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Abstract
Metabolism is defined as the collection of complex biochemical processes that living cells use to generate energy and 
maintain their growth and survival. Metabolism encompasses the synthesis and breakdown of glucose, fatty acids, 
and amino acids; the generation of energy (ATP); and oxidative phosphorylation. In cancer cells, metabolism can be 
commandeered to promote tumor growth and cellular proliferation. These alterations in metabolism have emerged 
as an additional hallmark of various cancers. In this review we focus on metabolic alterations in multiple myeloma 
(MM) - a malignancy of plasma cells - including derangements in glycolysis, gluconeogenesis, the tricarboxylic acid 
cycle, oxidative phosphorylation, and fatty acid/amino acid synthesis and degradation. Particular focus is given 
to metabolic alterations that contribute to myeloma cell growth, proliferation and drug resistance. Finally, novel 
approaches that target metabolic pathways for the treatment of MM are discussed.

Keywords: Metabolism, alterations, multiple myeloma, treatment

MULTIPLE MYELOMA
Multiple myeloma (MM) is a malignancy of terminally differentiated plasma cells typically characterized by 
clonal proliferation of these plasma cells in the bone marrow. MM represents 1% of all malignancies and 18% of 
hematologic malignancies in the United States; accounting for an estimated 30,770 new diagnoses and 12,770 
deaths in 2018 alone[1]. Classically, MM results in the secretion of a non-functional monoclonal immunoglobulin 



(Ig) produced by the transformed plasma cells. Production of this aberrant Ig results in several of the 
complications associated with MM such as renal dysfunction, neuropathy, and hyperviscosity syndrome[2,3]. 
However, in approximately 15%-20% of patients the abnormal plasma cells secrete only monoclonal free light 
chains, and in approximately 2%-3% of cases these cells secrete no monoclonal protein at all resulting in the 
so-called non-secretory myeloma[4,5]. Myeloma cell growth in the bone marrow and the resultant cytokines 
produced by these transformed cells and/or other cells in the bone marrow microenvironment lead to the 
classic symptoms of active MM: osteolytic bone lesions, hypercalcemia, and anemia[6]. 

The underlying epidemiology of MM remains largely undefined. Previously, exposure to ionizing radiation 
was thought to be a risk factor, but this was subsequently refuted in a large cohort of atomic bomb 
survivors in Japan[7]. More recent data suggest a 2-3 fold increased risk for development of MM among 
African Americans which is thought to be related to increased rates of MGUS among this population[8,9]. 
Interestingly, in contrast to most other malignancies, African Americans with MM tend to have a better 
prognosis compared to age-matched Caucasians with the disorder[10]. Several meta-analyses have suggested 
obesity is associated with increased risk of myeloma with a relative risk ranging from 1.11-1.82[11-14], and it 
has been shown that obesity significantly increases the risk of myeloma associated mortality[15,16].

MM is primarily a disease of the elderly, with the median age at diagnosis being 69 in the United States[1]. 
This population often suffers from significant co-morbidities making management of myeloma more 
challenging. Specifically, approximately 40% of this population meets criteria for obesity (BMI ≥ 30)[17], 
and the rates of several obesity associated metabolic disorders such as diabetes and hyperlipidemia already 
approach 25% and 50% respectively, and continue to rise[18,19]. Given these associations it is reasonable 
to wonder if these metabolic changes are significantly participating in MM pathogenesis. As this area 
has largely been uncharacterized, in this review we aim to highlight the metabolic changes that occur in 
myeloma patients, summarize how these changes are affected by myeloma directed therapy, and suggest 
possible interventions to enhance anti-myeloma based therapies by taking advantage of metabolic pathways 
which are often dysregulated in MM patients. 

OVERVIEW OF METABOLISM
Glycolysis
Glycolysis is the primary process by which cells break down glucose releasing stored energy in the process 
which can be used to generate ATP[20]. This process begins when membrane bound insulin receptors bind 
insulin resulting in autophosphorylation of the tyrosine residues. Subsequent phosphorylation of insulin 
receptor substrates, and activation of the PI3K and MAPK pathways promote cellular uptake of glucose[21]. 
Insulin also regulates fructose 2,6-bisphosphate, a key regulator of glycolysis. In glycolysis, a single glucose 
molecule is phosphorylated by hexokinase (HK) to yield glucose-6-phosphate (a reaction which requires 
ATP), which then undergoes isomeric change by the enzyme glucose 6-phosphate isomerase to become 
fructose 6-phosphate. Fructose 6-phosphate is then irreversibly phosphorylated by phosphofructokinase 
(PFK) in a reaction that requires ATP to yield fructose 1,6-bisphosphate; this reaction is the rate-
limiting and committed step of glycolysis. Fructose 1,6-bisphosphate is then cleaved by aldolase into two 
triose phosphates: glycerolaldehyde-3-phosphate and dihydroxyacetone phosphate. Glycerolaldehyde 
3-phosphate is oxidized by glycerolaldehyde 3-phosphate dehydrogenase using NAD+ as an electron 
donor to yield 1,3-bisphosphoglycerate (1,3-BPG). 1,3-BPG is then dephosphorylated at carbon-1 by 
phosphoglycerate kinase to yield 3-phosphoglycerate, and then reversibly converted to 2-phosphoglycerate 
by phosphoglycerate mutase. 2- phosphoglycerate undergoes a dehydration reaction catalyzed by enolase to 
form phosphoenolpyruvate (PEP) which is then irreversibly converted to pyruvate by pyruvate kinase (PK) 
in a reaction that also generates ATP[22,23].

In eukaryotic cells, pyruvate can be reduced to produce ATP through two different pathways depending 
on the presence of mitochondria and appropriate blood and oxygen supply in the tissue of need: aerobic 
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respiration and anaerobic respiration. In aerobic respiration, pyruvate is transported into the mitochondria 
through a specific transporter and then decarboxylated by pyruvate dehydrogenase to produce acetyl-CoA 
which serves as the initial substrate for the tricarboxylic acid (TCA) cycle (see section 2 below). In anaerobic 
respiration, which in eukaryotes is typically limited to cells without mitochondria or poorly vascularized 
tissue (either endogenous or induced by states of physiologic stress), pyruvate accepts a hydrogen from 
NADH to produce lactate and NAD+. The NAD+ produced can then be used for glycolysis reactions or even 
react with TCA intermediates. Energy yield from anaerobic glycolysis is significantly reduced compared 
to its aerobic counterpart, however this process is more rapid and can occur in oxygen deprived tissues[22]. 
Notably, some cancerous cells have been shown to preferentially undergo anaerobic respiration even 
under optimal conditions for aerobic respiration[24-26]. This effect, which is thought to be due to metabolic 
reprograming related to their hyperproliferative state, has been termed the “Warburg effect” after German 
physiologist and Nobel laureate Otto Warburg whose initial observations of increased glucose consumption 
coupled with increased lactate excretion from cancer cells led to the hypothesis of its existence[27-29].  

Cells have developed several mechanisms to increase or decrease glycolysis in response to metabolic needs. 
Furthermore, metabolic control of glycolysis occurs through various feedback mechanisms. Inhibition of 
insulin receptor signaling or key enzymes in the pathway (especially PFK) typically occur in fasting states 
or high energy states when the ratio of ATP to ADP is high. In these situations metabolism is shifted away 
from glycolysis and can instead result in a reciprocal induction of gluconeogenesis (see section 4 below)[22,23]. 
Typically, glycolysis follows the general steps as reviewed above. However, there is some redundancy in the 
metabolic processes of the cell and some molecules may be synthesized in a different way and still be used 
in glycolysis. This can be seen in the way in which cells breakdown disaccharides like sucrose. If energy 
is needed, then the sucrose will be converted into fructose-6-phosphate molecules and continue through 
glycolysis[22].

The TCA cycle 
The TCA cycle allows for complete catabolism of organic molecules in the presence of oxygen, and 
results in the majority of ATP production in eukaryotes. The reactions of the TCA allow for breakdown 
of carbohydrates as well amino acids and fatty acids through various metabolites that can enter the 
pathway at different steps. For glucose metabolism the process begins with the production of acetyl Co-A 
in the mitochondrial matrix through oxidative decarboxylation of pyruvate in a reaction catalyzed by 
the pyruvate dehydrogenase complex (a complex of 3 component enzymes, 2 regulatory enzymes, and 5 
coenzymes). Acetyl Co-A and oxaloacetate combine to form citrate in a condensation reaction catalyzed 
by citrate synthase. Citrate is then isomerized to isocitrate by aconitase which is subsequently converted 
to a-ketoglutarate by oxidative decarboxylation in a reaction catalyzed by isocitrate dehydrogenase. The 
a-ketoglutarate dehydrogenase complex catalyzes the conversion of a-ketoglutarate to succinyl Co-A and 
producing NADH. Succinyl Co-A is then cleaved to succinate by succinate thiokinase in a reaction that 
generates GTP via substrate level phosphorylation. Succinate is subsequently oxidized to fumarate by 
succinate dehydrogenase with FAD being reduced to FADH2 in the process. Fumarate is then hydrated 
to malate in a reaction catalyzed by fumarase, with malate being oxidized to oxaloacetate by malate 
dehydrogenase producing another molecule NADH in the process.

There are many ways that the TCA cycle is regulated. The first regulatory step is known as the bridge 
reaction where pyruvate is converted to acetyl-CoA. If the cell has too many high energy molecules, then 
this “bridge reaction” will not occur and pyruvate will be utilized in other fashions. Other regulatory steps 
include the synthesis of citrate, and the oxidative decarboxylations of isocitrate and a-ketoglutarate all of 
which result in the production of high energy molecules (NADH, FADH2, ATP, GTP) which then undergo 
oxidative phosphorylation. These steps will be inhibited if the concentration of the high energy molecules 
is increased. Similarly, if the concentration of low energy molecules (GDP, ADP, NAD+, FAD) were to 
accumulate then the reactions in the TCA cycle would increase[22]. 
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Oxidative Phosphorylation and the electron transport chain
Many of the products from glycolysis are then transported to the inner mitochondrial membrane where 
they donate electrons to a set of electron carriers known as the electron transport chain (ETC). As 
electrons transverse the ETC they lose energy and are coupled to the pumping of protons across the inner 
mitochondrial membrane which can subsequently be captured to drive the production of ATP through 
oxidative phosphorylation (OXPHOS) in a reaction catalyzed by the enzyme complex ATP synthase[22,23].

Oxidative phosphorylation is regulated via several mechanisms. The enzymes succinate dehydrogenase 
and a-ketoglutarate dehydrogenase have roles in both OXPHOS and the TCA cycle, and are regulated by 
TCA intermediates like succinate, fumarate, and a-ketoglutarate. These two enzymes are also inhibited 
by high energy compounds and activated by low energy compounds. The pH of the mitochondrial matrix 
also regulates OXPHOS, as the ability to maintain the ETC and the subsequent proton pump is tied to 
maintaining a pH gradient[22].

Gluconeogenesis 
Gluconeogenesis is the synthesis of glucose, allowing the body to ensure blood sugar levels remain stable 
even in fasting states. The first step in gluconeogenesis is synthesizing PEP from pyruvate. This is a two-step 
process in which pyruvate is first converted to oxaloacetate by pyruvate carboxylase, then converted to PEP 
by PEP carboxykinase. PEP is converted to 2-phosphoglycerate, and subsequently to 3-phosphoglycerate, 
which is phosphorylated to produce 1,2-bisphosphoglycerate. Glyceraldehyde 3-phosphate is then synthesized 
by glyceraldehyde phosphatase dehydrogenase and converted to fructose 1,6-bisphosphate. Finally, glucose 
6-phosphatase dephosphorylates glucose 6-phosphate to form glucose. Since this process is nearly the 
opposite of glycolysis, many of the enzymes between these two processes are the same, and gluconeogenesis 
is tightly regulated by many feedback mechanisms to maintain the glucose concentration and to avoid hypo/
hyperglycemia. Not surprisingly then, one of the main regulators of gluconeogenesis is glucose itself; the 
other two main regulators are pyruvate and PEP. High concentrations of these two molecules in combination 
with lower levels of glucose leads to increased gluconeogenesis[22].

Fatty acid synthesis and degradation
Fatty acid synthesis is not only important for long-term energy storage but also for structural components of 
cell membranes and eicosanoids. Fatty acid synthesis typically begins with a reaction between acetyl-CoA 
and malonyl-ACP to yield acetoacetyl-ACP and CO2. This condensation reaction is facilitated by 3-ketoacyl 
ACP synthase (KAS III). Acetoacetyl-ACP subsequently undergoes reduction, hydration, and re-reduction 
to reduce the 3-keto group eventually yielding acyl-ACP, which can be used to initiate elongation of the 
fatty acid chain. This cycle continues until acyl-ACP’s backbone reaches 16 or 18 carbons. After appropriate 
elongation acyl-CoA can be used for multiple different processes, including synthesis of glycerophospholipids 
and triacylglycerides, production of phosphatidate, and synthesis of phosphatidylcholine (PC). While 
lipogenesis can occur through the conversion of carbohydrates to acetyl-CoA, it can also take place by de-
novo lipogenesis through the conversion of glycogen to fatty acids which typically occurs when glycogen 
storage is full[22]. 

To release energy stored at fat, the molecule undergoes b-oxidation, or fatty acid oxidation. As fatty acids 
are unable to diffuse through the mitochondrial membrane, they are first converted to acylcarnitine which 
can enter through the carnitine antiports. Once in the matrix, acylcarnitine is converted to fatty-acyl-CoA. 
b-oxidation is largely the reverse reaction of lipid synthesis. Starting with acyl-SCoA there is oxidation, 
hydration and oxidation again to yield 3-ketoacyl-SCoA. The b-carbonyl is then cleaved by HS-CoA, 
resulting in a fatty Acyl-CoA molecule that now holds two less carbons then it did at the start of the cycle. 
Each cycle thus produces ubiquinol, NADH and acetyl-CoA which can all be used in aerobic respiration[22]. 
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Fatty acid synthesis and degradation are regulated largely by cellular energy dependence. Fatty acids serve 
as long-term energy storage molecules. During starvation where ATP production from the breakdown of 
glycogen cannot produce adequate amounts of energy, fatty acid degradation accelerates. On the other hand, 
if there are adequate supplies of ATP and glycogen storage is full, then fatty acid synthesis can occur[23].

Amino acid synthesis and degradation
Amino acids and proteins remain a central aspect of cellular metabolism. While there have been over 300 
amino acids described, only 20 are commonly found in mammalian proteins. Not surprisingly, these 20 
amino acids are the only amino acids coded for by DNA[30]. Of these, histidine, isoleucine, leucine, lysine, 
methionine, phenylalanine, threonine, tryptophan, and valine are termed essential as they cannot be 
synthesized by humans. Amino acids serve various roles in metabolism. In addition to protein synthesis, 
they can be used for energy production and synthesis of hormones. In extreme situations where energy is 
scarce and fatty acid reserves have been exhausted, protein turnover becomes a main source of energy[22]. 

Oxidation of proteins typically occurs in small quantities since the ammonia/ammonium byproduct is toxic 
and must be transported bound to L-glutamine. L-glutamine can leave the tissue and be transported to the 
liver for energy production with NH4+ excreted as urea. Alternatively, proteins can be metabolized by the 
glucose-alanine cycle. When breakdown of muscle protein yields L-glutamate, a reaction with pyruvate 
occurs yielding alanine and a-ketoglutarate. Alanine is then transported to the liver where transamination 
occurs resulting in glutamate which subsequently undergoes deamination releasing NH4+ into the 
urea cycle. Pyruvate is also a byproduct of the transamination reaction and can be used in the liver for 
gluconeogenesis. 

Integration of metabolic processes
Cellular metabolism is intertwined and tightly regulated. Glycolysis and the TCA cycle produce many 
byproducts that may enter the ETC for oxidative phosphorylation or can be used for other purposes. 
For example, the oxidation of glyceraldehyde 3-phosphate which occurs in glycolysis also results in the 
production of NADH and H+. These molecules can serve as electron donors for the ETC. Similarly, FADH2 
which is a byproduct of the reaction that converts succinate to fumarate in the TCA cycle can also serve as 
an electron donor in the ETC. 

Anaerobic and aerobic respiration are closely linked by the use of NAD+ and NADH. Production of lactate 
during anerobic respiration is one of the main ways in which NADH and H+ are oxidized back into NAD+ 
which allows for the TCA cycle to continue without any significant changes. Ultimately, glycolysis, the TCA 
cycle, gluconeogenesis, fatty acid metabolism, and protein synthesis are all interconnected and exist in a 
highly regulated and interdependent environment designed to maintain homeostasis[31-33]. 

ALTERATIONS IN METABOLISM OF MULTIPLE MYELOMA
Multiple changes in metabolism occur in myeloma cells which are summarized below and in Figure 1. 
Understanding the metabolic alterations in MM has important implications in the care of patients with 
MM. It sheds new light into our understanding of MM development and progression, and allows for 
the assessment of predictive or prognostic biomarkers for optimal management of myeloma patients. 
Importantly, it provides potentially novel therapeutic targets for the treatment of MM.

Over the last decade, several technologies such as mass spectrometry, 1H-nuclear magnetic resonance 
(1H-NMR) spectroscopy and mass spectrometry, and 13C stable isotope resolved metabolomics (SIRM) have 
been used to determine metabolic alterations in monoclonal gammopathy of undetermined significance 
(MGUS) patients, newly diagnosed MM (NDMM) and relapsed/refractory MM (RRMM) and to compare 
metabolic changes in drug resistant MM cells. Steiner et al.[34] used mass spectrometry to analyze 188 

Rizzieri et al . J Cancer Metastasis Treat 2019;5:26  I  http://dx.doi.org/10.20517/2394-4722.2019.05                         Page 5 of 16



endogenous metabolites in peripheral blood plasma samples of healthy controls, patients with MGUS, 
NDMM, or RRMM. The metabolomic profile was quite different between healthy controls and patients with 
MGUS, NDMM or RRMM with significant alterations in amino acid, lipid and energy metabolism. Eight 
plasma metabolites - free carnitine, acetylcarnitine, glutamate, asymmetric dimethylarginine (ADMA) and 
four PC species - were different between MGUS and NDMM patients, demonstrating that metabolic changes 
occur during MM development and progression[34].

High-resolution 1H-NMR spectroscopy and mass spectrometry provides quantitative analysis of metabolite 
concentrations and reproducible information with minimal sample handling. Puchades-Carrasco et al.[35] 
performed 1H-NMR spectroscopy metabolomic analyses of serum samples of MM patients and healthy 
subjects, and also compared the metabolic profiles of MM patients at the time of diagnosis and after 
achieving complete remission. Compared to healthy subjects, MM patients at the time of diagnosis 
exhibited higher levels of isoleucine, arginine, acetate, phenylalanine, and tyrosine and decreased levels 
of 3-hydroxybutyrate, lysine, glutamine, and some lipids. Interestingly, when myeloma patients achieved 
complete remission, the levels of lysine, citrate, lactate dehydrogenase (LDH), and choline went up whereas 
glucose level decreased in comparison to those at the time of diagnosis[35]. 

A similar study using 1H-NMR spectroscopy was performed by Ludwig et al.[36] to characterize the 
metabolic profile within the bone marrow using filtered plasma derived from bone marrow aspirates of 
healthy donors and patients with MGUS or MM. This study found that the essential amino acids isoleucine 
and threonine were significantly decreased in the bone marrow of MGUS and MM patients as were the 
nucleotide-breakdown products, hypoxanthine and xanthine, suggesting an increase in anabolism. The 
products of arginine metabolism, creatinine and urea, were also significantly altered. The authors suggested 
that alterations in bone marrow metabolism are an early and consistent feature during the development of 
MGUS and MM[36]. 

Recently, Gonsalves et al.[37] performed 13C SIRM using U[13C6]-Glucose and U[12C5]-Glutamine in human 
MM cell lines to determine the contribution of carbon substrates from glutamine into the TCA cycle of 
clonal plasma cells in comparison with those from glucose. Their results suggest that glutamine is the main 

Figure 1. Summary of the metabolic changes in multiple myeloma cells and in resistant myeloma cells
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contributor of carbon substrates to the TCA cycle whereas glucose is an important contributor of carbon 
substrates for the formation of lactate in clonal plasma cells[37]. This was also supported by the finding 
that clonal bone marrow plasma cells in MM patients have higher glutamine uptake compared with the 
remainder of bone marrow mononuclear cells. Additionally, 2-hydroxyglutarate (2-HG) - an oncometabolite 
of glutaminolysis - is significantly increased in the bone marrow supernatant of MM patients compared to 
that of MGUS patients. Similarly, levels of 2-HG in the bone marrow supernatant or in the peripheral blood 
plasma of patients with smoldering multiple myeloma was associated with higher risk of progression to 
MM, and correlates with the percentage of bone marrow plasma cells expressing c-MYC[37]. These results 
demonstrate the utility of measuring 2-HG levels in BM supernatant or peripheral blood plasma of SMM 
patients as a potential biomarker for disease progression and for identification of patients who may benefit 
from early therapeutic intervention. 

To characterize the lipid profile of MM cells, Hossen et al.[38] sorted single MM and normal plasma cells 
using flow cytometry and performed matrix-assisted laser desorption/ionization-imaging mass spectrometry. 
They found that PC (16:0/20:4) was significantly decreased in MM cells compared to normal plasma cells, 
which is likely due to the decrease of its integrated fatty acids or to increased metabolism of C16:0.

The development of drug resistance is also associated with metabolic alterations in MM. Zub et al.[39] 
performed global proteomic and transcriptomic profiling on melphalan sensitive and resistant RPMI8226 
MM cell lines. Glycolysis was found to be the most significantly altered pathway. Gluconeogenesis, glutaryl-
CoA degradation, isoleucine and tryptophan degradation, TCA cycle, ketolysis and ketogenesis were also 
significantly altered when MM cells develop resistance to melphalan. Specifically, the glycolytic and pentose 
phosphate pathway enzymes were up-regulated in the melphalan resistant cells, whereas the TCA cycle and 
ETC proteins were down-regulated. Additionally, the melphalan-resistant cells displayed increased tolerance 
to overall oxidative stress, but were sensitive to mitochondrial electron transport inhibitors. It was further 
demonstrated that lactate accumulation, Interleukin-8 and vascular endothelial growth factor (VEGF) 
signaling, as well as aldo-keto reductase played a role in the development of drug resistance to melphalan in 
MM cell lines[39]. Similarly, in MM cell lines resistant to proteasome inhibitors (bortezomib and carfilzomib), 
complex proteomic changes, particularly in redox and energy metabolism were observed[40]. Proteins 
involved in metabolic regulation, redox homeostasis, and protein folding and destruction were upregulated 
in proteasome inhibitor-resistant MM cell lines, which exhibited metabolic adaptations that favored the 
generation of reducing equivalents such as NADPH[40]. The glucose metabolism was rewired in bortezomib-
resistant MM cells, leading to higher activity of both the pentose phosphate pathway and serine synthesis 
pathway and an increased anti-oxidant capacity in bortezomib-resistant cells[41]. Interestingly, the expression 
of 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of serine synthesis, 
was up-regulated in bortezomib-resistant MM cells. Consistent with increased serine synthesis observed 
in bortezomib-resistant MM cells, serine starvation enhances the cytotoxicity of bortezomib. These data 
suggest that interfering with serine metabolism could be a novel strategy to improve bortezomib therapy and 
PHGDH could be a potential biomarker for bortezomib resistance[41].

To identify therapeutic targets for the prevention and treatment of drug resistance, Maiso et al.[42] performed 
metabolic profiling of multiple myeloma cells in normoxic and hypoxic conditions. It was found that in 
hypoxic conditions, intermediates of the TCA cycle and the ETC were reduced whereas intermediates of 
glycolysis were elevated. Specifically, glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate, 
pyruvate, and lactate were significantly increased in hypoxic cells. Gene expression profiling further 
demonstrated that the main pathways altered by hypoxic culture were those involved in glucose metabolism 
and the TCA cycle including key metabolic genes such as hexokinase 2 (HK2) and lactate dehydrogenase 
A (LDHA). Interestingly, bortezomib treatment inhibited HK2 activity but not lactate activity, suggesting 
LDHA may play a role in modulating drug resistance of MM cells in hypoxic conditions.
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TARGETING METABOLIC PATHWAYS FOR THE TREATMENT OF MULTIPLE MYELOMA
The alterations in metabolism provide potentially therapeutic targets for the treatment of MM.

Targeting glycolysis for the treatment of MM
Glucose is the most abundant energy producing molecule in the human body and as such is broken down 
to produce energy for the body to maintain its regulatory functions. MM exhibits significant alterations in 
glucose metabolism. This was demonstrated by the fact that myelomatous bone and soft tissue lesions have 
elevated glucose uptake on positron emission tomography (PET) scans. Total lesion glycolysis and metabolic 
tumor volume, parameters measurable using 18F-FDG PET CT scan, are highly associated with progression-
free and overall survival and can significantly improve the prognostic value of both the GEP70 and 
International Staging Systems[43]. These data suggest that targeting specific aspects of glucose metabolism 
may offer a novel avenue for therapy.

Like many other tumors, MM cells demonstrate enhanced glycolysis and lactate production (e.g., aerobic 
glycolysis) instead of proceeding through the TCA cycle. Enhanced glycolytic f lux confers tumor cells a 
growth advantage and plays an important role in maintaining myeloma cell survival and proliferation and in 
inducing chemoresistance. Many genes are involved in the enhanced glycolysis seen in MM. The PI3K/AKT 
pathway, a cytoplasmic chemical messaging system, has been linked to increased glucose metabolism and 
may be part of the reason why glycolytic intermediates are upregulated in myeloma cells[44-47]. Subsequently, 
it was found that a serine/threonine protein kinase, mTOR, regulated PI3K/AKT signaling[45]. Hypoxia-
inducible factor-1 (HIF-1) is a transcription factor that is upregulated in the bone marrow microenvironment 
(where hypoxic conditions are standard), in myeloma cell lines, and CD138+ plasma cells isolated from MM 
patients[48,49]. HIF-1 has been shown to play a key role in the accumulation of increased glycolytic metabolites 
in MM[42,50,51]. HIF1-a (a subunit of HIF-1) induces transcription of several genes related to the response to 
hypoxia including genes that upregulate glycolytic enzymes and lactate production[42]. HIF1-a expression is 
increased in drug resistant myeloma cells, and is associated with increased risk for metastatic disease and 
worse prognosis in various cancers[42,50-53]. Drug resistance and disease relapse are thought to be due to the 
minimal residual disease cells that reside in the hypoxic bone marrow microenvironment. Maiso et al.[42] 
showed that specific inhibition of LDHA and HIF1-a can restore drug sensitivity to anti-myeloma agents and 
inhibit tumor growth suggesting that targeting HIF1-a or LDHA can be used to inhibit myeloma growth 
and overcome drug resistance.

Pyruvate kinase M2 (PKM2) is a key factor regulating aerobic glycolysis and promoting tumor cell 
proliferation and survival[54]. Recently, Gu et al.[55] showed that never in mitosis gene A (NIMA)-related 
kinase 2 (NEK2) regulates splicing of PKM and increased the PKM2/PKM1 ratio in myeloma cells to 
promote aerobic glycolysis and oncogenic activity. 

LDH is a key enzyme that regulates glycolysis and the conversion of pyruvate and NADH to lactate and 
NAD+ respectively[56]. LDHA has been shown to be upregulated in MM cells by the proliferator-activator 
receptor-g coactivator-1b acting on the LDHA promoter. This increase has been shown to significantly 
potentiate glycolysis metabolism resulting in increased cell proliferation and tumor growth[42,57]. 

MM cells exhibit increased activity in glucose transporters and in key glycolytic enzymes such as HK. Most 
of the work targeting glucose metabolism in MM has focused on the GLUT family. Up-regulation of GLUT1, 
GLUT4, GLUT8, and GLUT11 has been shown to increase glycolytic metabolites in myeloma cells[58]. Myeloma 
cells rely on the insulin-responsive glucose transporter GLUT4 for basal glucose consumption, maintenance 
of Mcl-1 expression, growth, and survival[58]. Ritonavir is an FDA-approved HIV protease inhibitor and has a 
selective off-target inhibitory effect on GLUT4. Treatment with ritonavir elicits dose-dependent abrogation of 
both glucose uptake and proliferation on KMS11 and L363 myeloma cells[58]. Interestingly, a subset of myeloma 
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cells survives glucose deprivation or ritonavir treatment likely by engagement of mitochondrial oxidative 
phosphorylation. Metformin is an FDA approved anti-diabetic medication that targets mitochondrial complex 
1. The combination of ritonavir and metformin effectively elicited apoptosis in vitro in MM cell lines and 
primary human myeloma cells and showed anti-myeloma activity in vivo in a xenograft model of MM[59]. 
Further analysis of the combination showed that it suppressed AKT and mTORC1 phosphorylation, and 
down-regulated the expression of Mcl-1 in myeloma models[59].

Hexokinases catalyze the first irreversible step of glycolysis and play a critical role in the regulation of 
glycolytic activity. HK2 interacts with the voltage dependent anion channel in the outer membrane of 
mitochondria, where it catalyzes the conversion of glucose to glucose 6-phosphate[60]. HK2 has been shown to 
be overexpressed in a variety of cancers including MM[61,62], suggesting that HK2 could be a viable target for 
inhibiting the proliferation of multiple myeloma cells[62-65]. Notably, treatment with bortezomib or vincristine, 
downregulated the expression of GLUT-1 and hexokinase, and induced apoptosis in OPM2 MM cells[66].

An additional approach to targeting glucose consumption has been with the use of the novel purine 
analogue 8-aminoadenosine (8-NH(2)-Ado). Shanmugam et al.[67] showed that treatment of the MM1S 
myeloma cell line with 8-NH(2)-Ado reduced glucose consumption through regulation of the GLUT4 
transporter.

Targeting amino acid metabolism for the treatment of MM
In addition to MM cells being dependent on glucose, myeloma cells are also dependent on glutamine for 
energy equivalents through a process known as glutaminolysis. This process is especially prevalent in 
chemotherapy resistant myeloma cells. Bajpai et al.[68] showed that when glucose metabolism is inhibited 
in myeloma cells exposed to various anti-myeloma agents, (bortezomib, melphalan, or carfilzomib), the 
resistant myeloma cells became preferentially dependent on glutamine and thus less likely to undergo 
apoptosis. Using glutamine as a primary energy source also affects the bone marrow microenvironment in 
MM patients. Specifically, the T-cells and NK cells in the tumor microenvironment are suppressed by the 
nutrient deprivation, hypoxia, and decreased pH that results from increased dependence on glutamine as an 
energy source[69]. 

Glutaminolysis breaks down glutamine into alpha-ketoglutarate which then enters TCA cycle. Glutamine 
can be converted to glutamate, a reaction termed glutamine anaplerosis. Alpha-ketoglutarate can be further 
broken down to 2-HG which is associated with c-MYC overexpression[37,70]. 2-HG is an oncometabolite, 
and elevated levels of 2-HG in smoldering MM patients are associated with increased risk of progression 
to MM[37]. Glutamine is crucial for the survival and proliferation of certain cancer cells, and starvation of 
glutamine induces cancer cell death[71]. Effenberger et al.[72] recently showed that in vitro cultures of MM cells 
are dependent on glutamine for survival and that this is dependent on MYC protein expression. Notably, 
when these cells were treated with the glutaminase inhibitor benzophenanthridinone 968 apoptosis was 
induced. Additionally, MM cells show high expression of the glutamine transporters SNAT1, ASCT2, and 
L-type amino acid transporter 1 (LAT1); and inhibition of the ASCT2 transporter exhibits anti-myeloma 
activity[73]. Furthermore, high expression of LAT1 is associated with high proliferation and poor prognosis 
in newly diagnosed MM patients, and predicts poor overall survival independent of the International 
Staging System[74]. These data demonstrate that inhibition of glutaminolysis serves as a potential therapeutic 
approach in the treatment of MM[71,72]. 

Targeting fatty acid metabolism for the treatment of MM
Fatty acids and lipids play important roles in the development and pathogenesis of MM through direct 
inf luence on the metabolism of myeloma cells, functioning as intercellular messengers, or acting as 
mediators of the pathological immunologic pathways[75]. Analysis of plasma or erythrocyte membrane lipid 
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composition provides a simple, suitable model to study fatty acid metabolism. Jurczyszyn et al.[75] measured 
the fatty acid composition of RBC membranes in MM patients and compared them with healthy controls. 
MM patients exhibited higher levels of saturated fatty acids and n-6 polyunsaturated fatty acids (PUFA) and 
lower levels of monounsaturated n-3 PUFA and trans-fatty acids, than controls. It was suggested that the 
fatty acid content of the RBC membrane could serve as a diagnostic and/or predictive biomarker in MM. 
Similarly, increased plasma levels of saturated fatty acids and n-6 PUFA were observed in MM patients 
compared to healthy controls, indicating increased synthesis of these fatty acids in MM patients[76]. Recently, 
it has been shown that several myeloma cell lines (U266, RPMI8226, and NCI-H929) increase fatty acid 
oxidation as a mechanism to maintain metabolic hemostasis and viability during conditions of decreased 
glycolysis and increased lactate accumulation[77-79].

Fatty acid synthase (FAS) expression was up-regulated in human myeloma cell lines as well as primary 
myeloma cells and contributes to myeloma cell proliferation and survival. Inhibition of fatty acid b-oxidation 
with etomoxir or de novo fatty acid synthesis with orlistat significantly reduced myeloma cell proliferation. 
The combination of 50 mmol/L etomoxir and 20 mmol/L orlistat resulted in an additive inhibitory effect 
on myeloma cell proliferation. Interestingly, the inhibitory effect was associated with reduced levels of 
p21 protein and phosphorylated retinoblastoma protein[79]. These data suggest that inhibition of fatty acid 
metabolism provides a potential therapeutic approach in the treatment of MM, however O’Connor et al.[80] 
recently showed that etomoxir loses its specificity at concentrations above 5 mmol/L and results in increased 
ROS production so these experiments must be interpreted with caution.

Obesity is associated with increased risks of myeloma incidence and mortality. To understand the molecular 
mechanisms by which adipocytes contribute to myeloma cell survival and progression, Bullwinkle et al.[81] 
co-cultured MM cell lines with adipocytes harvested from normal, overweight, obese, or super obese 
individuals. It was found that MM cells proliferated faster, displayed increased pSTAT-3/STAT-3 signaling, 
and had enhanced adipocyte endothelial tube formation and cell adhesion when co-culturing with 
conditioned media from obese and super obese individuals. 

FUTURE DIRECTIONS
Several areas of future research provide promise in the development of novel treatments for MM.

Lactate research
As the primary molecule thought to induce the hypoxic microenvironment surrounding many cancer cells, 
lactate is one of the most heavily researched metabolites in MM cells. In 1991 it was discovered that high 
serum LDH levels could identify myeloma patients that were at increased risk for early progression after 
treatment[82]. Furthermore, LDH has been identified as a marker that identifies higher risk patients[83]. The 
increased anaerobic respiration in the hypoxic microenvironment of myeloma cells is thought to be linked 
to the HIF1-a transcription factor, and leads to an increase in lactic acid production. In MM, HIF1-a activity 
increases glycolytic metabolites, inhibits production of TCA intermediates, and activates IL-6 which all 
contribute to tumor growth and survival[84,85]. Notably, hypoxia has been shown to promote myeloma cell 
dissemination from the bone marrow to the peripheral blood through the downregulation of E-cadherin 
and the upregulation of the epithelial to mesenchymal transition proteins SNAIL, FOXC2, and TGFβ1[86]. 
Hypoxic conditions also promote upregulation of VEGF leading to increased angiogenesis in a mechanism 
that is thought to be related to HIF1-a activation[86-89]. 

Transporters of lactate are also possible metabolic targets in myeloma. The MCT family of transporters are 
involved in lactate transport in and out of the cell. MCT1 and MCT4 are preferentially expressed in myeloma 
cells. Inhibition of MCT1 with a-cyano-4-hydroxycinnamic acid led to reduced lactate incorporation and 
induced apoptosis in myeloma cell lines[90,91]. Increased lactate is secreted out of MM cells through the MCT 
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transporters leading to an acidification of the bone marrow microenvironment. This results in inhibition of 
MCTs in T-cells and thus accumulation of intracellular lactate and H+, which-together with their reduced 
access to glucose by overconsuming tumor cells-leads to decreased T-cell activation[92].

OXPHOS in multiple myeloma
Since oxidative phosphorylation is the last step in ATP synthesis for aerobic respiration it has been a 
particular focus of research in cancer metabolism. Given the increase in glycolysis during the progression of 
myeloma reviewed above, it might be predicted that OXPHOS increases as well. However, it has been found 
that OXPHOS activity is decreased during increased glycolysis in MM. This is thought to occur because 
the TCA cycle is not producing enough electron carriers to supply the OXPHOS mechanism to operate at a 
normal rate of ATP production[90]. Given these conditions, energy production shifts to anaerobic respiration 
since other mechanisms, like ketosis, are evolutionarily reserved for starvation and extreme cases, meaning 
that lactate is the main source of energy in myeloma cells.

While many groups have investigated the role of metabolism in myeloma, relatively few have focused on the 
role of oxidative phosphorylation in MM. The complex 1 inhibitor, IACS-010759, has been tested in leukemia 
cells where it led to decreased proliferation and increased apoptosis in leukemia cells[93,94]. This compound 
is actively being tested in clinical trials of relapsed AML (NCT02882321), and advanced solid tumors and 
lymphomas (NCT03291938).

Similarly, inhibitors of complex III have been explored as possible anti-cancer agents. Inhibition of complex 
III leads to an increase in ROS which can combat tumor proliferation and metastasis as well as induce 
apoptosis in MM. Previously, Arihara et al.[95] demonstrated that reactive oxygen species have antimyeloma 
activity. Using CP-31398, an activator of p53 which also induces the formation of ROS, the investigators 
demonstrated decreased MM proliferation and increased apoptosis in a p53 independent fashion, and this 
effect was synergistic with carfilzomib. Notably, no additional hematologic toxicity was seen with the agent 
in animal studies[96]. 

Fatty acid research
It is established that resistant MM cells can increase lipogenesis as a mechanism of chemotherapy 
resistance[42,79,97]. PUFAs have previously been shown to enhance chemotherapeutic drug effects by 
selectively inducing apoptosis in multiple cancer cell lines[98-103]. Specifically, administration of two PUFAs, 
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) to four MM cells (L363, OPM-1, OPM-
2 and U266) resulted in induction of apoptosis through increased caspase-3 activation, and mitochondrial 
membrane perturbation with no effect on normal human peripheral mononuclear cells[104]. Similarly, studies 
by Dai et al.[105] examined the effects of EPA and DHA on the myeloma cell lines MM1S and MM1R and 
found that treatment with these agents resulted in increased apoptosis which was enhanced by the addition 
of dexamethasone. Notably, this synergy with dexamethasone was observed in the MM1R cell line which 
is inherently dexamethasone resistant. As glucocorticoids are known to increase lipogenesis, and remain 
a mainstay of MM therapy, these data suggest that EPA and DHA may resensitize cells that have acquired 
resistance to glucocorticoids. Additional studies on MM cell lines showed that treatment with EPA or 
DHA decreased MM cell proliferation through induction of lipid peroxidation. This effect was inhibited 
by superoxide dismutase, or cyclooxygenase/lipooxygenase inhibitors suggesting a role for superoxides, 
prostaglandins, and leukotrienes in MM proliferation[106]. Similarly, Wang et al.[107] examined the expression of 
FAS in bone marrow from MM patients and matched healthy volunteers and found 70% of MM patients had 
elevated FAS while none of the healthy volunteers had detectable levels. Treatment of the FAS expressing MM 
cell lines U266 and RPMI8226 with the FAS inhibitor cerulenin resulted in induction of apoptosis evidenced 
by increased Annexin V staining suggesting FAS as a possible target of anti-myeloma therapy. These studies 
are admittedly preliminary but warrant additional research in this area.
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Other metabolic targets
Other studies have been focused on TCA intermediates. Sanchez et al.[108] were able to identify dichloroacetate 
(DCA) as a possible target for cancer therapy. DCA is an activator for pyruvate dehydrogenase which allows 
for increased production of TCA intermediates and consequently, increased OXPHOS for ATP production. 
Subsequently, DCA was found to inhibit glycolysis in multiple myeloma and increase sensitivity to bortezomib. 

CONCLUSION
The study of metabolism’s role in MM remains in its infancy, and many avenues remain unexplored. With 
combination therapies being the norm in myeloma management and acquired resistance to conventional 
therapies remaining a challenge, the potential exists for additional adjunctive therapies in MM patients. 
Targeting metabolic pathways is a novel area with preclinical data suggesting efficacy. Targets such as the 
GLUT and MCT transporters, IGF-1, FAS, and metabolites of the ETC and OXPHOS warrant additional 
exploration as possible novel anti-myeloma strategies, but care must be taken to minimize adverse effects 
when targeting ubiquitous pathways. Ideally, future preclinical and clinical studies will help to elucidate 
metabolism’s role in myeloma development and progression, and may lead to the discovery of novel therapies 
for patients suffering from this disorder. 
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