
Zhang et al. Soft Sci 2023;3:19
DOI: 10.20517/ss.2022.33

Soft Science

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, 
adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as 

long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

www.softscijournal.com

Open AccessReview Article

Challenges and progress of chemical modification in
piezoelectric composites and their applications
Weiwei Zhang1,2, Yanhu Zhang1,2, Xiaodong Yan1,2, Ying Hong1,2, Zhengbao Yang1,2,*

1Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China.
2Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.

*Correspondence to: Prof. Zhengbao Yang, Department of Mechanical and Aerospace Engineering, Hong Kong University of
Science and Technology, Clear Water Bay, Hong Kong, China. E-mail: zbyang@ust.hk

How to cite this article: Zhang W, Zhang Y, Yan X, Hong Y, Yang Z. Challenges and progress of chemical modification in 
piezoelectric composites and their applications. Soft Sci 2023;3:xx. https://dx.doi.org/10.20517/ss.2022.33

Received: 29 Dec 2022  First Decision: 21 Feb 2023  Revised: 23 Mar 2023  Accepted: 10 Apr 2023  Published: 8 Jun 2023

Academic Editor: Zhifeng Ren  Copy Editor: Ke-Cui Yang  Production Editor: Dong-Li Li

Abstract
Piezoelectric materials directly convert energy between electrical and mechanical domains, and have been widely 
employed in electronic devices as sensors and energy harvesters. Recent research endeavors are mainly devoted to 
dealing with problems such as high stiffness, brittleness, toxicity, poor durability, and low piezoelectric coefficients. 
Among developed strategies, chemical modification captures much attention. However, the exact physical 
properties and direct experimental evidence of chemical modification remain elusive or controversial thus far. In 
this review, we discuss the recently developed piezoelectric modification strategies for piezoelectric composites 
and assess the effect of different chemical modification approaches on piezoelectric properties. Moreover, we 
outline existing challenges and new applications of piezoelectric composites.
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INTRODUCTION
In 1880, French physicists J. Curie and P. Curie found that the surface of quartz crystal generates electric 
charge under pressure, and the amount of charge is directly proportional to the pressure amplitude, which 
effect is named the piezoelectric effect[1]. As shown in Figure 1A, the piezoelectric effect is defined as a 
dual-way electromechanical coupling[2]. When an external force is applied to the material, and we measure 
the number of charges generated, the unit of the piezoelectric coefficient is C/N; when the material is loaded 
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Figure 1. The mechanism, classification, and piezoelectric coefficient of typical piezoelectric materials. (A) Converse and direct 
piezoelectric effects; (B) typical piezoelectric single crystals, ceramics, and polymers; (C) d33 of some typical piezoelectric materials. 
BSPT:  BiScO3-PbTiO 3 ;  BNKLBT: (Na,Bi)TiO3-(K,Bi)TiO 3 -(Li ,Bi)TiO3 -BaTiO 3 ;  PZNT: PbZn1/3Nb 2 / 3 O3 -PbTiO 3 ;  PMNT: 
PbMg1/3Nb2/3O3-PbTiO3; PYNT: PbYb1/2Nb1/2O3-PbTiO3; PVDCN/VAc: Poly(ethylene cyanide/vinyl acetate); PPEN: Polyphenyl 
cyanoether; PZN: PbZn1/3Nb2/3O3; PI: polyimide.

with voltage, and we measure the displacement, the unit of the piezoelectric coefficient is m/V. After more 
than 100 years of development, scientists have developed different piezoelectric materials, including single 
crystals, piezoelectric ceramics, and polymers. Figure 1B and C show the different types of piezoelectric 
materials and compare their longitudinal piezoelectric coefficient (d33). According to Damjanovic and 
Newnham[3,4], the mechanical strain in piezoelectric materials can be induced by an electric field, or external 
stress governed by Hooke’s law, or thermal expansion. Following the Landau Theory[5], we present the 
classic coupling relationship between the thermal, mechanical, and electrical domains in Figure 2.

Though Piezoelectric ceramics show excellent d33, they are rigid and brittle; piezoelectric polymers exhibit 
sufficient flexibility but usually have a low d33. Composite materials combining piezoelectric ceramics into 
soft polymer matrix have unique advantages, because the composite materials have the flexibility of organic 
polymer and excellent piezoelectric properties of piezoelectric ceramics. However, (1) how to improve the 
surface properties of inorganic nano materials; (2) how to improve their dispersion in the polymer matrix; 
and (3) how to enhance the bonding between ceramics and polymers are three huge challenges. In this 
regard, researchers proposed high-performance piezoelectric devices by using nanowire growth, transfer 
techniques, electrospinning, compositing and chemical modification methods[6-8]. Among these approaches, 
chemical modification has the advantages of simplicity and low cost.

Chemical modification effectively controls the piezoelectric output by tuning the surface charge density of 
ceramic and polymer materials. For ceramic materials, chemically modified phase structures associated with 
ionic substitution play an important role in improving piezoelectric properties. Three common lead-free 
piezoelectric components, namely barium titanate (BaTiO3, BT), potassium-sodium niobate 
[(K0.5Na0.5)NbO3, KNN] and sodium-bismuth titanate [(Bi0.5Na0.5)TiO3, BNT] adopt the perovskite ABO3 
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Figure 2. The temperature-stress-electric field coupling interaction of piezoelectric materials.

structure, whose chemical substitution usually involves the substitution of cations in the A/B site or both of 
them [Figure 3A]. For example, for KNN ceramics, the Li+[4,9-13] and Ag+[14-16] are usually employed to replace 
A-site (K+ or Na+), while the Sb5+[4,17-19], Ta5+[4,20,21], Zr4+[1,9,22-24], or Hf4+[1,25,26] are commonly used to replace the 
B-site Nb5+ ions to increase the piezoelectric output. The common piezoelectric polymers are PVDF[27-30], 
poly(tetrafluoroethylene) (PTFE)[31], polyamides/nylons (PA)[32], polyacrylonitrile (PAN)[33,34], and 
polyoxyethylene (PVC)[35,36], etc. These polymers usually have smaller piezoelectric coefficients than 
piezoelectric ceramics; thus, except for PVDF and its copolymers, most piezo polymers are not widely 
adopted in the market. Besides, the strong conformation of the PVDF-based materials can be achieved by 
direct chemical modification of the polymer, thereby enhancing its piezoelectric properties. The 
copolymerization reaction is an effective method for preparing β-PVDF with all-trans planar conformation. 
Adding comonomers with large spatial hindrance, such as trifluoroethylene (TrFE)[37,38], chloride trifluoride 
ethylene (CTFE)[39,40], 1,1-chloro-fluoroethylene (CFE)[30,39], hexafluoropropene (HFP)[30,39], will increase the 
conformational potential energy of α-phase copolymer. Figure 3B shows a preparation strategy of 
P(VDF-TrFE-CTFE) terpolymer, which increases d33 to -55.4 PC/N[41]. The simple component elimination 
method can also get a high β-phase for PVDF[42-45]. Using a dehydrogenation technology of fluoride 
[Figure 3C], and the fluorinated alkyne (F.A.) monomers (< 2 mol %) in P(VDF-TrFE-CTFE) terpolymers 
by dehydrochlorination of CFEs, researchers got an ultrahigh d33 of -1050 pm/V[46]. Although new PVDF-
based copolymers present a high piezoelectric effect, their large-scale synthesis remains difficult. Recent 
efforts have been made to form flexible composite materials consisting of ceramics and polymers to resolve 
these issues.

Since the classification of two-phase piezoelectric ceramic/polymer composites was first proposed by R. E. 
Newnham in 1978, more and more attention has been paid to piezoelectric composites on account of their 
excellent comprehensive properties[3,47,48]. How to improve the dispersion in polymer matrix and enhance 
the bonding between ceramic and polymer has become an important research direction in ceramic-polymer 
composites. A uniform dispersion of piezoelectric particles in the composite film is crucial for fabricating 
piezoelectric materials with high output, as it ensures a uniformly distributed piezoelectric potential within 
the active energy-harvesting composite layer. Chemical modification creates the opportunity to incorporate 
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Figure 3. Chemically modified piezoelectric materials. (A) Cationic-substitution-modified ceramics; (B) the direct terpolymerization 
scheme of VDF, TrFE and CTFE[41]. Copyright 2022, American Chemical Society; (C) reaction scheme of P(VDF-TrFE-CFE) treated with 
triethylamine[46]. Copyright 2022, American Association for the Advancement of Science.

polar molecules into non-polar molecular structures without problems of dispersion and compatibility, thus 
increasing their piezoelectric properties. In this review, we summarize the recent advances in 
high-performance piezoelectric composites based on organic surface modification, inorganic 
functionalization, and organic-inorganic co-modification, focusing on the recent advances in design 
methods for achieving superior piezoelectric properties. While there have been several excellent reviews on 
piezoelectric ceramics and polymers[1,49-53], this work highlights the effects of chemical modification on 
piezoelectric composites. In the meantime, the general design strategies of chemical modification to 
optimize piezoelectric composites’ properties and their application are summarized. Finally, we outline 
chemical modification’s challenges and further development prospects in piezoelectric composites.

CHEMICAL MODIFICATION IN PIEZOELECTRIC COMPOSITES
Chemically modified composites incorporating piezoceramic particles into polymers have unique 
advantages such as simple and scalable fabrication, low cost, high mechanical durability, and flexibility. 
Three non-hazardous chemical treatments, silylation, amidation and grafting, are usually available to 
modify composites. This section analyzes the research progress into chemically-reinforced piezoelectric 
composites since 2000. Figure 4 shows the outline of this section.

Silylation
Silylation reaction usually uses the SiOH group hydrolyzed by trimethoxysilyl or triethylsilane-based 
elastomers to modify the surface of nano materials, primarily, 3-aminopropyltrimethoxysilane (APS), 
3-trimethoxysilylpropyl methacrylate (TMSPM), γ-Glycidoxypropyltrimethoxysilane (KH560) and 
polydimethylsiloxane (PDMS)[54-59]. In the process of preparing piezoelectric nanocomposites, nanoparticles 
are easy to agglomerate and show poor affinity with the matrix. Nanoparticles are not miscible when they 
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Figure 4. Outline of the technical content of chemical modified piezoelectric composites.

are mixed with each other, resulting in voids and phase separation. Chemical modification of nanomaterials
can solve this problem well. A silane coupling agent helps nanoparticles scatter and strengthens the interface
combination between nanoparticles and polymers. Figure 5A illustrates a typical diagram of silane-modified
nanocomposites[60].

APS modifier plays an influential role in maximizing the use of the excellent electroactive phases of PVDF
polymer to enhance its piezoelectric response. Bairagi et al. found that the growth of PVDF polymer
electroactive phases was significantly improved by adding APS-modified KNN nanorods[55]. In particular, 
the β crystal portion of surface-modified KNN nanorod-based films was improved (17% for pure PVDF, 
45% for untreated KNN-based films, and more than 50% for surface-modified KNN based films). 
Figure 5B describes the nucleation mechanism of KNN nanorods in the PVDF polymer matrix[55]. 
Following that, they added APS-modified KNN nanorods to PVDF electrospinning nets to further 
enhance the piezoelectric property[56]. The maximum output voltage and current of composite 
piezoelectric materials are 21 V and 22 mA, respectively, significantly higher than the KNN/PVDF 
nanogenerator prepared by pure KNN. Also, in another study, Su et al. applied APS’s properties to 
modify BaTiO3 nanoparticles[57]. The maximum piezoelectric constant (d33) of the direct piezoelectric 
response for poled BaTiO3-PVDF membranes was approximately 4.8 pC/N, at 0.1 wt% loading of 
BaTiO3. This result can be attributed to the substitution of -OH groups on the BaTiO3 surface by a silane 
coupling agent, thus eliminating the formation of adsorbed water on the surface of the particles.

A similar response has been reported with other silane-based coupling agents to modified BTO and PZT
nanocomposites. During this process, the silane coupling agent is coated onto nanoparticles to improve the
interface interactions and compatibility between the nanoparticles and polymer matrix. Recently, Wang
et al. demonstrated high-performance BaTiO3-PDMS composites for electromechanical energy
conversion[54]. The maximum open-circuit output voltage and short-circuit current of dielectrophoretically
aligned BaTiO3-PDMS composite reach ~80 V and ~25 μA, respectively. Surface modifiers reduce the
surface energy of nanofillers to form a repellent tendency between fillers, thus mitigating the agglomeration
trend. In 2019, Cui et al. prepared piezoelectric metamaterials with complex microstructures by surface
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Figure 5. Piezoelectric materials chemically modified by silane coupling agents. (A) The schematic diagram of silane coupling agent 
modified ZnO and PVDF- TrFE[60]. Copyright 2019, Elsevier; (B) β nucleating effect of the KNN nanorods in the PVDF matrix[55]. 
Copyright 2019, Springer US. (C) schematic illustration of surface functionalization method and strong bonds between the 
nanoparticles and the polymer matrix after the ultraviolet curing process[58]. Copyright 2019, Springer Nature.

functionalization of PZT with TMSPM [Figure 5C][58]. They found that the low-density flexible piezoelectric 
metamaterial obtained by this method has more than twice the piezoelectric constant than other flexible 
piezoelectric composites. In addition, Wu et al. developed a PZT-type/epoxy piezoelectric composite with a 
spiral structure by a roll forming-curling method[59]. KH560 first chemically modifies PZT through silylation 
reaction, and then they graft the KH560 onto the epoxy resin matrix through a condensation reaction, 
forming a bridge between PZT and epoxy. The study found that after KH560-handling with 12 h, it 
exhibited the optimal piezoelectric performance with a d33 of ~546 pC/N, which is 7.5% above those 
prepared without the coupling agent.

Piezoelectric composites modified by silane coupling agents show both superior β-phase content and charge 
collecting area. The selection of an appropriate silane modifier is conducive to improving the electroactive 
phase of PVDF-based polymers and plays a key role in maximizing their piezoelectric properties.

Amidation
Amidation reaction is described as follows: If ammonia or amine is used to react with carboxylic acid, it is 
necessary to control the equilibrium conditions to prevent excessive product; If amine and acyl chloride are 
used for preparation, low temperature and alkali shall be added, and the addition rate of raw materials shall 
be controlled to control heat release; If amine reacts with anhydride, catalysts such as sulfuric acid and 
peroxy acid should be added. The mechanism of the amidation reaction is shown in Figure 6A.

Thanks to the strong charge interaction, The covalent bond formed by amidation improves composites’ 
mechanical and electrical properties[61]. In view of this, Mandal et al. prepared an ionic liquid (I.L.) 
integrated multiwalled carbon nanotube (MWNT-IL) by amidation reaction between MWNT-COOH and 
IL-NH2, as shown in Figure 6B[62]. Their report explained that covalently anchored I.L. could uniformly 
disperse MWCNT in PVDF matrix, preferentially β nucleus due to dipole interaction. Using the same 
approach, Chen et al. synthesized a novel PEG-graphene through an amidation reaction between graphene 
oxide and methoxypolyethylene glycol amin[63]. The formation of hydrogen bond leads to PVDF 
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Figure 6. Enhancement in the electroactive crystalline phase and dielectric performance of amidated PVDF composites. (A) The 
mechanism of the amidation reaction; (B) schematic illustration for the dispersion of ionic liquid functionalized MWNTs within the 
PVDF matrix[62]. Copyright 2013, American Chemical Society; (C) chemical structures of peptides used[65]. Copyright 2021, 
Wiley-Blackwell; (D) amide-terminated peptides present higher responses than carboxylate-terminated ones[65]. Copyright 2021, 
Wiley-Blackwell.

macromolecular chain contacting with graphene, forming a β phase with perfect TTTT chain sequence. The 
dielectric constant of 10 wt.% PEG-graphene (53.3) is 6.5 times that of pure PVDF. It is believed that the 
amidation of nanoparticles and the formation of hydrogen bonds with polymers promote PVDF-based 
composites with excellent piezoelectric properties.

Furthermore, a few research attempts are applied to improve piezoelectric composites’ performance by 
amidation after modification of nanoparticles and polymers. For example, Pongampai et al. propose a 
triboelectric-piezoelectric hybrid nanogenerator based on BaTiO3-Nanorods/Chitosa[64]. The direct coupling 
between the BT-NPs and the chitosan matrix makes it trapped in the polymer network, which significantly 
increases the dispersion of BT-NPs in the chitosan matrix. The harvested open-circuit voltage and current 
density can get to 111.4 V and 21.6 μ, respectively, sufficient to drive 100 LEDs. Amine functionalization 
also affects the stability and rigidity of monolayers. Petroff et al. manufactured a piezoelectric force and 
touch sensor with oligopeptides to attain large piezoelectric responses without electro polarization through 
self-assembly technology [Figure 6C][65]. A maximum value of (9.8 ± 1.5) pC N-1 is obtained from the 
assembly composed of amide-terminated CA6 functionalized printed circuit boards (PCBs) [Figure 6D]. 
The amidation reduces the α-helix, allowing for a dipole change in the deformation under compression, 
ultimately producing a greater piezoelectric response.

Grafting
The grafting method uses the chemical reaction between a reactive group on the material surface and the 
grafted monomer or macromolecular chain. Piezoelectric nanoparticles can be integrated into the 
composite film through grafting reactions that improve the distribution uniformity of nanoparticles in the 
polymer matrix. Figure 7A shows the mechanism of the grafting reaction.
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Figure 7. Composite piezoelectric films prepared by grafting nanoparticles with polymers. (A) The mechanism of the grafting reaction; 
(B) schematic of the fabrication of PVDFNF-IGO composite nanofibers[67]. Copyright 2021, Elsevier Ltd; (C) the synthesis procedure of 
the PMMA@BaTiO3 nanowires by ATRP technology[71]. Copyright 2021, Elsevier BV; (D) schematic illustration of the fabrication of 
layered CPNF membranes[72]. Copyright 2022, Elsevier Ltd.

Grafting is a simple and economical method to coordinate the interaction of polymers with 
nanomaterials[64,66]. For instance, Ramasamy et al. prepared a PVDF nanofibers sensor by using 
phenyl-isocyanate graft graphene oxide (IGO), as shown in Figure 7B[67]. The IGO endowed PVDFNFs with 
a rough surface morphology, enhanced crystallinity, and electroactive β phase. Begum et al. grafted 
multiwalled carbon nanotubes (MWCNTs) onto di-glycidyl ether of bisphenol-A (DGEBA) by a linker 
moiety hexamethylene diamine (HMD)[68]. They reported that the modified MWCNTs (HD-MWCNTs) 
found firm polar groups on the surface, which improves the compatibility between HD-MWCNTs and 
PVDF and forms hydrogen bonds. Covalent Functionalization has stronger interaction than the surface 
modification of non-covalent moieties, allowing PVDF/HD-MWCNTs nanocomposite to achieve d33 up to 
5.0 pC/N at a filler loading of 1 wt%[69,70].

A different work focuses on grafting polymethyl methacrylate (PMMA) onto BaTiO3 nanowires through 
atom transfer radical polymerization (ATRP) technology [Figure 7C][71]. The polymer grown from the 
inorganic filler surface in situ ATRP produces a strong interface with the fillers, and endows 
nanocomposites with increased dielectric constant and ultra-low dielectric loss[71]. As expected, PMMA 
grafting of BaTiO3 nanowires resulted in a more uniform dispersion in the PVDF-TrFE matrix and an 
improved stress transfer at the interface between them. They report a maximum export voltage of 12.6 V 
and output power of 4.25 μW in composites at 10 wt% filler concentration; it is 2.2 times and 7.6 times 
upper than that of the composites with unmodified BaTiO3 and without BaTiO3 nanowires.

Interestingly, grafting reaction can take place on polymers surface. Wang et al. developed a layered 
piezoelectric nanogenerator using maleic anhydride grafted PVDF covalently bonded to cotton cellulose 
nanofibers (CNF) [Figure 7D][72]. These membranes show a clear double-layer structure, and the PBT@CNF 
layer in all membranes is tightly attached to the PNF layer, and there is no observation of layers and gaps. 
Under strong interface interaction, the maximum tensile strength of double-layer CPNF film is 47.99 ± 4.08 
MPa at 5.0 wt% pBT. The layered PENGs produce significantly reinforced piezoelectricity, increasing d33 
from 1.63 to 27.2 pC/N as the loading of pBT from 0% to 5.0 wt%[73,74]. A maximum in the output 
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Table 1. A survey of the main parameters of piezoelectric composites

Material system Modification d33 (pC/N) Frequency Dimensions Voltage (V) Ref.

PVDF/ZnO N.W.s - - 1 Hz - 0.2 [75]

PVDF/BaTiO3 - - 1 Hz 1.5 * 2 cm2 6.7 [76]

PVDF/KNN NRs - - 10 Hz 2 * 2 cm2 3.4 [77]

P(VDF-TrFE)/KNN - - 5 KHz - 0.98 [78]

P(VDF-TrFE)/AgNPs - - - 35 * 35 nm2 0.048 [79]

P(VDF-TrFE)/ZnO - 19.0 190 Hz 13 * 13 mm2 - [80]

PVDF/graphene PFOES 39.8 1 Hz - - [81]

P(VDF-TrFE)/BaTiO3 PA - 3 Hz 2.5 * 2.5 cm2 6.0 [82]

P(VDF-TrFE)/BaTiO3 PMMA - 3 Hz 2.5 * 2.5 cm2 12.6 [71]

PVDF/KNN APS - - - 21.0 [56]

SEBSm/PZT PEI - - 2 * 4 cm2 65.0 [83]

performance (Voc = 3.2 V, Isc = 0.25 μA) is achieved at a 5.0 wt% pBT loading. The significant improvement 
in piezoelectric output is attributed to the synergistic effect of these piezoelectric elements in the layered 
structure and the local stress concentration caused by the rigid pBT nanoparticles.

Table 1 shows the preparation and some parameters of new piezoelectric composites[56,71,75-83]. Compared 
with similar polymer matrix composites injected with carbon nanotube fillers or unmodified nanoparticles, 
the piezoelectric coefficient of chemically modified composites is significantly improved. In summary, 
chemical modification is a straightforward technique for enhancing the performance of piezoelectric 
composites.

APPLICATION
Piezoelectric composites offer mechanical flexibility, suitable voltages with sufficient power output, lower 
manufacturing costs, and ease of rapid processing compared to ceramic and polymer materials. They thus 
have a great potential to benefit a diverse set of applications. This section explores the application of 
chemically modified piezoelectric composites in sensors, energy harvesters, and acoustic transducers.

Sensors
Sensors based on piezoelectric composites can respond to changes in physical quantities, such as pressure, 
sound waves, and airflow. Its sensitive element is made of piezoelectric materials, and when the piezoelectric 
material is subjected to an external force, charges will be formed on its surface. After the charge passes 
through a charge amplifier, the amplification of the measurement circuit, and the impedance 
transformation, it will be converted into an electrical output proportional to the external force received.

Pressure sensors are used in sporting gloves for simultaneous impact absorption and punching force 
mapping. Hong et al. developed a 3D-printed flexible piezoelectric nanocomposite with a tensile dominant 
micro-mechanical structure with a design thickness (5 mm)[84]. Then, boxing gloves were inserted to provide 
spatial and temporal resolution mapping of the reaction force applied to the hand joints during boxing 
activities[84]. They first functionalized the nanoparticles and covalently grafted them onto the surface of the 
piezoelectric nanoparticles. Then, they combined the modified piezoelectric particles with the 
photopolymer after curing by covalent chemical bonds (CH2-CH2 groups) under UV light [Figure 8A]. The 
3D-printable piezoelectric nanocomposites designed by chemical modification exceed the existing 
compliance and functional performance trade-offs, highlighting their potential as flexible sensors and 
wearable devices. Compared to the commercial PVDF (d33 ≈ 27 pC N-1), functionalized piezoelectric 



Page 10 of 17 Zhang et al. Soft Sci 2023;3:19 https://dx.doi.org/10.20517/ss.2022.33

Figure 8. Piezoelectric composites in sensors. (A) Chemical structure of the UV-sensitive monomer matrix and the functionalized PZT 
particles[84]. Copyright 2019, Wiley-VCH Verlag; (B) the experimental setup used to measure the output voltages/sensitivities of the 
piezoelectric sensors[67]. Copyright 2021, Elsevier Ltd; (C) the kirigami-structured HAPNC sensor to monitor MSDs[85]. Copyright 2021, 
American Association for the Advancement of Science.

composite has a higher piezoelectric charge constant d33 (≈ 110 pC N-1). Ramasamy et al. grafted phenyl 
isocyanate on the surface of graphene oxide, and blended it with PVDF by electrospinning to prepare a 
composite piezoelectric material [Figure 8B][67]. The functionalization of phenyl isocyanate on the surface of 
graphene oxide can enhance its dispersion in organic solvents, conducive to its effective hybridization with 
PVDF. At 10 MΩ load resistance, the PVDFNF-IGO composite displayed the optimal piezoelectric property 
with an output voltage of 22.8 V and a power of 51.984 µW, 24.6% higher and 55.23% upper than those of 
the original PVDFNFs, respectively. Furthermore, the sensor sensitivity of the composites is 63.09% higher 
than that of the pristine PVDF.

In addition, sensors are also well used in artificial intelligence. In our lab, a 3D-interconnected piezoelectric 
composite was manufactured to monitor the motions of a soft robot[85]. The piezoelectric composite is the 
core sensory element. A lead zirconate titanate (PZT) ceramic network is constructed in Kirigami 
honeycomb grids and then filled with polydimethylsiloxane (PDMS) [Figure 8C]. Through silane 
modification, the designed kirigami structure has a high piezoelectric sensitivity (15.4 mV kPa-1) and high 
linearity (R2 = 0.98) compared to the composite with randomly dispersed fillers. Piezoelectric sensors show 
many advantages, including extensive measurement range, high voltage electrical anisotropy, and long-term 
monitoring capability.

Energy harvesters
The basic working principle of the piezoelectric energy harvester is the piezoelectric effect, that is, the 
deformation of the piezoelectric material under the excitation of the external vibration causes the 
asymmetry of the dipole inside the material and the polarization phenomenon. At the same time, electrical 
charges are accumulated on surface electrodes. Detailed information on energy harvesters can be found in 
the review papers[86,87]. Our group analyzed the dynamic responses of energy harvesters excited by vibrations 
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Figure 9. Piezoelectric composites in energy harvesters. (A) Schematic illustration showing the structure of the W-PUEH device based 
on natural wood with lattice-like cellulose channels[89]. Copyright 2021, Royal Society of Chemistry; (B) the PZT NPs are 
surface-functionalized with amine groups.[83] Copyright 2018, Royal Society of Chemistry; (C) the generated output voltage 
(open-circuit voltage) from the PNG device attached to the elbow and wrist when subjected to bending[83]. Copyright 2018, Royal 
Society of Chemistry.

from multiple directions using a nonlinear compressive-mode PZT plate[88], which enhanced the 
practicability of energy collection in complex environments. Moreover, we developed a transmuscular 
ultrasonic wireless energy transfer system based on a flexible wood-templated piezoelectric energy harvester 
[Figure 9A]. It can output open circuit voltage (~4.5 V) and short circuit current (~120 μA), all meeting 
biomedical equipment’s needs[89].

Recently, several research attempts have been carried out to improve the performance of energy harvesters 
by amidation after modification of nanoparticles and polymers, respectively. For instance, Yao et al. 
developed a PZT flexible piezoelectric energy harvester by amidation of PZT and triblock copolymer[83]. 
This chemically reinforced composite contains stably dispersed PZT nanoparticles in the polymer matrix. It 
performs excellently under bending strain, with a high output voltage of 65 V and a current of 1.6 μA 
[Figure 9B]. It can also collect the energy generated during the movement of upper arm muscles, as shown 
in Figure 9C. The above work shows that the output voltage of piezoelectric energy harvesters usually 
reaches tens of volts, enough to drive most electronic devices in daily life.

Acoustic transducers
Piezoelectric transducers operate in the acoustic spectrum range, including audio, ultrasonic, and infrasonic 
frequency ranges[90]. They use the piezoelectric effect and resonance to convert electrical energy into 
mechanical vibration. Many composite-based ultrasonic transducers have been reported[91-95], and we here 
choose two studies to illustrate the performance differences between different composites.

Electrical stimulation produced by piezoelectric materials can enhance nerve regeneration to treat 
neurodegenerative diseases. Jiang et al. proposed a piezoelectric patch (LF-PUEH) based on flexible 
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Figure 10. Illustration of piezoelectric composites in the acoustic transducers. (A) Schematic and design of the flexible LF-PUEH 
device[95]. Copyright 2019, Wiley-VCH Verlag; (B) output voltage and power density of the device as a function of input voltage[95]. 
Copyright 2019, Wiley-VCH Verlag; (C) schematic of a flexible electret loudspeaker, and an exploded view of a flexible electret 
loudspeaker[96]. Copyright 2010, IOP Publishing Ltd.

high-performance KNNS/epoxy 1-3 arrays[95]. As shown in Figure 10A, LF-PUEH is implanted into the 
eyeball. Wirelessly excited by a transducer that operates at 100 Vpp, the LF-PUEH shows a voltage response 
of 0.54 Vpp and a power density of 7.3 mW·cm-2 [Figure 10B], above the power threshold required for 
stimulating the retinal nerve. In addition, piezo transducers are also used as loudspeakers [Figure 10C][96]. A 
loudspeaker is unique in that its sound pressure level is a quality factor; that is, the effective sound pressure 
is the pressure relative to the reference environment[90]. In order to meet the increasing demands, innovative 
piezoelectric transducers with advanced materials and structures are emerging.

For piezoelectric transducer applications, some devices cannot be replaced by lead-free piezoelectric 
composites in a short period of time due to some thorny issues such as low strain response and poor 
temperature stability. Researchers should pay more attention to these thorny issues by chemically modifying 
lead-free piezoelectric composites to fabricate simple, robust and large-scale piezoelectric transducers for 
commercial mass production in the future.

CONCLUSIONS AND OUTLOOK
This review sorts out the design and preparation progress of chemically-reinforced high-performance 
piezoelectric composites in recent years, and preliminary evaluates the feasibility of the implementation of 
this scheme. The chemical methods promote the design of piezoelectric composites and help the application 
of piezoelectric functional systems in energy, medicine, and environmental engineering. In the future 
research process, further development of piezoelectric composites needs to consider the following aspects.
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1. Modifier selection: Metal-organic frameworks are a new type of porous crystal hybrid materials, which 
allows the insertion of charges and molecules, and can effectively induce strong interfacial coupling effects 
in polymers. It is expected to be an excellent modifier for piezoelectric composites.

2. Chemical modification selection: The piezoelectric properties of the material are largely affected by the 
preparation process and the proportion of raw materials. Different chemical modification methods or a 
combination of multiple modification methods should be selected according to the material properties.

3. Combined with theoretical simulation: Computational simulation would facilitate our understanding of 
the surface chemical states of materials, and provide new ideas and theoretical guidance for the chemical 
modification technology of piezoelectric materials.

Overall, since the research on chemically modified piezoelectric composites is still at an early stage, great 
attention should be paid to modifier selection, compatibility, flexibility, and long-term stability. It is 
believed that in the near future, chemically modified lead-free piezoelectric composites will play a greater 
role in the overall piezoelectric materials and their applications.
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