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Abstract
Fabry disease (FD) is an X-linked lysosomal storage disorder caused by pathogenic variants in the GLA gene 
encoding for alpha-galactosidase A. Renal, cardiac, and cerebrovascular involvement are the leading complications 
in early adulthood and are associated with severe morbidity and mortality. Cerebrovascular manifestations in FD 
manifest as ischemic stroke and transient ischemic attack and less frequently as hemorrhagic strokes. Many 
patients may develop their stroke not only before other major complications but also before the diagnosis of FD is 
made. This review will describe the frequency and characteristics of cerebrovascular disease in FD, the complex 
pathophysiological mechanisms, the neuroimaging findings, the value of screening studies in young patients with 
stroke, and the controversies regarding the beneficial effect of ERT for the prevention of cerebrovascular disease in 
FD.

Keywords: Fabry disease, cerebrovascular disorders, ischemic stroke, hemorrhagic stroke, transient ischemic 
attack

INTRODUCTION
Fabry disease (FD) is an X-linked lysosomal storage disorder caused by pathogenic variants in the GLA gene 
encoding for alpha-galactosidase A (α-GAL A). FD is characterized by progressive and multisystemic 
lysosomal accumulation of glycosphingolipids involving peripheral nerves, gastrointestinal tract, skin, heart, 
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kidneys, and brain. As a consequence, a myriad of progressive signs and symptoms may be present, 
including neuropathic pain, hypohidrosis, exercise intolerance, gastrointestinal symptoms, hearing loss, 
tinnitus, angiokeratoma, “cornea verticillata”, left ventricular hypertrophy, proteinuria, decreased renal 
function, and stroke[1-4]. Estimates of the prevalence of FD range from approximately 1 in 117,000 to 1 in 
37,000 live male births for classic FD and up to 1 in 1,400 in some newborn screening projects when atypical 
FD variants are included[5-7].

Symptoms usually begin in childhood and adolescence, particularly in the classical Type 1 phenotype, and 
are mainly characterized by gastrointestinal symptoms, anhidrosis, and neuropathic pain, and progressively 
lead to kidney and heart involvement, as well as stroke. Misdiagnosis is common[8], with a long delay 
between onset of symptoms and diagnosis[9]. Renal, cardiac, and cerebrovascular involvement are the 
leading complications in early adulthood and are associated with severe morbidity and mortality. By 
contrast, patients with the Type 2 later-onset phenotype have residual enzyme activity and, therefore, 
present with delayed clinical manifestations. Cardiac or renal involvement may be observed in these 
patients after their fourth decade of life and stroke may also occur as an isolated manifestation[10-12].

Enzyme replacement therapy (ERT) has been available for the treatment of FD since 2001 and is the 
standard of care[13]. Two ERT formulations are available currently: agalsidase alfa[14] and agalsidase beta[15]. 
Additionally, an α-GAL A pharmacological chaperone, migalastat, can be used to treat certain patients with 
an amenable GLA mutation[16].

This review will describe the frequency and characteristics of cerebrovascular disease in FD, the complex 
pathophysiological mechanisms, the neuroimaging findings, the value of screening studies in young patients 
with stroke, and the controversies regarding the beneficial effect of ERT for the prevention of 
cerebrovascular disease in FD.

PATHOPHYSIOLOGY OF VASCULAR DAMAGE IN FD
Vasculopathy in FD is the result of overlapping abnormalities in the vessel wall, the blood components, and 
the circulation[17,18].

Vasculopathy and Gb3
Two primary hypotheses have been proposed for the pathogenesis of vasculopathy in FD. The first 
underlines the pathologic effects of globotriaosylceramide (Gb3) on the endothelial cells, while the second 
stresses the deleterious effect of globotriaosylsphingosine (lyso-Gb3) on the muscular layer of blood vessels 
[Figure 1]. Following alpha-GAL A deficiency, Gb3 accumulates within caveolae of endothelial cells, 
resulting in endothelial nitric oxide synthase (eNOS) uncoupling and superoxide (O2-) production. Nitric 
oxide is consumed to form peroxynitrite (ONOO-), which leads to the formation of 3-nitrotyrosine (3NT). 
Gb3 accumulation is sufficient to account for the dysregulation of eNOS[19], as demonstrated in alpha-GAL 
A knockout mice[20]. Studies on cerebral blood flow have reported either decreased or enhanced flow. These 
seemingly contradictory findings might be due to eNOS uncoupling with secondary oxidative stress[21,22].

A pro-oxidant state occurs in FD associated with both Gb3 and Lyso-Gb3 accumulation leading to tissue 
damage through vasculopathy, endothelial free radical formation, and altered oxidative responses[23,24].

Vasculopathy and chronic inflammation
Tissue deposition of glycolipids is not considered a sufficient explanation of the pathophysiology of FD. 
Gb3 and lyso-Gb3 can also induce a chronic inflammatory state leading to vascular damage, as previously 
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Figure 1. A visual summary of the mechanism detailed in the section of pathophysiology. Image adapted by authors from ref[17,38]. tPA: 
Tissue plasmínogen activator; VCAM: vascular cell adhesion molecule; ICAM: intercellular adhesion molecule; Lyso-Gb3: 
globotriaosylsphingosine; ROS: reactive oxygen species; NO: nitric oxide; ANG: angiotensin; AT-1: angiotensin type 1 receptor; AT-2: 
angiotensin type 2 receptor; MPO: myeloperoxidase; RBC: red blood cells; WBC: white blood cells.

reviewed[25]. The classical natural T killer cells recognize both Gb3 and lyso-Gb3 as self-antigens presented 
by the major histocompatibility complex to antigen-presenting cells[26]. Recognition of these glycolipids 
induces the release of various proinflammatory cytokines such as interferon-gamma, tumor necrosis factor 
alpha, and interleukins 4, 5, 9, 10, 13, and 17[27,28]. This proinflammatory status in patients with FD leads to 
endothelial cell activation, inducing a cascade of effects that lead to a prothrombotic state characterized by 
dysfunctional platelets, higher secretion of von Willebrand factor, increased release of microparticles, and 
the activation of plasminogen[29-32]. Moreover, increased expression of endothelial adhesion molecules has 
also been reported[33,34].

Ca2+-activated K+ channels
The endothelium controls vascular diameter through the contractile status of the smooth muscle of blood 
vessels. This process is mediated by the release of nitric oxide, prostaglandins, and the endothelium-derived 
hyperpolarizing factor (EDHF). Endothelial hyperpolarization responses are mediated by Ca2+-activated K+ 
channels (KCa) in response to calcium mobilization under shear stress stimulation. The hyperpolarization 
current is then transmitted to the medial muscular layer, inducing muscle relaxation and vasodilation. Gb3 
accumulation reduces both KCa expression and function. Downregulation of pathways that control KCa 
expression is observed, including extracellular signal-regulated kinase (ERK) and activating protein-1 
(AP-1) pathways, leading to endothelial dysfunction in FD. Moreover, channel activity is inhibited by 
decreasing intracellular levels of phosphatidylinositol 3-phosphate, which is a channel agonist[35,36].

Lyso-Gb3 and the medial muscular layer
Aerts et al. described higher concentrations of plasmatic lyso-Gb3 in patients with FD[37]. A second 
hypothesis of vascular damage in FD considers that the circulating lyso-Gb3 effect on the arterial medial 
layer is the main and primary event, inducing smooth muscle hypertrophy, increased shear stress, and vessel 
lumen reduction[38]. It is hypothesized that the increased shear stress induces the upregulation of angiotensin 
II; this molecule interacts with the angiotensin 1 receptor (AT1) to produce a complex cascade of events 
including the overexpression of adhesion molecules, cytokines, and chemokines. Moreover, AT1 not only 
induces a proinflammatory effect on leucocytes, endothelial cells, and vascular smooth muscle cells, but also 
reduces nitric oxide formation with a subsequent increase of reactive oxygen species[39].

After binding to the AT1 receptor, angiotensin II activates integrin-mediated signaling and overexpression 
of the transforming growth factor beta, thereby inducing alterations not only of extracellular matrix quality 
and quantity, but also of the cytoskeletal protein composition and filament organization. These changes 
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decrease vessel compliance. This inflammatory process, along with oxidative stress, weakens the vessel wall 
as it activates protease-mediated extracellular matrix degradation and apoptosis of smooth muscle cells. 
Progressive weakening of the vessel wall results in elongation, dilatation, and aneurysm formation[38,40,41] 
[Figure 1].

Basilar artery dolichoectasia
Basilar artery diameter is significantly enlarged in FD patients[42-44]. It was postulated that a low sympathetic 
innervation of intracranial vessels in the posterior circulation is the reason for the selective involvement of 
this vessel. Vertebrobasilar dolichoectasia is an additional risk factor for ischemic brain lesions and small 
vessel disease[45]. Brain infarctions in patients with basilar artery dolichoectasia may develop due to major 
distortion and obstruction of perforating arteries, thrombosis, and emboli arising from this dolichoectatic 
vessel[46].

Cardioembolic stroke
In addition to the previously described mechanisms, stroke in the distribution of large vessels is 
predominantly due to cardiac embolism, mainly due to arrhythmias and cardiomyopathy. Cardiac 
involvement is the main cause of mortality in FD[47]. Hypertrophic cardiomyopathy is a hallmark of FD and 
evolves into myocardial replacement fibrosis[48]. With FD progression, a reduction of left ventricular end-
diastolic volume is seen, resulting in a lower cardiac output[49,50]. The severe involvement of the conduction 
system is the cause of bradycardia, asystole, episodes of ventricular tachycardia, and intermittent atrial 
fibrillation, all of which markedly increase the risk of sudden death and cardioembolic stroke[51].

Why are females affected in FD?
The reason why females with FD are affected has been reviewed[52] and the authors indicated that 
symptomatic females primarily secrete the mature 46KDa enzyme, with only small amounts of the mannose 
6-phosphorylated form. Therefore, the capacity for enzyme cross-correction of affected cells is limited[53].

A second possible explanation is that α-GAL A released by the mixed cellular population of the female 
mosaic is more susceptible to dephosphorylation by plasma phosphatases[54].

PREVALENCE OF STROKE IN FD
Cerebrovascular manifestations in FD are mainly ischemic stroke and transient ischemic attack (TIA). 
Hemorrhagic strokes and microbleeds are less frequent, while cerebral venous thrombosis and 
subarachnoid hemorrhages are only occasionally seen[55,56].

Studies on the prevalence and incidence of stroke in FD yielded variable results[57], likely reflecting 
differences in genetic variants, sample size, gender, and age of the investigated cohort, as well as in the 
imaging methods used in the investigation.

The first published studies regarding stroke prevalence in FD were conducted in the 1990s. Morgan et al. 
analyzed 12 patients with FD and found that three of them had had a stroke (25%)[58]. Grewal identified 
eight patients with stroke in a group of 33 patients with FD (24%, age range: 6-64 years). Among these 
patients, stroke involved small perforating arteries and was evenly distributed between the anterior and the 
posterior circulation[59].

A retrospective study of central nervous system involvement in FD, including 43 patients, reported a 
prevalence of stroke of 24% in males (mean age: 33 years) and 28% in females (mean age: 53 years). 
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Moreover, TIA was described in 20% of males and 17% of females. Lacunar infarcts involving both the 
anterior and the posterior circulation were the predominant type of stroke, while only one female suffered a 
hemorrhagic stroke[60].

In Australian patients with FD, a prevalence of stroke of 31% in males and 5% in females was reported[61]. A 
retrospective analysis of a Dutch cohort of patients with FD from a single center in Amsterdam yielded a 
prevalence of stroke or asymptomatic lacunar infarcts detected on magnetic resonance imaging (MRI) of 
32% (n = 13, median age: 56 years) in females and 48% (n = 12, median age: 46 years) in males[62]. A 
retrospective Japanese study including 65 patients identified ten subjects (15%, 7 males and 3 females) with 
ischemic strokes[63].

In 2001, MacDermot et al. analyzed 60 women with FD and identified 4 patients with stroke and 17 with TIA
(combined prevalence of 21.5%)[64]. In a cross-sectional study, the same authors reported a cohort of 
98 males and 60 females, with a respective frequency of stroke of 24% (mean age: 40 years) and 7% (mean 
age: 42 years)[65]. In addition, a study comprising only women included 54 participants with a brain MRI; 7% 
of them had lacunar strokes, but it is unclear whether they were symptomatic[66].

With the goal of increasing the sample size, several studies used data from collaborative international 
registries, such as the Fabry Outcome Survey (FOS) and the Fabry Registry (FR). In 2005, Mehta and 
Ginsberg evaluated the prevalence of stroke and TIA among 388 patients in FOS; the prevalence was higher 
in females (15.7%) than in males (11.1%)[67]. About half of these patients suffered a stroke or a TIA at an age 
younger than 44 years.

A later study identified that 91 (13.2%) of the 688 patients (330 males, 358 females) registered in FOS by 
March 2005 had suffered a stroke or TIA. The prevalence of ischemic strokes among males and females 
registered in FOS was 20.1 and 7.8 times higher than expected in a comparable general population, 
respectively[68].

A more recent FOS study including 1,453 patients identified that cerebrovascular events were almost equally 
frequent in males (25%; n = 172/699) and females (21%; n = 159/754)[47].

A study analyzing the FR cohort included 2,446 patients. Overall stroke prevalence was 5.6% (n = 138): 6.9% 
in males, with a mean age of 39 years, and 4.9% in females, with a mean age of 45 years. The prevalence of 
hemorrhagic strokes was 13.2%, whereas the prevalence of ischemic strokes was 86.8%. For ischemic strokes, 
up to 70% were lacunar. Moreover, 21.7% of the patients who had a stroke were younger than 30 years old. 
Most patients had had a stroke before any cardiac or renal event, or it was their only clinical manifestation. 
In addition, 38% of females and 50% of males experienced their first stroke before being diagnosed with FD. 
Thus, most patients had either not experienced other major complications or had not been diagnosed with 
FD before their stroke[69].

Atrial Fibrillation in FD
Atrial fibrillation incidence in FD is variable depending on the choice of diagnostic modality, with 12-lead 
ECG and Holter monitoring showing lower detection rates (2.9%-10% per year) compared with higher rates 
(19%-31% per year) on continuous rhythm monitoring[70].

The worldwide incidence and prevalence of AF is increasing in the general population. Higher rates of AF 
were observed due to advancing age, improved survival from co-existing disease, and increasing co-



Page 6 of Moreno-Martínez et al. Rare Dis Orphan Drugs J 2024;3:9 https://dx.doi.org/10.20517/rdodj.2023.5116

morbidity[71]. These same drivers are shared in those who have FD, including increasing age, improved 
survival with ERT, but concurrently an increasing number of FD co-morbidities[70].

SCREENING OF FD IN PATIENTS WITH STROKE
The prevalence of FD in young patients with stroke has been an area of great interest. However, the studies 
yielded conflicting results, most likely due to the selection criteria of patients (cryptogenic strokes vs. all 
types of strokes or the inclusion of white matter lesions), as well as the genetic data interpretation.

Initially, the number of patients with FD that could be identified among young patients with strokes was 
overestimated because benign variants or variants of unclear significance were erroneously interpreted[72,73].

In a prospective study, Rolfs et al. analyzed 721 patients aged 18 to 55 years with cryptogenic strokes in 
Germany. FD was estimated to be the etiological factor in 4.9% of males and 2.4% of females. Nevertheless, 
the pathogenic variants were not reported[72]. Multiple investigations followed the study of Rolfs, but none of 
them could reproduce its results.

A meta-analysis included 8,302 patients who participated in nine studies (four about strokes of 
undetermined origin and five about strokes of all etiologies). Eight studies limited the age to young patients 
(18-55 years old), and the ninth study did not have an age limit. The investigators concluded that FD may 
explain approximately 1% of all strokes in the young population, including 3%-5% of cryptogenic strokes[73]. 
The study with no age limit, which included all types of strokes as well as white matter lesions, found no 
patients with FD at all[74]. An important limitation of this meta-analysis is that the authors did not critically 
analyze the genetic variants reported in the individual studies, which in many cases corresponded to benign 
variants or variants of unclear significance[73].

The Stroke in Young Fabry Patients (SIFAP) study is the largest multicentric observational study ever 
performed and included 5,023 young patients with stroke (both cryptogenic and non-cryptogenic). 
Definitive FD was detected in 0.5% of patients (n = 27). Nevertheless, some of the reported variants are now 
still considered benign or likely benign[12]. None of the patients presented signs and/or symptoms of classical 
FD.

In recent years, significant improvement was made in the genotype-phenotype correlation of young patients 
with stroke included in screening studies of FD, and as a consequence, a lower prevalence of 0.1%-0.3% was 
estimated[75,76]. This prevalence may be higher in young patients with either cryptogenic or recurrent 
stroke[75].

A prospective, multicentric study of stroke and FD in young adults (18-55 years old) included 311 patients 
with either cryptogenic or non-cryptogenic strokes. One female (0.3% of the total group, 1% of the 
cryptogenic ischemic strokes) had the pathogenic variant c.888G>A/p.Met296Ile/Exon 6 on the GAL gene. 
Her only other manifestation of FD was angiokeratoma[75].

An additional systematic review included screening studies published between 1995 and 2017. The aim of 
the review was not only to present the prevalence of FD in the mentioned population, but also to reanalyze 
the genetic data to exclude benign or likely benign variants, and perform genotype-phenotype correlations. 
Data from 3,904 males and 2,074 females were analyzed. In males, the investigators found a pre-analysis 
prevalence of 0.67% (n = 26) of patients with FD; among them, 21 had either benign variants or variants of 
unknown significance, including p.D313Y, p.A143T, p.E66Q, and g.1136C>T(5’-44C>T). Therefore, the true 
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prevalence of FD dropped to 0.13%. Among the 5 males with pathogenic variants, 3 exhibited the Type 1 
phenotype while 2 displayed the Type 2 phenotype. Similarly, a prevalence of 1.11% of patients with FD was 
found in females (n = 23), but when the benign variants were excluded, only 3 presented pathogenic variants 
with the Type 1 phenotype and the actual prevalence dropped to 0.14%, similar to that in males[76]. The 
authors found that most FD patients identified in stroke clinics had the Classic phenotype and, therefore, 
should have been diagnosed earlier by their pediatricians and family doctors[76].

Moreover, similar clinical characteristics of stroke patients were identified in the Fabry Registry. When the 
most recent available follow-up examination after their first stroke was analyzed, 59.8% of males and 25.5% 
of females had stage 3 to 5 chronic kidney disease. Moreover, 66.1% of males and 59.5% of females had left 
ventricular hypertrophy. These data also suggest that most patients had type 1 phenotype[69].

A recent study evaluated 172 patients with ischemic stroke using an exome-based panel of 349 genes and 
identified pathogenic GLA variants in 2 patients (1.2%) with known FD[77].

All these studies demonstrate the need for a careful assessment of screening results based on the diagnostic 
methods used, a detailed interpretation of genetic data, and recognition of population selection criteria. 
Nevertheless, the interpretation of screening results remains a controversial issue, as demonstrated by a 
recent meta-analysis indicating that p.D313Y might induce an atypical neurological phenotype in patients 
with FD[78]. In our opinion, the investigation into FD is warranted in young patients with cryptogenic stroke.

NEUROIMAGING FINDINGS IN FD
Stroke and white matter hyperintensities [Figure 2A and B]
Ischemic strokes and TIAs are the most common cerebrovascular manifestations in FD and can be 
attributed to either large or, more frequently, small vessel disease, with cortical and subcortical locations, 
respectively. Some authors describe that stroke in FD similarly affects both the anterior and the posterior 
circulation[55,59], while others underline a predominant involvement of the posterior circulation[79].

Hemorrhagic stroke is a rare complication in FD, accounting for about 10% of stroke events, with a 
predilection for male patients and mostly associated with hypertension or end-stage renal failure. On the 
contrary, chronic cerebral microbleeds are more common, affecting 11% to 30% of FD patients[80] 
[Figure 2C]. They can be detected in brain MRI using echo gradient-weighted images, T2-weighted and 
susceptibility-weighted imaging[81]. A study of 36 adult patients with FD identified that 44.4% without 
dialysis or previous strokes had MRI evidence of small vessel disease, and 11% of them showed cerebral 
microbleeds[82].

Small vessel disease is commonly seen in patients with FD, manifested as subcortical stroke and white 
matter hyperintensities (WMH) [Figure 2A and B]. The latter represents the most frequent brain imaging 
feature of FD and indicates lesions not referable to focal acute cerebrovascular events[83]. WMHs could range 
from small, scattered, and punctuate T2-weighted hyperintense foci to bilateral diffuse, patchy, and 
confluent lesions. WMH occurrence is similar in males and females, with no predilection for a specific brain 
region[81,84]. Autopsies performed in patients with FD revealed that deep WMHs are either lacunar 
infarctions or are associated with small arterioles narrowing[85].

Marchesoni et al. identified asymptomatic WMHs in 7 children with FD (15.9%), compared with 3 children 
(6.5%) in an aged-matched control group (P = 0.01). Brain abnormalities revealed deep gray matter and 
infratentorial involvement[86].
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Figure 2. Brain MR T2 Flair axial reconstruction in a 36-year-old man with Fabry Disease showed white matter hyperintensities located 
bilaterally in the (A) periventricular and (B) pontine regions; (C) SWI axial recconstruction identified punctate microbleeds (black 
arrows) in the right thalannus, right frontal and right occipital lobes; (D) Intracranial time of flight MR angiography sequence coronal 
reconstruction revealed the presence of mild elongation and tortuosity of the basilar artery. MR: Magnetic resonance; SWI: 
susceptibility weighted imaging.

WMHs are not specific and may be misdiagnosed as multiple sclerosis (MS) or other demyelinating 
conditions[87]. In a study comparing brain MRI from FD patients vs. matched patients with MS, WMHs 
involving the juxtacortical and infratentorial regions as well as the corpus callosum were more frequently 
observed in MS patients[88]. Moreover, the history of multiorgan involvement, the absence of oligoclonal 
bands in the cerebrospinal fluid, the relative sparing of corpus callosum, and the lack of spinal cord lesions 
are useful in differentiating FD from MS[89,90].

Perivascular spaces
MRI-visible perivascular spaces (PVS) seem to be a promising marker of small vessel disease associated with 
possible impaired interstitial fluid drainage in FD. In a study including 33 patients with FD (median age: 44 
years; 44.1% male) and 20 healthy controls (median age: 33.5 years; 50% male), FD was associated with more 
severe basal ganglia PVS and a higher total PVS score. Impaired interstitial fluid drainage might be a newly 
recognized mechanism of white matter injury in FD[91].
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Pulvinar sign
The symmetric hyperintensity of the lateral pulvinar nucleus on unenhanced T1-weighted brain MRI is 
known as the pulvinar sign (PS). The pathogenesis of the PS in FD is still unclear and may represent 
dystrophic calcifications, likely due to chronic regional hyperperfusion[92,93]. It has been initially described as 
a common neuroradiologic sign in patients with FD[92,94]; nevertheless, PS is not a specific finding and it has 
been reported in other conditions, including metabolic disorders (Krabbe or Tay-Sachs disease), Fahr 
disease, disturbances of the calcium-phosphorus metabolism, central nervous system infections, or after 
chemoradiation therapy[95]. In a recent study, PS was detected in only 4 of 133 patients with FD (3.0%); all 
the patients were adult males with chronic renal failure on enzyme replacement therapy (ERT)[95]. These 
results suggest that the true incidence of PS is considerably lower than previously thought. In addition, the 
PS has a low sensitivity for the diagnosis of FD, is not modified by ERT, and is not associated with any 
specific FD genotype[94,95].

Vertebrobasilar artery involvement
Alterations of the posterior circulation system include tortuosity, diffuse ectasia, elongation, and/or focal 
aneurismal dilatation involving the vertebral and basilar arteries [Figure 2D][96]. The underlying mechanisms 
of such abnormal vessel dilatation have been described in the corresponding section of this review. It is 
worth noting that the prevalence of vertebrobasilar dolichoectasia has also been described in young patients 
with other uncommon causes of acute strokes[97].

Recommended MRI sequences
MRI sequences suggested include T1-weighted fluid-attenuated inversion recovery (FLAIR) and 
T2-weighted sequences to quantify chronic WMH load and to identify lacunar and territorial strokes; T2* 
MRI (gradient echo, susceptibility-weighted imaging) to identify macro and microbleeds; diffusion-
weighted imaging to assess stroke and time-of-flight sequences to evaluate the diameter of cerebral vessels 
without using contrast[55].

In adults with FD, due to the higher prevalence of strokes in comparison to the general population and the 
presence of silent lesions, a consensus guideline proposes to perform a brain MRI every three years in all 
males at baseline and in females over 30 years old[98]. By contrast, given the rarity of stroke in the pediatric 
population with FD, the latest consensus guidelines advise against performing a brain MRI as baseline 
practice in children, except in cases with neurological symptoms[99].

Computed tomography scans may be used in the acute setting or when MRI is contraindicated.

Advanced imaging techniques
Quantitative volumetric MRI studies evaluate the presence of brain-tissue volume loss in FD patients with 
mild-to-moderate central nervous system involvement. Reduced grey matter density has been recently 
reported at the level of the thalami and hippocampus, bilaterally, reflecting direct neuronal involvement 
independent from vascular pathology[100].

Diffusion tensor imaging has been shown to detect brain tissue alterations, allowing for an accurate 
quantification of microstructural white matter changes. FD patients, including those without white matter 
lesions seen on conventional MRIs, may present an elevated total brain parenchymal diffusion constant 
compared to controls. Increased mean diffusivity values in FD patients were found in the temporal, frontal, 
and parietal lobes. This increase, presumably due to an elevated water content of brain tissue, may be 
identified independently from white matter lesions and could be interpreted as a biomarker of early stages 
of microvascular injury[101,102].
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A proton magnetic resonance spectroscopy study was performed in FD patients using a multi-voxel 
analysis, with the objective of investigating changes in the N-acetylaspartate/creatine (NAA/Cr) ratio 
indicating possible neuronal degeneration and loss. FD patients showed a diffuse reduction of the NAA/Cr 
ratio, affecting both cortical and subcortical structures. These alterations were independent of the presence 
of WMH and were attributed to a possible metabolic dysfunction, secondary to Gb3 neuronal accumulation 
rather than a vascular alteration[103].

The connectome analysis of brain networks in patients with FD, using diffusion and resting-state functional 
MRI data, revealed both a structural disconnection (due to mild but widespread axonal damage) and a 
functional reorganization, associated with cognitive performances[104].

Future longitudinal studies on volumetric MRI, diffusion tensor imaging, and proton magnetic resonance 
spectroscopy are necessary to elucidate the possible presence of brain volume differences, microstructural 
changes, and metabolic dysfunction in FD.

COGNITIVE INVOLVEMENT AND PARKINSONISM IN FD
Cognitive involvement, ranging from mild reduced attention and executive dysfunction to full dementia, 
was identified in some patients with FD. It predominates in patients with more severe disease and a history 
of cerebrovascular disease[105-109]. The studies evaluating this problem have yielded conflicting results; while 
several investigations identified cognitive defects with male predominance[110,111], other investigators failed to 
identify cognitive decline in FD[79,111-115]. Moreover, executive dysfunction was identified in patients with FD, 
but differences with control population disappeared after controlling for depression[116,117]. Differences in 
these results are likely due to the characteristics of the evaluated cohort regarding gender, associated 
cerebrovascular disease, and depression, as well as the varied neuropsychological techniques used in each 
study. All these variables need to be controlled in future prospective studies of cognition in FD.

Parkinsonism is rarely seen in patients with FD, particularly in the absence of cerebral small vessel disease. 
Bradykinesia and impaired fine manual movements have been reported in both males and females with 
pathogenic GLA variants[118].

Moreover, in autopsies series, the storage of glycosphingolipids was documented in neuronal and glial tissue 
including substance nigra[119].

Nevertheless, it is still not possible to ascertain whether this PD phenotype is related to Gb3 deposition 
versus cerebrovascular lesions in the nigrostriatal network and the simultaneous presence of the two 
mechanisms may be considered[120].

TREATMENT
Whether ERT is beneficial for the prevention of stroke is still a controversial topic. It was initially 
considered that ERT was ineffective in reducing the risk of stroke, as it does not cross the blood-brain 
barrier. Nevertheless, autopsies performed in FD patients on ERT treatment indicate an almost complete 
clearance of endothelial glycolipids, but persistent storage in smooth muscle vascular cells, in addition to 
intimal fibrous thickening and adventitial fibrosis[108,121]. It should be stressed that these patients were 
severely affected by their disease, and ERT was started very late, possibly at an irreversible stage of vascular 
damage.
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Recent studies suggest a protective effect of ERT after an initial latency period of 6 months[122]. In a meta-
analysis including seven cohort studies and two randomized, controlled studies (7,513 participants: 1,471 on 
ERT vs. 6,042 on native treatment), the stroke recurrence ratio in the ERT treatment group (including both 
agalsidase alfa and beta) was 8.2% vs. 16% in the native treatment group (P = 0.03)[123].

It is worth noting that ERT has been shown to reduce both the burden of disease[124,125] and the risk of 
thromboembolic events, including stroke[126]. The beneficial effect of ER, in patients naïve to specific 
treatment, on stabilizing and improving cardiomyopathy, especially with prompt initiation of therapy, also 
has a preventive effect on cardioembolic stroke[127].

In patients with FD, classical cardiovascular risk factors (smoking, hypercholesterolemia, diabetes mellitus, 
sedentarism, and hypertension) should be treated intensively, both for primary and secondary 
prevention[128]. We recommend aspirin or clopidogrel in patients who suffered an ischemic stroke or TIA. 
Although no clinical trials are available regarding primary prevention, we also indicate antithrombotic 
medications in FD patients with MRI lesions Fazekas grade 2 or 3[129].

We usually use clopidogrel when aspirin is not tolerated and recommend statins in primary and secondary 
prevention for their pleiotropic effects[17,98,130].

Anticoagulation is reserved for patients with confirmed atrial fibrillation or cardioembolic stroke.
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