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Abstract
Diabetic kidney disease (DKD) is a global health burden and the leading cause of end-stage renal disease. Its
clinical management focuses on controlling hyperglycemia, hypertension, and hyperlipidemia. While the
progression of DKD can be slowed with intervention, it cannot be stopped or reversed yet. The pathogenesis of
DKD is complex, with an interplay of numerous signaling pathways, and research continues to decipher the players
and their role, be it beneficial or pathogenic. Inflammation is an essential defense of our bodies against internal or
external insults. The injuries that trigger inflammation range from pathogenic infections and wounds to
dysregulated metabolism. Inflammation is helpful only if it is controlled and subsides after it has helped defend the
individual against the insult. Uncontrolled or chronic inflammation is recognized as a contributor to numerous
chronic diseases. Dysregulated inflammation plays a role in multiple aspects of DKD: glomerular hyperfiltration,
mesangial expansion, podocyte injury, tubular injury, basement membrane thickening, fibrosis, and scarring. Since
inflammation plays an integral role in the progression of DKD, targeting it for therapy is also reasonable. There is a
growing trend of targeting inflammation as a therapeutic approach, with new targets being discovered and
drugs evaluated every year. The exponential increase in literature necessitates a comprehensive summary of
current information, hence this review.
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INTRODUCTION
The International Diabetes Federation estimates that 537 million adults have diabetes, and ~40% of them 
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develop DKD[1,2]. New cases of chronic kidney disease (CKD) in patients with T2DM or type-2 DKD 
increased by 74% between 1990 and 2017[2]. DKD is associated with a higher risk of cardiovascular events, 
kidney failure, and premature mortality[2-4]. The global health burden of DKD is expected to worsen, 
necessitating urgent action in policy-making and research. Diabetes prevention and control remain the 
primary goals of preventing DKD. Clinical management focuses on managing hyperglycemia, hypertension, 
and hyperlipidemia to slow progression[4]. Complete stoppage or reversal remains a goal.

Inflammation is an essential defense of our bodies against internal or external injury. Pattern recognition 
receptors (PRRs) sense pathogen-associated or damage-associated molecular patterns (PAMPs or DAMPs) 
and induce inflammatory signaling cascades, producing cytokines. These molecules act in an autocrine 
manner to enhance inflammatory signaling and in a paracrine manner to recruit and activate immune cells 
like macrophages, lymphocytes, and dendritic cells. This is followed by immune cell-mediated clearance of 
pathogens or damaged tissue. The final step of inflammation is its resolution, which re-establishes 
homeostasis[5]. The persistence of inflammatory inducers or inefficient resolution results in chronic 
inflammation causing oxidative stress (OS) and mitochondrial dysfunction (e.g., increased free radicals, 
advanced glycation endproducts (AGEs), and oxidized lipoproteins), further perpetuating inflammation in a 
feed-forward loop[6].

Although not the initiator, low-grade inflammation occurs in diabetes before the onset of DKD[7,8]. A 
chronic inflammatory state in a prediabetic individual can predict T2DM development[9]. Inflammation 
progresses alongside DKD, evidenced by the infiltration of immune cells in kidney biopsies and association 
studies showing the upregulation of inflammatory pathways[10-14]. Single-cell transcriptomic analyses 
corroborate immune-cell infiltration and upregulation of inflammatory pathways[15-17]. A chronic 
inflammatory insult to the kidney contributes to various structural and functional changes in DKD[18]. The 
kidney risk inflammatory signature (KRIS) comprising 17 circulating inflammatory proteins of a non-renal 
source relates to a higher risk of end-stage renal disease (ESRD) in patients with diabetes[19]. Other serum 
and urinary markers of renal and systemic inflammation correlate well with renal decline in T1DM- and 
T2DM-DKD[20,21], and they might predict the presence and prognosis of DKD[22].

We aim to review recent advances in research that help us better understand the role of inflammation in 
DKD. We describe how inflammation is intertwined in its pathogenesis and progression, followed by a 
review of the inflammatory pathways and players involved. Finally, we reflect on their therapeutic potential 
and future possibilities.

INFLAMMATION IN THE PATHOGENESIS OF DKD
DKD is a clinical diagnosis of persistent albuminuria (urinary albumin excretion (UAE) ≥ 30 mg/day or 
≥ 30 mg/g) or persistent decreased estimated glomerular filtration rate (eGFR < 60 mL/min/1.73 m2), or 
both, in patients with diabetes[23]. A biopsy is not usually required for diagnosis unless non-DKD is 
suspected. Pathological findings can be grouped under glomerular, vascular, and tubulointerstitial damage. 
Kidneys of T1DM patients predominantly develop classical glomerulopathy, characterized by glomerular 
basement membrane (GBM) thickening, mesangial expansion, podocyte loss, and glomerulosclerosis. 
Hyalinosis and sclerosis of the larger arteries are relatively common findings in type-1-DKD biopsies. 
Tubulointerstitial fibrosis usually follows glomerular damage and is soon followed by progression to ESRD. 
T2DM patients have more diverse pathological findings in their kidneys, with vascular and tubulointerstitial 
disease affecting some (esp. non-proteinuric DKD patients) more than glomerular damage[23,24].
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DKD pathogenesis is multifactorial [Figure 1]. Hyperglycemia is the most well-researched and obvious 
trigger for diabetes and its associated complications. However, other metabolic derangements and 
hemodynamic abnormalities also contribute. Metabolic factors, like excess fatty acids, AGEs, and OS, 
activate inflammatory pathways[25,26]. Fructose exposure reduced lymphocyte subpopulations, increased 
DNA damage, and dysregulated immune-related genes, including mitogen-activated protein kinase 8 
(MAPK8 or JNK1) and leukocyte-specific transcript 1 (LST1)[27]. A sugar-rich diet triggers a pro-
inflammatory response via altering the gut microbiome and Toll-like receptor 4 (TLR4) signaling[28]. 
Superoxide and presumably other ROS activate TLR4 signaling and neutrophil NADPH oxidase (NOX) to 
form neutrophil extracellular traps (NETs)[29]. NETs are networks of extracellular fibers, mainly composed 
of neutrophil DNA, which trap and kill pathogens by engulfing them, producing antimicrobials, and saving 
host cells from damage. NETs increase in patients and murine models of DKD and correlate with DKD 
severity[30]. In sterile inflammation, NETs probably form to counter cell death and OS.

Similarly, hemodynamic abnormalities, such as hypertension-induced shear stress, microvascular changes 
resulting in hyperperfusion or hypoxia, and renin-angiotensin-aldosterone system (RAAS) activation, 
contribute to the complex network of pathogenetic events in the kidney, including an increase in growth 
factors, vasoactive hormones, and most relevant to this review, pro-inflammatory cytokines and 
chemokines[31,32].

An inflammatory response has the following contributors: inducers (infection, tissue damage, pathology), 
sensors (cells expressing PRRs), mediators (cytokines, chemokines), and the tissues that are affected[5]. In 
the context of the diabetic kidney, the inducers are hyperglycemia, AGEs, ROS, and DAMPs. All renal cell 
types express PRRs to sense pathological changes in their vicinity and act as inflammatory sensors. The 
mediators are not inherently different in the kidneys. The target tissues are the damaged cells and regions in 
the kidney that require repair. Next, we review the different spatiotemporal roles of inflammation in the 
progression of DKD pathology.

Glomerular inflammation
Damage to the renal glomeruli is considered one of the first events in DKD development, including GBM 
thickening, mesangial expansion, podocyte loss, and glomerulosclerosis. Podocytes and endothelial cells are 
responsible for maintaining the GBM, its charge barrier, and the shape and integrity of the glomerular 
capillary loop, which are all compromised in the diabetic glomerulus[32]. The diabetic milieu with numerous 
inflammatory inducers triggers the release of pro-inflammatory cytokines and activation of the nucleotide-
binding oligomerization domain (NOD)-like receptor (NLR) with a pyrin domain 3 (NLRP3) 
inflammasome in podocytes[33,34]. Induced podocyte-derived cytokines, like TNF-α, mediate monocyte 
differentiation and macrophage recruitment, contributing to glomerular injury and proteinuria[34]. Levels of 
serum amyloid A (SAA), a potent pro-inflammatory protein, increase in DKD patients and mice models 
correlating well with disease progression. Podocytes might be the primary renal cells that respond to the 
increased SAA by inducing nuclear factor-kappa B (NFκB) signaling[35].

Inflammation-mediated endothelial injury is multifaceted. NET inhibition by GSK484, a selective and 
reversible peptidyl arginine deiminase 4 (PAD4, a marker of NETs) inhibitor, ameliorates endothelial 
dysfunction in murine and human endothelial cells exposed to hyperglycemia[30]. Insulin-like growth factor-
binding protein 5 (IGFBP5) is upregulated in DKD and enhances inflammation by metabolically 
reprogramming glomerular endothelial cells. Pro-inflammatory factors, like interleukin 6 (IL6), tumor 
necrosis factor-α (TNF-α), monocyte chemoattractant protein 1 (MCP1), and intercellular adhesion 
molecule 1 (ICAM1), are induced by IGFBP5, which itself is upregulated by hyperglycemia in endothelial 
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Figure 1. Pathogenesis and progression of DKD. The upper panel outlines the primary triggers of DKD in the diabetic milieu, viz. 
hyperglycemia, dyslipidemia, and microinflammation (a chronic low-grade inflammatory state can predict and predispose an individual 
to diabetes and DKD). These triggers induce several metabolic, hemodynamic, and inflammatory factors. The interconnected factors 
cause intracellular changes followed by progressively detrimental alterations to the renal architecture, leading to fibrosis, scarring, and 
functional decline, ultimately resulting in renal failure. The lower panel recounts pathophysiological changes with the progression of 
DKD. AGEs: Advanced glycation endproducts; CCL: CC motif chemokine ligand; CTGF: connective tissue growth factor; DKD: diabetic 
kidney disease; EMT: epithelial-to-mesenchymal transition; EndMT: endothelial-to-mesenchymal transition; GFR: glomerular filtration 
rate; ICAM: intercellular adhesion molecule; IL: interleukin; NO: nitric oxide; NOX: NADPH oxidase; PDGF: platelet-derived growth 
factor; PKC: protein kinase C; RAAS: renin-angiotensin-aldosterone system; ROS: reactive oxygen species; TGF: transforming growth 
factor; TNF: tumor necrosis factor; VCAM: vascular cell adhesion molecule; VEGF: vascular endothelial growth factor.

cells. This inflammatory action of IGFBP5 is dependent on its regulation of 6-phosphofructo-2-kinase/
fructose-2,6-biphosphatase 3 (PFKFB3), a glycolytic enzyme[36]. Suppressing PFKFB3-driven glycolysis 
restrains endothelial-to-mesenchymal transition and fibrotic response in cardiac endothelial cells. While 
this work focused on cardiac fibrosis, similar signaling might play a role in DKD renal fibrosis[37]. Allograft 
inflammatory factor-1 (AIF-1) is upregulated in glomerular endothelial cells in the diabetic kidney, and 
knocking it down ameliorates kidney inflammation and injury. AIF-1 enables glomerular endothelial cell 
inflammation and OS in DKD via NFκB signaling[38]. Panzer et al. showed the differential regulation of 
monocyte/macrophage recruitment in the glomerulus vs tubules: MCP1 was more important in the 
glomeruli and osteopontin in the tubular compartment[39].

The most characteristic of all diabetic glomerular changes is GBM thickening[32,40]. It starts well before DKD 
diagnosis, within a few years of diagnosis of diabetes. However, the thickening is more pronounced in DKD. 
Changes in the composition, charge, or architecture of the GBM associated with thickening could 
contribute to the pathogenesis of DKD. Stiffening of the GBM resulting from the thickening may also 
facilitate glomerular injury through hemodynamic mechanisms[31].
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The mesangium undergoes numerous progressive changes with DKD: mesangial cell proliferation and 
hypertrophy, mesangial matrix expansion, and mesangiolysis[32,40]. USP25, a deubiquitinating enzyme, is 
upregulated in the mesangial cells and infiltrating macrophages in a diabetic kidney. It ameliorates DKD by 
inhibiting TRAF6-mediated inflammatory responses[41]. The expansion of the mesangium reduces the 
capillary surface area, contributing to glomerular hypertension and reduced glomerular filtration[32]. Thus, 
glomerular inflammation causes increased permeability of the filtration barrier. This allows proteins, like 
albumin, to leak into the urine, causing microalbuminuria and, subsequently, proteinuria, which is used for 
diagnosis and prognosis.

Vascular inflammation
Kidneys represent one of the most vascular organs in the body and, despite their relatively smaller size and 
weight, receive 25% of the cardiac output. Most serious long-term complications of diabetes, including 
DKD, are mediated by vascular involvement. Oxidative stress and inflammation affecting the renal 
vasculature play a crucial role in the development and progression of DKD [Figure 2]. Arteriolosclerosis 
and arteriolar hyalinosis that develop as a result of these intrarenal processes are essential structural changes 
that ultimately contribute to the progression of DKD. Vascular inflammation is a precursor to 
arteriolosclerosis. Recent studies underscore the significance of NLRP3 inflammasome activation, which 
may contribute to vascular inflammation in diabetes[42].

In diabetes, all cells are chronically exposed to high plasma glucose levels; however, some get affected more 
than others and manifest progressive dysfunction. Endothelial cells cannot lower their glucose transport in 
response to high glucose levels[43]. This results in much higher levels of intracellular glucose, which trigger 
the generation of inflammatory inducers and mediators that contribute to the development of diabetic 
complications, including DKD. Markers of inflammation like C-reactive protein (CRP), vascular cell 
adhesion molecule (VCAM), and IL1 correlate with microvascular complications in diabetic patients[44]. 
However, high glucose exposure can only cause inflammation in human vascular cells if primed with an 
inflammatory stimulus such as IL1β or TNF-α[45,46]. The excess intracellular glucose is diverted to the pentose 
phosphate pathway, providing additional substrate for NOX and increasing free radicals[47]. The pro-oxidant 
environment further exacerbates inflammation and tissue damage.

Hyperglycemia-induced endothelial dysfunction increases vascular susceptibility to shear, oxidative, and 
other stressors[47]. With subsequent microvascular rarefaction, it reduces blood flow, causing hypoxia. Renal 
hypoxia induces compensatory changes in blood flow, metabolism, and glomerular neoangiogenesis[32,48,49]. 
Decreased blood flow, impaired oxygen utilization by mitochondrial dysfunction, and microvascular 
thinning contribute to hypoxia and ischemia in the proximal tubular compartment[50-52]. AGEs also 
contribute to vascular complications of diabetes, mediated by methylglyoxal derivatives, which are 
metabolized by glyoxalase-1. Inducers of glyoxalase-1, such as t-resveratrol-hesperetin, have proven 
beneficial for DKD in preliminary trials by reducing insulin resistance and vascular inflammation[53]. NETs 
are usually formed in the vasculature near endothelial cells[30]. They can cause endothelial cell death and 
vascular necrosis[54,55].

Recent clinical observations revealed that a significant proportion of patients with DKD (~30%-40%) do not 
exhibit significant proteinuria. In these non-proteinuric DKD patients, vascular disease, particularly 
arteriosclerosis, is widely prevalent and often caused by inflammation. Vasoactive factors such as 
endothelin, nitric oxide, and angiotensin, along with inflammatory mediators such as NF-kB, peroxynitrite, 
and TNF-α, play a major role in vascular inflammation that leads to sclerosis.
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Figure 2. Vascular inflammation in DKD. The schematic illustrates the signaling pathways and mechanisms leading to vascular 
inflammation in DKD. Both hemodynamic and metabolic alterations in diabetes contribute to the activation of these pathways. While 
the nitric oxide pathway may be upregulated in the early phases of DKD and contribute to hyperfiltration, NO levels decrease as the 
course progresses, partly due to NO quenching by superoxide, leading to peroxynitrite, which stimulates inflammatory cytokines. 
Similarly, endothelin activation by hemodynamic and metabolic factors leads to endothelial injury and vascular inflammation. Chronic 
uncontrolled hyperglycemia leads to advanced glycation endproducts, which trigger inflammasome and oxidative stress. Ultimately, all 
the signaling alterations lead to vascular inflammation, contributing in a major way to renal demise in diabetes. AGEs: Advanced 
glycation endproducts; RAGE: receptor for AGE; TNF-α: tumor necrosis factor-alpha; IL: interleukin; NLRP3: NOD-like receptor family 
pyrin domain-containing 3; ROS: reactive oxygen species; NO: nitric oxide.

Tubulointerstitial inflammation
Inflammation is one of the primary triggers of tubulointerstitial injury during DKD, leading to fibrosis and 
functional loss. Tubulointerstitial lesions can precede or occur irrespective of glomerular lesions, as 
evidenced by normo-proteinuric or non-proteinuric DKD[56]. Impaired albumin uptake by proximal tubule 
cells might contribute to microalbuminuria, irrespective of glomerular damage[57]. Sustained hyperglycemia 
causes hypertrophy and proliferation in tubular epithelial cells, increasing reabsorption of glucose and 
sodium - the damage-causing stimuli. An aberrant tubuloglomerular feedback results in increased 
intraglomerular pressure and hyperfiltration. Thus, a more tubule-centric view of DKD is warranted[50,58].

High glucose exposure triggers MAPK and protein kinase C (PKC) signaling in renal tubular cells, 
stimulating the expression of pro-inflammatory molecules, such as IL6, MCP1, and osteopontin[39,59]. AGEs 
also trigger tubulointerstitial inflammation. Proximal tubules are the primary sites for AGE resorption and 
are induced in their presence to produce pro-inflammatory molecules (IL8, ICAM1)[50,60,61]. These cytokines 
and chemokines enable the recruitment and infiltration of immune cells like monocytes and macrophages 
in the renal tubulointerstitium, which further increases pro-inflammatory, profibrotic, and antiangiogenic 
factors, culminating in interstitial fibrosis and tubular atrophy (IFTA). The interstitial macrophage 
aggregation has prognostic value in DKD as it correlates well with the progression of the disease[62,63]. The 
expression of myostatin, a member of the transforming growth factor-beta (TGF-β) superfamily, increases 
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in DKD predominantly in the tubulointerstitium. It induces pro-inflammatory and profibrotic signaling 
(NFκB, CCL2, SMAD) in proximal tubules, suggesting its role in interstitial fibrosis in DKD[64].

Tubular epithelial cells typically prefer fatty acid oxidation (FAO) as an energy source; however, in DKD, 
FAO gets dysregulated, resulting in an increased dependence on glycolysis for energy and intracellular lipid 
deposition, which increases apoptosis and dedifferentiation[65,66]. High glucose and AGEs enhance cellular 
lipid synthesis and free fatty acid and cholesterol uptake, contributing to intracellular lipid accumulation, 
which fosters inflammation, OS, and endoplasmic reticulum stress[50,67,68]. Kidneys of type-2 DKD patients 
and murine models also show ectopic lipid deposits predominantly in the proximal tubular compartment. 
Sustained hyperglycemia increases the expression of adipose differentiation-related protein (ADRP) and 
sterol regulatory element binding protein 1 (SREBP1) in proximal tubule cells, along with other markers of 
tubulointerstitial damage. In vitro experiments indicate that they mediate tubular inflammation[69]. Perirenal 
fat accumulation is pathogenetic in DKD. Adipocytes secrete adipokines and cytokines, promoting 
inflammation and OS and mediating kidney function decline[70,71].

Since tubulointerstitial lesions could be the first pathology associated with DKD, biomarkers of tubular 
function might have diagnostic and prognostic value, e.g., serum levels of neutrophil gelatinase-associated 
lipocalin (NGAL), kidney injury molecule-1 (KIM-1), N-acetyl-β-D-glucosaminidase (NAG), or urine levels 
of retinol-binding protein 4, cystatin C, and fatty acid binding protein 1[50,58].

Oxidative stress
OS and chronic inflammation are intertwined in DKD, each worsening the other in a slow feed-forward 
loop[72-74]. In one of the first reports suggesting a causal role of hyperglycemia in immune activation, 
Esposito et al. showed that acute hyperglycemia spikes circulating pro-inflammatory cytokine 
concentrations (IL6, IL18, and TNF-α) through an oxidative mechanism[75]. Reactive oxygen species (ROS) 
produced during inflammation directly damage renal cells and induce inflammatory signaling to recruit 
immune cells for repair, which causes more OS, thus completing the loop. Eventually, this progresses to 
fibrosis and endothelial dysfunction[75-77].

An imbalance between the producers and quenchers of ROS results in their accumulation. Numerous 
pathways contribute to ROS generation in diabetic kidneys, e.g., the uncoupling of nitric oxide synthases 
(NOS), NOX, advanced glycation, and mitochondrial dysfunction[73,78-80]. Hyperglycemia triggers 
mitochondrial dysfunction and superoxide release in glomerular endothelial cells, which secrete factors to 
initiate podocyte apoptosis[81].

Programmed cell death (PCD) mechanisms of apoptosis, autophagy, and necroptosis play important roles 
in DKD, especially in damaged podocytes and proximal tubule cells[82]. Recently, the focus has increased on 
ferroptosis, an iron-dependent form of PCD, in the pathogenesis of DKD[83]. ROS-induced autophagy 
promotes intracellular iron accumulation and ferroptosis[84]. Hyperglycemia and inflammation trigger 
ferroptosis in renal endothelial and tubular cells, reducing their viability and contributing to endothelial and 
tubular dysfunction in DKD[85,86]. Iron accumulation, lipid peroxidation, and decreased antioxidant activity - 
processes that drive ferroptosis - increase in renal tubular cells cultured in high glucose, and upregulating 
the protective antioxidant signaling reduces diabetes-related ferroptosis, delaying DKD progression[86,87].

Pathogenesis of DKD is inseparable from ROS overactivation. While a significant contributor to DKD, 
antioxidants have not fared well in clinical trials for DKD, but whether they amplify the effect of other 
therapies remains to be seen.
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Immune cell infiltration
Bioinformatic studies are revealing the changes in the landscape of immune cells in the DKD kidney. More 
memory B cells, T cells, activated natural killer (NK) cells, macrophages, resting dendritic cells, and resting 
mast cells were found in the glomerulus of patients with DKD, with fewer naïve B cells, resting NK cells, 
activated mast cells, and neutrophils[88]. With pooled samples of glomerular and tubular DKD data sets, 
Wang et al. verified more macrophages and fewer Treg and Th2 cells in diabetic kidneys. Immune cells 
were identified primarily in the interstitium compared with the glomeruli[89]. Pathway analyses show 
activation of leukocyte trans-endothelial migration, T-cell receptor signaling, NOD-like receptor signaling, 
chemokine signaling, cell adhesion molecules, extracellular matrix (ECM) receptor interaction, and 
phagocytosis[88,89]. Using single-cell RNA sequencing followed by verification in human patient biopsies, 
Fu et al. focused on changes in macrophage dynamics with DKD progression[15]. With a similar technique, 
Wilson et al. focused on the changes in the signaling landscape among the different cell types in the kidney 
during early DKD. They found the expected 7- to 8-fold increase in leukocytes (attributed to infiltration). 
They note cell type-specific changes in gene expression that are important for immune cell activation, 
reinforcing the thought that inflammation is not a passive byproduct; instead, different types of renal cells 
might actively contribute to its induction[17].

Fibrosis and scarring
Prolonged inflammation triggers kidney fibrosis - a hallmark manifestation in progressive CKD, irrespective 
of the primary insult. Deregulated wound healing leads to excessive production and accumulation of ECM 
proteins, such as fibronectin and collagens[90]. When kidneys are injured, local fibroblasts and pericytes are 
activated, increasing their contractility, secreting inflammatory mediators, and synthesizing ECM 
components, which trigger wound healing. However, when the damage is repetitive (e.g., DKD), the ECM 
proteins accumulate in the parenchyma, resulting in tissue disruption, renal dysfunction, and organ 
failure[91,92].

Fibrosis in the DKD kidney is indicated by the presence of tubule atrophy, chronic interstitial inflammation 
and fibrogenesis, glomerulosclerosis, and vascular rarefaction. Renal function and prognosis correlate better 
with tubulointerstitial fibrosis than early glomerular changes[93]. A complex interaction ensues between the 
injured renal parenchyma (tubular cells) and multiple non-parenchymal cells (immune and mesenchymal 
cells) within the scarring areas. Wang et al. implicated the role of sonic hedgehog (Shh) secreted from 
senescent tubular cells along with other senescence-associated proteins in fibroblast activation and 
proliferation in DKD[94]. Several sources contribute to the accumulation of activated myofibroblasts in 
different proportions: transformation of the resident fibroblasts and mesenchymal stem cells, recruitment of 
fibroblasts from the bone marrow, epithelial-to-mesenchymal transition (EMT) of tubular epithelial 
cells[91,92].

PATHWAYS
NFκB pathway
NFκB regulates the expression of the primary mediators of inflammation. Sensing PAMPs or DAMPs, PRRs
activate a signaling cascade that culminates in freeing NFκB from its inhibitor IκB (inhibitor of NFκB) to
translocate to the nucleus and activate target gene expression [Figure 3]. IκB is a target of NFκB; this allows
for quick and transient activation of this pathway[95,96].

All resident kidney cells possess the capability of activating NFκB. It is rapidly activated by diverse stimuli,
including hyperglycemia, AGEs, mechanical stress, ROS, inflammatory cytokines, and angiotensin II - all
present in excess in the diabetic milieu. Activated NFκB stimulates the transcription of pro-inflammatory
cytokines, chemokines, and adhesion molecules[95,97]. The activation of NFκB and its targets correlates with
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Figure 3. Inflammatory signaling pathways in DKD. The schematic summarizes the inflammatory signaling pathways that drive DKD. 
From left to right: NFκB pathway, JAK/STAT pathway, MAPK pathway, complement cascade, inflammasome signaling. NFκB remains 
inhibited and retained in the cytosol under physiological conditions. Activated pattern recognition receptors activate the IKK complex, 
which phosphorylates IκB, causing its degradation and freeing NFκB to translocate to the nucleus and activate target gene expression. 
Cytokine receptors dimerize upon detecting their cytokines, leading to transactivation of the associated JAKs. Activated JAK recruits 
and phosphorylates the transcription factor STAT, which then dimerizes and activates its target gene expression. MAPK pathway is a 
phosphorylation cascade resulting in activated MAPK translocating into the nucleus and transcribing target genes. When triggered, the 
complement system results in a cascade of proteolytic enzymes culminating in the formation of membrane attack complex and pro-
inflammatory mediators. NFκB mediates the assembly of inflammasomes, which in turn release pro-inflammatory inducers and 
mediators. AGEs: Advanced glycation endproducts; DAMP: damage-associated molecular patterns; GSDMD: gasdermin D; IKK: IκB 
kinase; IL: interleukin; IκB: inhibitor of NFκB; JAK: Janus kinase; MAP2K: mitogen-activated protein kinase kinase; MAP3K: mitogen-
activated protein kinase kinase kinase; MAPK: mitogen-activated protein kinase; MASP: MBL-associated serine protease; MBL: 
mannose-binding lectin; NFκB: nuclear factor kappa B; ROS: reactive oxygen species; STAT: signal transducer and activator of 
transcription; TF: transcriptional factor; Ub: ubiquitin.

the degree of tubular damage and can indicate renal damage progression in DKD patients[98]. Tubular injury 
in patients with DKD correlates with TLR4 upregulation. TLR4/NFκB signaling induces gasdermin 
D-mediated pyroptosis in tubular cells in DKD[99] [Figure 3]. In experimental murine models of DKD, the 
TLR-NFκB pathway is chronically active and promotes glomerular injury. Chronic treatment with an NFκB 
inhibitor prevented the expression of the disease (glomerular injury, inflammation, and oxidative 
stress)[38,100].

JAK/STAT signaling
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway is a key signaling 
node in DKD progression [Figure 3]. Inhibitory regulators of this pathway include the constitutive protein 
inhibitors of activated STAT (PIAS) and protein tyrosine phosphatases (e.g., PTP1B) and the inducible 
suppressors of cytokine signaling (SOCS). The constitutive presence of inhibitors allows for a transient 
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activation of this pathway. The JAK/STAT pathway is activated by a range of metabolism-related cytokines 
and hormones, such as IL3, IL6, and angiotensin II[101-103].

JAK/STAT signaling is implicated in multiple aspects of DKD: inflammation, fibrosis, RAAS, autophagy, 
and EMT[101,103-107]. Higher levels of JAK2 are seen in the glomerular and tubulointerstitial compartments of 
DKD-patient kidneys. Upregulation of JAK1-3, STAT1, and STAT3 were seen in DKD patients with eGFR 
significantly correlating with tubulointerstitial JAK1-3 and STAT1 expression[108]. Genetic mutants of 
STAT3 in mice show that IL6-mediated activation of STAT3 is required for diabetic glomerulopathy 
development. STAT3 knockdown reduced STAT3 phosphorylation and inflammatory marker expression, 
including IL6, MCP1, activated NFκB, type IV collagen, TGF-β, and ICAM1[101]. Chen et al. found that 
hyperglycemia activated JAK/STAT signaling, inhibited autophagy, increased podocyte apoptosis, and 
aggravated renal injury. Inhibiting the pathway by ruxolitinib, a JAK inhibitor, reversed the decrease in 
autophagy[106]. A protective role of Forkhead box 1 (FOXO1) on proximal tubule injury in DKD is mediated 
via JAK/STAT inhibition. FOXO1 downregulation increased the expression of pSTAT1, activated EMT, and 
initiated the intrinsic apoptotic pathway. Increasing FOXO1-mediated STAT1 inhibition alleviated 
tubulointerstitial fibrosis, tubular EMT, and apoptosis[109]. SOCS3 overexpression can reduce AGE-induced 
EMT by inhibiting the JAK2/STAT3 signaling in proximal tubule cells[107].

Members of this pathway are being considered for their therapeutic potential in DKD. Treatment with 
baricitinib (JAK1/JAK2 inhibitor) improved proteinuria and levels of biomarkers of inflammation in urine 
and blood (urine C-X-C motif chemokine 10 and urine C-C motif ligand 2, plasma soluble TNF receptors 1 
and 2, ICAM1, and SAA) of subjects with DKD[110]. El-Kady et al. showed that ruxolitinib improved 
proteinuria, renal inflammation, and fibrosis in a rat model of T1DM[111].

MAPK pathway
MAPKs, a family of serine/threonine kinases, function through three pathways: the extracellular signal-
regulated kinase (ERK)-MAPK, p38-MAPK, and Jun N-terminal kinase (JNK)-MAPK pathways. Initiated 
by an external stimulus, such as high glucose, MAPKKK phosphorylates MAPKK, which phosphorylates 
and activates MAPK to translocate into the nucleus and transcribe target genes[112] [Figure 3]. MAPK 
targeting shows promise, with several studies claiming that pathway inhibition alleviates DKD. For example, 
MAPK inhibition can reverse KIM-1-mediated macrophage M1 transformation and migration[113]. 
Antioxidant treatment reduces MCP1 and phosphorylated JNK levels in mesangial cells, reducing 
inflammation[114]. Blocking JNK signaling inhibits interstitial myofibroblast accumulation. JNK1/2 deletion 
does not inhibit renal fibrosis; however, JNK1 deletion decreases renal tubular apoptosis[115]. Inhibiting the 
ERK pathway reduces nitrite levels in stimulated macrophages by decreasing TNF-α production. ERK 
stimulates, and p38 inhibits, inducible NOS (iNOS, an inflammatory mediator)[116]. ERK and p38 also 
correlate with glomerular and tubulointerstitial lesions in patients with DKD[117].

p38 is activated in hyperglycemic conditions within podocytes, mesangial cells, and tubular cells, coinciding 
with TGF-β[118,119]. p38 expression is elevated in early diabetes with increased MAPKK3/6 and cAMP-
responsive element binding protein (CREB) and is associated with renal hypertrophy and fibrosis[120]. p38-
dependent CREB activation can mediate angiotensin II and lipoxygenase-induced fibronectin expression 
and cellular growth in mesangial cells[121]. p38 inhibition diminishes albuminuria in T1DM mice. p38 might 
regulate nephrin endocytosis in podocytes, as its inhibition leads to a loss of nephrin. p38 is phosphorylated 
at Ser1146 in diabetic mice, which then interacts with nephrin, leading to its endocytosis[119].
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Complement cascade
The complement system is an innate immune defense mechanism and immune-metabolic regulator. It is a
cascade of plasma proteins activating the next protein by proteolytic cleavage to induce inflammatory
responses. Complement activation occurs by classical, alternative, and lectin pathways, with the latter
triggered by the binding of lectins, such as mannose-binding lectin (MBL), to aberrant carbohydrates
expressed on the surface of damaged cells. All three pathways converge at complement 3 (C3), which
initiates an enzymatic cascade to generate the effector molecules, including C3a, C5a, and C3b, and
ultimately, the membrane attack complex (MAC), forming pores in the target cell membranes, thereby
killing them. C3a and C5a are potent pro-inflammatory mediators[122,123] [Figure 3].

The complement system is activated in DKD[10,123-126]. Hyperglycemia results in glycated proteins, which can
directly activate the complement system by binding MBL and initiating pro-inflammatory signaling.
Circulating MBL level is a robust biomarker for the development and progression of DKD[125,127]. Growing
evidence suggests that MBL, C3, and MAC contribute to renal injury in the hyperglycemic milieu[123,128,129].
Antagonists of C5a and C3a receptors improve kidney fibrosis in diabetic rats[124].

NLRP3 inflammasome
Large protein complexes (> 700 kDa) containing caspase-1, apoptosis-associated speck-like protein (ASC),
and NLRP3 form within stimulated immune cells such as monocytes, macrophages, and dendritic cells.
These are called inflammasomes. On detecting danger signals, such as microbial motifs or DAMPs, NLRP3
assembles the NLRP3 inflammasome, causing caspase-1-dependent pro-inflammatory cytokine release and
pyroptosis[130,131] [Figure 3]. The hyperglycemic milieu of DKD contains a surplus of stressors required for
the assembly and activation of NLRP3 inflammasome. Inflammatory inducers activate NFκB signaling,
expressing and activating NLRP3, pro-IL1β, and pro-IL18, and transcriptional protein modifications such as
ASC phosphorylation and NLRP3 deubiquitination. A secondary stimulus, like ROS, activates the
inflammasome by oligomerizing inactive NLRP3 and activating pro-caspase-1[130].

Podocyte-specific NLRP3 inflammasome activation is necessary and sufficient for the expression of DKD in
hyperglycemic mice. Podocyte-specific NLRP3 gain-of-function mutant aggravated hyperglycemia-induced
kidney damage (albuminuria, mesangial expansion, and GBM thickening), whereas loss of NLRP3 or
caspase-1 was renoprotective[33]. NETs promote NLRP3 inflammasome activation and glomerular
endothelial dysfunction under hyperglycemic stress[30]. Inhibiting NLRP3 prevents hyperglycemia-induced
lipid accumulation in podocytes and, therefore, podocyte damage[132]. Thus, NLRP3 inflammasomes
exacerbate inflammation by promoting the release of pro-inflammatory cytokines, and sustained activation
contributes to renal inflammation, fibrosis, and kidney damage.

Wnt/β-catenin
Essential for embryonic development, the Wnt/β-catenin pathway plays a role in DKD and impacts
inflammatory pathways, such as NFκB and JNK[133-145] [Figure 4]. Snail, a Wnt target, is a marker of EMT
and is associated with inflammation. During EMT, TNF-α triggers Snail and inhibits its
ubiquitination[136,145]. Snail knockout in tubular cells displays lower macrophage infiltration and NFκB
signaling, indicating that Wnt signaling mediates tubular inflammation[145]. IKKα plays a role in β-catenin
target gene expression. TGF-β-mediated Wnt/β-catenin activation leads to increased binding between IKKα
and β-catenin[143]. JNK binds to the E-cadherin/β-catenin complex as DKD progresses, showing JNK to be a
player in EMT during DKD. JNK phosphorylates β-catenin and remodels the actin cytoskeleton[144].
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Figure 4. Wnt and TGF-β signaling pathways. To the left of the figure, Wnt canonical and non-canonical pathways are demonstrated. 
The top left of the sphere features the canonical Wnt/β-Catenin pathway with no ligand bound, leading to the formation of the 
β-Catenin destruction complex. The top right of the sphere shows the canonical Wnt/β-Catenin pathway when a ligand is bound, 
allowing target genes to be transcribed, many of which promote fibrosis and EMT. This is achieved by accumulating β-Catenin through 
the inhibition of the destruction complex. The bottom right showcases the TGF-β pathway which moves through SMAD proteins and 
interacts closely with both the Wnt/β-Catenin pathway and other traditional inflammatory pathways. Lastly, the bottom left of the 
sphere shows what is occurring in the Wnt non-canonical pathways when the pro-inflammatory Wnt5a ligand is bound. Non-canonical 
signaling involves the Ca+ pathway and the PCP (Planar Cell Polarity) pathways. The non-canonical pathways are much more complex 
than canonical signaling and involve interactions with other pathways through players such as NFAT, PKC, and JNK. This can also lead 
to inhibition of β-Catenin accumulation. To the right of the figure, phosphorylation interactions between JNK with β-Catenin, specifically 
at Ser-37 and Thr-41, leads to the destabilization of junctions in the context of cellular adhesion and motility. This is due to the loss of α-
Catenin when JNK is bound to the respective residues. AP-1: Activator protein 1; APC: adenomatous polyposis coli; CD146: cluster of 
differentiation 146; Cdc42: cell division control protein 42; CKIα: casein kinase I alpha; GSK-3β: glycogen synthase kinase 3 beta; JNK: c-
Jun N-terminal kinase; LEF: lymphoid enhancer-binding factor; NFAT: nuclear factor of activated T cells; PKC: protein kinase C; Rac1: 
Ras-related C3 botulinum toxin substrate 1; ROR2: receptor tyrosine kinase-like orphan receptor 2; SARA: SMAD anchor for receptor 
activation; TCF: T-cell factor; TGF-β: transforming growth factor-β.

Multiple RAAS players are direct targets of Wnt/β-catenin signaling. Inhibiting β-catenin in a mouse model 
of CKD led to a significant reduction in proteinuria, suggesting an interaction between RAAS and Wnt/β-
catenin signaling in inflammation[140-142].

The Wnt/β-catenin pathway also impacts macrophage accumulation in the kidneys. In human, animal, and 
cell models, Wnt5a binds CD146, inducing non-canonical signaling-mediated TNF-α, IL6, and CCL2[138]. 
Stimulated human peripheral blood mononuclear cells (PBMCs), Wnt5a triggers non-canonical signaling-
mediated macrophage activation. Silencing Wnt5a decreases inflammation[139]. A co-culture of chemokine-
producing myeloid cells and early myofibroblasts exhibited β-catenin nuclear translocation during EMT. 
Blocking Wnt reduced β-catenin nuclear translocation, preventing EMT[146].
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TGF-β/SMAD
TGF-β, a profibrotic factor, drives EMT within the kidney via SMAD proteins[147] [Figure 4]. Inhibiting the
pathway suppresses renal fibrosis via expressing micro-RNA-29 (miR-29) and repressing miR-192 and
miR-21[148]. The three TGF-β isoforms in the kidney, TGF-β1-3, are all profibrotic and promote matrix
protein accumulation. TGF-β1 partially mediates TGF-β2 and TGF-β3 activity. However, different phases of
nephropathy can exhibit other dominant isoforms, as TGF-β2 is dominant in the acute phase of
streptozotocin-induced DKD[149].

Urinary levels of TGF-β can be a marker for IgA nephritis and glomerulosclerosis, as patients with these
disorders have higher levels of urinary TGF-β and lower TGF-β receptors[150,151]. TGF-β is also correlated
with the progression of interstitial fibrosis[150]. In rats with ischemia-reperfusion injury, inhibiting the TGF-β
pathway via pirfenidone demonstrates renoprotective effects by relieving inflammation and fibrosis[152].
While inhibiting all three TGF-β isoforms alleviates renal fibrosis in rats, no clinical trials targeting TGF-β
have succeeded[152,153].

Hyperglycemia-driven macrophage inflammatory protein-3a (MIP-3a) induction in renal proximal tubules
is TGF-β1-dependent[154]. TGF-β is important for mitochondrial quality control in the proximal tubules. In
mice, deleting TGF-β receptor 2 (TbR2) impairs mitochondrial complex 1, reducing quality control and
increasing inflammation, promoting oxidative stress[151]. TGF-β null mice develop autoimmune disorders,
while TbR2 deficiency induces a lethal inflammatory disorder 8-10 weeks following induction. When bone
marrow from TbR2 deficient mice is transferred to healthy mice, the mice encounter inflammation and
death[155]. Contrastingly, in mouse matrix-producing interstitial cells (MPICs), deletion of TbR2 did not
significantly impact renal fibrosis during unilateral ureteral obstruction (UUO) and aristolochic acid-
induced nephropathy. Collagen production was diminished, suggesting that there are complex mechanisms
involved in TbR2 regulation[156]. TGF-β is pertinent for inflammation and can initiate Wnt target gene
transcription and activate p38 and ERK[145].

PLAYERS
Numerous factors  in the diabetic  mil ieu induce inf lammation:  hyperglycemia[25,47,59,154,157], 
hyperlipidemia[158-160], reactive oxygen species[74,77,78,121], AGEs[68,107,161], and hypertension[162-164], to name a few. 
Chronic low-grade inflammation damages tissue, resulting in the production of DAMPs, which exacerbate 
inflammation.

Damage-associated molecular patterns
DAMPs are endogenous non-microbial inflammation inducers. Released from damaged cells, these danger 
molecules bind PRRs, activating inflammatory cascades to start the repair process. As expected, DAMPs can 
be pathogenic in inflammatory diseases[165,166]. DAMPs originate from different compartments: the 
extracellular matrix, such as fibronectin and tenascin C; different intracellular compartments, such as 
nuclear high-mobility group box 1 (HMGB1) and histones, cytosolic uric acid and heat shock proteins 
(HSPs), and mitochondrial DNA and ROS; and plasma proteins, like fibrinogen and SAA[166].

Detectable in the urine of patients with glomerular disease, soluble fibronectin induces chemokine 
expression in tubular cells by activating Src tyrosine kinases, ERK1/2, and NFκB[167]. Tenascin C promotes 
the proliferation of kidney interstitial cells via STAT3 activation[168]. When released to the extracellular 
space, HMGB1 (a redox-sensitive DNA chaperone) induces inflammation by binding to TLR2, TLR4, and 
RAGE[169]. Hyperuricemia is a common finding in DKD. Uric acid activates the immune system and affects 
resident kidney cells toward a pro-inflammatory and profibrotic state[170,171]. SAA, a clinical marker for active 
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inflammation, binds to and activates multiple PRRs (TLR2, TLR4), increasing NFκB activity and 
inflammatory mediators[35,166]. Several DAMPs are compelling candidates as biomarkers and therapeutic 
targets for DKD.

Pattern recognition receptors
Present primarily on the surface of immune cells, PRRs detect microbes or tissue damage by binding to 
specific molecular structures (PAMPs or DAMPs) and induce signaling cascades to produce inflammatory 
mediators. With chronic inflammation driving DKD, it is natural that PRRs play an essential role, and 
mounting evidence verifies this.

TLR2 and -4 are expressed on the surface of renal tubular epithelial cells, endothelial cells, podocytes, and 
mesangial cells and are implicated in mediating inflammation in these compartments in DKD[172-174]. 
Enhanced TLR4 expression and signaling were reported in renal glomeruli and tubules of patients with type 
2 DKD and microalbuminuria. A 6-year follow-up of patients with microalbuminuria showed an 
association between enhanced glomerular TLR4 expression and renal functional decline[175]. TLR2 is likely 
the predominant long-term mediator of NFκB-dependent inflammation in proximal tubules[173]. The 
absence of TLR2 attenuates the pro-inflammatory state in a type 1 DKD mouse model[176].

NLRs, the other major PRRs, are present in the cytosol and sense intracellular PAMPs and DAMPs. NLRP3 
is the most researched NLR in diabetes and DKD. NLRP3 oligomerizes to form inflammasome complexes 
with the adaptor protein ASC and the effector protein pro-caspase 1 (see Section "NLRP3 inflammasome"). 
Several triggers activate NLRP3, including fatty acids, uric acid, extracellular ATP, hyperglycemia, SAA, and 
mitochondrial ROS[157]. NLRP3 inflammasome exacerbates inflammation in glomerular endothelial cells and 
podocytes, as reviewed before[30,33]. Kim et al. describe an inflammasome-independent role of NLRP3 in 
renal tubular cells in mitochondrial ROS production in acute hypoxic renal injury[177]. The contribution of 
such mechanisms in CKDs remains to be seen.

AGEs are non-enzymatically glycated proteins, lipids, and nucleic acids, and their accumulation increases in 
diabetes[60]. AGE accumulation in the kidneys upregulates the expression of its receptor (RAGE)[178]. AGE-
RAGE induces inflammation and oxidative stress and promotes fibrosis in the diabetic kidneys via 
canonical pro-inflammatory and profibrotic signaling, like NFκB, MAPK, and TGF-β/SMAD, contributing 
to DKD pathogenesis. Targeting AGEs/RAGE by pharmacotherapy, anti-glycating agents, or diet improves 
DKD[60,179].

MBL, a PRR, activates the lectin pathway of the complement system upon recognizing PAMPs or altered 
self-antigens. High MBL increases the risk of proteinuria and all-cause mortality in T1DM and 
T2DM[125,180,181]. A large-scale study reported a U-shaped association of serum MBL levels with 
cardiovascular events and all-cause mortality in T2DM, suggesting that low and high serum MBL 
expression are risk factors[182]. This makes sense when one sees inflammation playing a protective role and 
deregulated inflammation as damaging. MBL might, therefore, have predictive and prognostic value in 
DKD, but more studies are required[127,183].

Pro-inflammatory mediators
Cytokines are small secreted polypeptides that stimulate the movement of immune effector cells toward the 
sites of inflammation, infection, or trauma. Cellular communication mediated by cytokines can be autocrine 
or juxtacrine for signal amplification or paracrine to recruit blood-borne immune effector cells. Produced in 
response to infection or trauma via inflammatory signaling, cytokines recruit, stimulate, and proliferate 
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immune cells. Examples include ILs, chemokines, interferons, and TNFs. They are subdivided based on the 
nature of their function in the immune response. Pro-inflammatory cytokines perpetuate inflammation and 
are necessary in the initial stages of an inflammatory response, while anti-inflammatory cytokines control 
pro-inflammatory cytokines. Cytokines have long been implicated in the progression of DKD with 
prognostic and therapeutic implications[184].

Pro-inflammatory cytokines
Numerous cell types in the kidney can synthesize inflammatory cytokines, including the resident renal cells 
(glomerular, endothelial, tubular, and mesangial cells) and blood-borne cells. The production of these 
cytokines increases as nephropathy progresses, with an independent relationship found between these 
inflammatory molecules and kidney function[21,95,185-188].

Elevated levels of IL6 and CRP, representing an ongoing metabolic storm, are risk factors for T2DM in 
apparently healthy adults[8,9]. Patients with T2DM have higher levels of circulating pro-inflammatory 
cytokines (IL6, TNF-α), indicating a continued inflammatory state[7,72,189,190]. Moreover, hyperglycemia 
acutely increases circulating pro-inflammatory cytokine concentrations, and this effect is more pronounced 
in subjects with impaired glucose tolerance, thus confirming a direct causal effect of hyperglycemia in 
activating the immune system in diabetes[75]. Urinary and serum levels of pro-inflammatory cytokines IL1α, 
IL8, and IL18 correlate with biomarkers of podocyte damage (podocalyxin, synaptopodin, nephrin) and of 
proximal tubular dysfunction (KIM-1, NAG) in the early stage of DKD in T2DM[191]. IL1β, a macrophage-
derived pro-inflammatory cytokine, stimulates the proliferation of renal fibroblasts and increases 
fibronectin and collagen production in a TGF-β-dependent mechanism, suggesting its role in renal 
fibrosis[192]. TNF-α contributes to the pathogenesis of DKD by regulating immune cells and cytokine release, 
as well as directly inducing ROS production[18,193]. Thus, pro-inflammatory cytokines perpetuate 
inflammation, further damaging the kidney tissue and contributing to kidney injury and fibrosis.

Chemokines
Chemokines and their receptors promote inflammatory cell interactions and recruitment to the injury site. 
High glucose and inflammatory cytokines increase the expression of MCP1 [also known as CC motif 
chemokine 2 (CCL2)] in mesangial and tubular cells[98,194]. Serum MCP1 levels correlate with albuminuria 
and are an independent risk factor for developing type 2 DKD[195]. Urinary levels of MCP1 correlate with 
UAE and eGFR[196]. Both serum and urinary levels of MCP1 can be diagnostic and prognostic biomarkers of 
DKD. Another potent chemoattractant for monocytes, macrophages, granulocytes, and T cells, CCL5 (also 
known as RANTES), correlates with proteinuria. It is produced in various renal cells, including fibroblasts, 
mesangial, and tubular cells, when induced by RAAS activation, pro-inflammatory cytokines, and protein 
overload[18,95,98]. A type 1 DKD animal model shows increased expression of fractalkine (CX3CL1) and its 
receptor[197]. Together, they mediate ECM production in mesangial cells and hypertension-induced 
interstitial fibrosis[198,199].

Adhesion molecules
Cell adhesion molecules aid the migration and homing of immune effector cells, like macrophages, to the 
kidney. Overexpression of cell adhesion molecules, such as ICAM1 and VCAM1, on the surface of 
endothelial and tubular cells aids in their capture of circulating macrophage precursors and 
leucocytes[36,200,201]. Glomerular hyperfiltration rather than hyperglycemia triggers the increase in ICAM1 
expression in the early stages of DKD. Mononuclear cell infiltration into diabetic glomeruli is prevented by 
anti-ICAM1 antibody[201]. AGEs induce upregulation of ICAM1 expression in tubular and mesangial 
cells[61,202]. VCAM1 is another adhesion molecule implicated in immune cell infiltration in DKD. VCAM1 
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expression increases in endothelial, tubular, and infiltrating cells in the renal interstitium in a diabetic 
state[200,203]. Circulating VCAM1 levels increase and correlate with UAE in patients with T2DM[204].

Anti-inflammatory mediators
An inflammatory response is supposed to aid the organism in healing from a pathological insult or injury, 
but its dysregulation causes it to become an insult. The balance between pro- and anti-inflammatory 
mediators dictates the overall effect of inflammatory response.

Anti-inflammatory cytokines
Pro-inflammatory cytokines initiate the early responses and amplify inflammatory reactions, whereas anti-
inflammatory cytokines, including IL4, IL10, IL11, and IL13, have the opposite effect in that they limit the 
pro-inflammatory cytokine response[205]. A mouse model of albumin overload-induced tubulointerstitial 
injury showed that IL4 receptor alpha (IL4Rα) is upregulated in the proximal tubule cells via JAK3/STAT6 
signaling. Suppressing IL4 signaling in these cells reverses the inhibitory effect of higher albumin 
concentration without changing albumin endocytosis[206]. Whether IL4 signaling may play a protective role 
in DKD remains to be seen.

A recent systematic review found an inverse relationship between IL10 levels and oral disease in patients 
with diabetes[207]. IL10 deficiency accelerates diabetes by promoting neutrophil generation and activating 
CD4+ T-cells in a mouse model of T1DM[208]. The anti-inflammatory action of IL10 is lower in whole blood 
cultures prepared from patients with T2DM, although the serum levels of IL10 are not significantly 
different, suggesting an IL10-hyporesponsive state in diabetes[209]. IL10 knockout intensified kidney 
inflammation and fibrosis[210]. Some polymorphisms of the IL10 promoter have a protective effect on the 
risk of DKD in T2DM[211]. IL10 also exhibits multiple renoprotective effects after diabetic myocardial 
infarction: it reduces acute renal inflammation, upregulates heme clearance, attenuates fibrosis, and reduces 
proteinuria. IL10 reduces the production of ROS in proximal tubule cells and collagen synthesis in 
fibroblasts[212].

Identified based on its similarities to IL6, IL11 possesses anti-inflammatory activity. It is a proposed 
therapeutic agent for treating chronic inflammatory diseases such as Crohn's disease and rheumatoid 
arthritis. However, in the kidneys, the effect of this cytokine is unusual. IL11 is upregulated by TGF-β and 
required for its profibrotic effects. Produced initially by tubular cells of a damaged kidney, it stimulates 
EMT in an autocrine manner. Neutralizing IL11 significantly reduces the extent of fibrosis, inflammation, 
and tubular damage. Anti-IL11 promotes kidney regeneration and reverses EMT and renal 
dysfunction[213,214]. These studies suggest IL11 signaling as a therapeutic target for DKD; however, one must 
also recognize how this signaling affects other tissues. For example, IL11 levels detected in gingival 
crevicular fluid decrease progressively with decreasing glycemic control and increasing periodontal disease 
in patients with T2DM[215].

IL13 regulates gluconeogenesis in hepatocytes via STAT3; mice lacking IL13 develop hyperglycemia and 
insulin resistance, implicating IL13 in the development of diabetes[216]. Several studies show that serum levels 
of anti-inflammatory cytokines increase significantly in DKD patients and are positively correlated with 
DKD severity and risk of cardiovascular events but may not correlate with markers of inflammation[217-219]. 
Several explanations might explain such confusing results. Cytokines, like IL6 and IL4, can have pro- or 
anti-inflammatory effects depending on the context. Anti-inflammatory cytokines might be unable to 
balance the overwhelmingly pro-inflammatory state. Our lack of a better understanding of these cytokines 
in the context of DKD warrants deeper, well-designed studies.
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Table 1. Potential inflammation-related biomarkers of DKD

Biomarker Relevant findings References

TNF-α Serum TNF-α increases in DKD patients with increasing albuminuria 
DKD treatment suppresses urinary TNF-α

[186,234]

TNF-α receptors Serum TNFR1 and TNFR2 levels predict renal functional decline in patients with T1DM and T2DM [235-237]

MCP1/CCL2 Urinary MCP1/CCL2 levels correlate with albuminuria and may or may not predict eGFR decline [237-239]

SAA SAA increases in DKD patients and correlates with disease progression [35]

IL6 Urinary IL6 levels indicate DKD severity 
Serum IL6 levels can predict atherosclerosis in DKD

[190]

TNF: Tumor necrosis factor; DKD: diabetic kidney disease; MCP: monocyte chemoattractant protein; CCL: chemokine (CC motif) ligand; SAA: 
serum amyloid A; IL: interleukin.

Suppressors of cytokine signaling
SOCS is a family of eight intracellular, cytokine-inducible proteins that can inhibit JAK/STAT signaling. 
Diabetic conditions induce SOCS in podocytes, mesangial, tubular, and inflammatory cells. SOCS inhibits 
high-glucose-induced JAK/STAT signaling in mesangial and tubular cells and normalizes creatinine 
clearance, UAE, and weight loss in diabetic rats mediated by diminishing inflammation[220].

Pro-resolving mediators
An unresolved acute inflammation converts to pathogenetic chronic inflammation. A distinct coordinated 
program to resolve inflammation commences soon after an inflammatory response begins. Broadly, pro-
resolving mechanisms include an increase in phagocytosis, efferocytosis, and cytotoxic cell killing, wound 
healing, macrophage M2 polarization, Treg response, and a reduction in NFκB signaling, Th1, Th17 cell 
responses, pro-inflammatory cytokine production, platelet aggregation, inflammasome formation[221,222]. 
Eicosanoids (lipid-based signaling molecules) are critical in initiating and resolving inflammation. As 
inflammation progresses, eicosanoids switch from initial pro-inflammatory lipid mediators like 
prostaglandins and leukotrienes to pro-resolving lipid mediators like lipoxins, resolvins, and protectins. 
Higher lipoxin levels are associated with a lower risk of developing T2DM[223]. Lipoxin treatment reduced 
albuminuria, mesangial expansion, and collagen deposition and diminished established kidney disease, with 
evidence of preserved kidney function in a mouse model of DKD[224]. The lesser studied ω-3 fatty acid-
derived mediators, resolvins, protectins, and maresins, also preserve kidney function and reduce 
inflammatory mediators in various models of kidney injury[225-228].

Pro-resolving mediators have emerged as therapeutic targets in numerous inflammatory diseases. The 
diabetic milieu with a relentless presence of pro-inflammatory inducers might explain the inefficient 
resolution of chronic low-grade inflammation. Pro-resolving mediator therapy holds promise for managing 
and even reversing DKD[222,229,230].

POSSIBILITIES
Comprehending the inflammatory processes associated with DKD will help detect it early and develop 
effective therapies to halt its progression and perhaps even reverse it. Therefore, mediators of inflammation 
implicated in the onset and progression of DKD are under study as diagnostic and prognostic biomarkers 
and potential therapeutic targets[18,76,96,184,231,232].

Biomarkers
The gold-standard biomarkers for identifying and classifying DKD are albuminuria and eGFR, focusing on 
kidney function. Pathogenic signaling and minor structural changes precede functional decline, which 
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Table 2. The drugs comprising the current standard of care for DKD have anti-inflammatory effects

Class of drugs Mechanism of action Anti-inflammatory effects Renal effects Adverse effects References

ACE inhibitors Inhibit conversion of angiotensin I to 
angiotensin II

Increase expression of TNF-α, IL6, 
CCL2/MCP1, and NFκB in glomeruli and 
tubular cells

Decreases hyperfiltration and albuminuria, 
decreases BP

Cough, angioedema, hyperkalemia [240]

Angiotensin 
receptor blockers

Inhibit angiotensin effects by 
blocking the angiotensin II type 1 
receptor

Same as ACE inhibitors Decreases albuminuria, renoprotective, decreases 
BP

Hyperkalemia [240]

Metformin Enhances AMP kinase activity Regulates tenascin C and TLR4/NFκB 
signaling

Slows the progression of vascular complications of 
DM, including DKD

Lactic acidosis in advanced DKD [241]

SGLT2 inhibitors Inhibit SGLT2 in proximal tubules Reduce cellular stressors and direct anti-
inflammatory effects 

Decreases plasma glucose levels, diuresis, 
natriuresis, reduces BP, lowers proteinuria, 
renoprotective 

Urinary infections, ketoacidosis [77,242-247]

GLP1 receptor 
agonists 

Stimulate GLP1 receptors Reduce TNF levels Reduces proteinuria, slows the progression of CKD, 
Induces weight loss 

Nausea, vomiting, ketoacidosis, 
pancreatitis, medullary thyroid 
cancer

[77,161,248,
249]

Finerenone Non-steroidal selective aldosterone 
receptor antagonist

Reduce cytokine-mediated oxidative stress 
and immune cell infiltration

Renoprotective, mild diuresis, anti-hypertensive, 
reduces albuminuria and slows GFR decline

Hyperkalemia, worsening of kidney 
function in advanced CKD 

[96,250-252]

ACE: Angiotensin-converting enzyme; TNF: tumor necrosis factor; IL: interleukin; CCL: CC motif chemokine ligand; MCP: monocyte chemoattractant protein; NFκB: nuclear factor kappa B; BP: blood pressure; AMP: 
adenosine monophosphate; TLR: toll-like receptor; DM: diabetes mellitus; DKD: diabetic kidney disease; SGLT: sodium-glucose co-transporter; GLP: Glucagon-like peptide; CKD: chronic kidney disease; GFR: 
glomerular filtration rate.

portrays the unmet need for novel diagnostic biomarkers[18,76,157]. Using machine learning algorithms on human transcriptomic data and mouse experiments, 
Zhong et al. identified DKD diagnostic markers related to oxidative stress and inflammation: tenascin C, peroxidasin, tissue inhibitor metalloproteinases 1, and 
tropomyosin[233]. Further comprehensive studies are required to test each protein for its potential. Table 1 summarizes some promising inflammation-related 
candidates.

Therapy
The drugs used for diabetes and DKD management have anti-inflammatory properties [Table 2], which might partly explain their renoprotective 
effects[77,96,161,240-252]. Potential anti-inflammatory therapeutic strategies for DKD are in various stages of development. STAT3 inhibitors - nifuroxazide and S3I-
201 - have shown promise in animal models[253,254]. STAT3-inhibitor Stattic ameliorates kidney injury in mouse models of Alport syndrome and lupus nephritis 
but remains to be tested for DKD[255,256]. Table 3 summarizes anti-inflammatory drugs for DKD therapy backed by clinical evidence. Phosphodiesterase-
inhibitor pentoxifylline (FDA-approved for intermittent claudication) reduces eGFR decline, albuminuria, and urinary TNF-α in type 2 DKD[234]. Even if some 
of these get the final FDA approval, they will contribute significantly toward achieving improved cardio-renal-metabolic health of patients with DKD.
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Table 3. Potential anti-inflammatory drugs for DKD therapy

Name Mechanism of action Renal effects Status References

Bardoxolone Nrf-2 inducer (NFκB inhibitor) Improves GFR Phase 3 [257-263]

Pirfenidone TGF-β inhibitor Increases GFR Phase 2 [264]

Baricitinib JAK1/JAK2 inhibitor Reduces proteinuria Phase 2 [110]

PF-04634817 CCR2/5 antagonist Modest reduction of proteinuria Phase 2 [265]

CCX140-B CCR2 inhibitor Reduces proteinuria Phase 2 [266]

ASP8232 VCAM1 inhibitor Reduces albuminuria Phase 2 [267]

Nrf: Nuclear factor erythroid 2-related factor; GFR: glomerular filtration rate; TGF: transforming growth factor; JAK: Janus kinase; CCR: CC motif 
chemokine receptor; VCAM: vascular cell adhesion molecule.

CONCLUSION
While DKD has been traditionally viewed as a non-inflammatory microvascular disease, it is now evident 
that inflammation plays an integral part in its onset and progression. Chronic presence of non-infectious 
factors continuously induces PRRs in immune and kidney cells, activating inflammatory pathways, causing 
immune cell infiltration, and progressive damage to renal function and architecture. The pathogenesis of 
DKD is complex and heterogeneous. The patients with DKD are also a heterogeneous population, and some 
groups within them will benefit from treatment targeting inflammation more than others. As we begin to 
actualize early biomarkers and rely on more than the current markers of kidney function, we can detect 
DKD earlier and potentially arrest the progression.
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