
rately the best and the worst of all comparison methods, DGMARL-MVPmakes the competitive convergence
rate and trend, demonstrating its superiority and effectiveness on MVP under urban environments.

With the horizontal comparison of the convergence of the proposed DGMARL-MVP in three scenes, the
convergence performance of DGMARL-MVP in the three scenes is basically the same, and the convergence
starts at about 1950 time steps. Compared with the other three algorithms, in all three scenes with different
difficulties, the time step of convergence of DGMARL-MVP is basically the same as that of other algorithms.
It is worth mentioning that the proposed DGMARL-MVP improved surprisingly quickly at the beginning of
the training process, which indicates that our algorithm can better guide the direction of training at the initial
stage. For this, it is not surprising that the reward of DGMARL-MVP remains the highest from the beginning
to the end of the training in the P4-E2 scene and P7-E4 scene. An exception occurs in the scene of P5-E3; the
average reward is reversed by DQN in the later stages of training, but the final result is still the best. In addition,
the proposed DGMARL-MVP exhibits much smaller fluctuations in this scene, which shows the stability of
the proposed algorithm.

6. CONCLUSIONS
This paper has proposed DGMARL-MVP to address the sparse rewards and insufficient perception of complex
traffic situations brought by the MVP under urban traffic environments. In DGMARL-MVP, a GMAN has
been designed to generate potential dense rewards and provide proper guidance for distributed RL optimiza-
tion. Equipped with a GMAN, DGMARL-MVP has effectively solved the problem of optimization direction
ambiguity caused by reward sparsity via the enhanced Bellman equation. In addition, this paper has proposed
a GNN-based intersecting cognition, where the construction of vehicle graphs encourages a deep coupling be-
tween traffic information and multi-agent information. It thoroughly extracted and utilized the multi-source
heterogeneous data of urban traffic and the complicated multi-agent interaction features, thus considerably
improving pursuing efficiency. Extensive experimental results have demonstrated that the DGMARL-MVP
can significantly improve pursuing success rate up to 85.67%. In the future, the impact of additional factors,

http://dx.doi.org/10.20517/ir.2023.25


Page 16 of 17 Li et al. Intell Robot 2023;3(3):436-52 I http://dx.doi.org/10.20517/ir.2023.25

such as pedestrians and communication delays, on the design and analysis of MVP methods will be investi-
gated. More real scenes, such as evading vehicles not following traffic rules, will also be considered to design
smarter MVP methods.
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