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Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. This term does not 
describe the pathogenetic mechanisms and complications associated with NAFLD. The new definition, Metabolic 
Dysfunction-associated Steatotic Liver disease (MASLD), emphasizes the relationship between NAFLD and 
cardiometabolic comorbidities. Cardiovascular disease features, such as arterial hypertension and atherosclerosis, 
are frequently associated with patients with MASLD. Furthermore, these patients have a high risk of developing 
neoplastic diseases, primarily hepatocellular carcinoma, but also extrahepatic tumors, such as esophageal, gastric, 
and pancreatic cancers. Moreover, several studies showed the correlation between MASLD and endocrine disease. 
The imbalance of the gut microbiota, systemic inflammation, obesity, and insulin resistance play a key role in the 
development of these complications. This narrative review aims to clarify the evolution from NAFLD to the new 
nomenclature MASLD and evaluate its complications.
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INTRODUCTION
The most common cause of chronic liver disease (CLD) in the world is Non-alcoholic fatty liver disease 
(NAFLD), especially in Western countries. NAFLD was defined by the presence of Steatotic Liver Disease 
(SLD) without significant alcohol consumption or other chronic liver diseases[1]. Significant alcohol 
consumption is defined as an intake of > 21 drinks and > 14 drinks per week in two years in men and 
women, respectively[2]. However, the World Health Organization (WHO) defined a risk factor of health 
status for every alcohol level[3]. Indeed, low alcohol consumption could induce the progression from liver 
steatosis to non-alcoholic steatohepatitis (NASH) and fibrosis. For example, in a rat model, the combination 
of sweeteners, such as fructose and alcohol, is responsible for changes in the liver and in the serum 
characterizing type 2 diabetes mellitus (T2DM)[4]. Usually, NAFLD includes a broad spectrum of liver 
damage, possibly due to hepatocytic damage, inflammatory processes, and fibrosis[5]. The worldwide 
prevalence of NAFLD is around 25%-30% in the adult population. The highest prevalence rates have been 
reported in Latin America, the Middle East, and North Africa. The NAFLD diffusion is a consequence of 
the worldwide overweight “pandemic”. Indeed, WHO estimated that obesity affects more than 2 billion 
people worldwide[6]. The cause of this development is an unhealthy lifestyle. Western diet, over-
consumption of alcohol, sedentary lifestyle, and smoking are the main risk factors of overweight[7]. These 
factors are strongly influenced by socio-demographic factors (such as gender, age, ethnicity, and 
socioeconomic status)[8]. The highest prevalence of obesity is observed in countries across America and 
Europe[9]. However, the prevalence has increased in developing countries in the last years, from 8% in 1980 
to 13% in 2013, respectively[10]. The NAFLD mortality rate is 12.60 per 1,000 patients/year. The leading cause 
of death in patients with NAFLD is represented by cardiovascular events triggered by overweight/obesity, 
and by hepatic complications only when inflammation (NASH) and fibrosis develop[11]. Subsequently, the 
definition of NAFLD was considered inaccurate to reflect its pathogenesis. Moreover, it did not allow the 
correct stratification of patients for management when alcohol consumption is associated with increased 
caloric intake[4]. In 2020, the new nomenclature of metabolic dysfunction-associated fatty liver disease 
(MAFLD) was proposed[12,13]. MAFLD was defined by the presence of SLD associated with inclusion criteria: 
T2DM, overweight/obesity (body mass index, BMI ≥ 25 kg/m2), or the presence of metabolic 
dysregulation[1]. Additionally, MAFLD co-exists with other chronic liver diseases and is independent of 
alcoholic intake[12]. The disease progression is faster in MAFLD than in NAFLD due to dysmetabolic 
comorbidities. Indeed, recent evidence underlined that MAFLD was related to a higher rate of fibrosis and 
NASH[13]. Therefore, there are several limitations in the MAFLD term: the different etiologies and the 
inappropriate use of the term “fatty”. After four rounds of the Delphi survey, the definition of Metabolic 
Dysfunction-associated Steatotic Liver disease (MASLD) was chosen to replace NAFLD. MASLD was 
defined as SLD with at least one of five cardiometabolic risk factors without excessive alcohol intake (less 
than 140-30 g/week and 210-420 g/week for females and males, respectively)[14]. The diagnostic criteria of 
NAFLD and MASLD are summarized in Figure 1.

Aim
This recent change in nomenclature has created serious questions about its use. This narrative review aims 
to clarify the evolution from NAFLD to the new nomenclature MASLD and evaluate its complications.

THE CHANGE IN NOMENCLATURE
The main limitation of the term NAFLD is the difficulty of emphasizing the role of metabolic dysfunction in 
the pathogenesis of the disease. For this reason, a new term, MAFLD, has been proposed, which takes into 
account the metabolic and hepatic comorbidities associated with liver steatosis. In this way, it better 
captures both the hepatic and extrahepatic aspects of the patient compared to NAFLD[15]. Several studies 
have shown that patients with MAFLD have a worse hepatic profile compared to patients with NAFLD, 
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Figure 1. Diagnostic criteria of NAFLD, MAFLD and MASLD. MASLD: Metabolic Dysfunction-associated Steatotic Liver disease; 
NAFLD: Non-alcoholic fatty liver disease; MAFLD: Metabolic Dysfunction-associated fatty liver disease.

which seems to be correlated not only with the presence of metabolic comorbidities but also hepatic[15-18]. 
Therefore, excluding patients with other hepatic etiologies in NAFLD would result in a failure to manage 
metabolic features in subjects who instead require multi-specialty approaches. A retrospective study 
analyzed the general characteristics of 175 patients with hepatic steatosis diagnosed by liver biopsy. Among 
these, 43.8% met only the criteria for MAFLD and 4.9% only those for NAFLD. Patients with only MAFLD 
had a higher BMI compared to those with NAFLD, and hepatic and metabolic comorbidities were not 
present in patients with NAFLD alone. Histologically, 48.1% of patients with MAFLD showed advanced-
stage fibrosis[16]. These results were confirmed by another study conducted on 765 patients with hepatic 
steatosis. The percentage of patients with significant fibrosis was 93.9% in patients with MAFLD and 73% in 
patients with NAFLD[17]. Furthermore, another study observed not only an increase in fibrosis but also in 
biochemical indices of liver damage in patients with MAFLD alone compared to patients with NAFLD 
alone[18]. MAFLD, compared to NAFLD, is associated with both an increased severity of hepatic conditions 
and an increased risk of extrahepatic manifestations associated with metabolic comorbidities. In this regard, 
Huang et al. observed an increased risk of cardiovascular disease (CVD) in patients with MAFLD alone 
compared to patients with NAFLD alone[18]. The increased risk of CVD in MAFLD was confirmed by a 
study performed on 8,962,813 patients without previous CVD with a follow-up of ten years, which 
demonstrated the presence of 182,423 new cardiovascular events in MAFLD patients[19]. In addition, 
MAFLD is associated with an increased prevalence of renal comorbidities compared to NAFLD. In a study 
performed on 12,571 individuals, of whom 30.2% had MAFLD and 36.2% had NAFLD, patients with 
MAFLD had a lower estimated glomerular filtration rate and a higher prevalence of chronic kidney disease 
(CKD) compared to patients with NAFLD[20]. Finally, MAFLD, in addition to increasing the risk of hepatic 
and extrahepatic manifestations, is associated with increased mortality compared to NAFLD. In fact, a study 
conducted on 7,761 patients showed an increased risk of all-cause mortality and cardiovascular mortality in 
MAFLD patients compared to subjects with NAFLD[21]. Although MAFLD offers a better clinical framework 
for patients, the term “fatty” is considered stigmatizing. For this reason, the replacement of the term fatty 
with “steatotic” has been proposed, thus introducing the term MASLD. However, MASLD determines a 
semantic improvement, but it has different diagnostic criteria compared to MAFLD. In fact, the MASLD 
definition includes patients with a lower metabolic risk and excludes patients with other chronic liver 
diseases. However, this approach could be limiting in a real-life context[22]. In this regard, a recent study has 
highlighted how MASLD has a higher capture of lean patients compared to MAFLD[23]. Probably due to 
these differences, MASLD tends to fairly reproduce the NAFLD scenario, while MAFLD probably captures 
hepatic and extrahepatic outcomes more accurately. A recent study compared the clinical characteristics of 
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patients with NAFLD, MAFLD, and MASLD. It was observed that in terms of hepatic, renal damage, and 
metabolic comorbidities, MAFLD was associated with worse outcomes than NAFLD, while MASLD 
presented clinical features overlapping with NAFLD[24]. Additionally, MAFLD is associated with higher 
cardiovascular, T2DM, and cancer-related mortality than MASLD[25]. These results may be related to 
MASLD involving a larger number of patients with a healthier metabolic profile compared to MAFLD and 
the exclusion of patients with hepatic comorbidities. In this context, Wang et al. have proposed to divide the 
MASLD patients into pure MASLD, MetALD (MASLD associated with increased alcohol consumption), 
and combinatorial MASLD (with other hepatic comorbidities) to avoid excluding patients with coexistent 
liver pathologies and facilitate their clinical management[26]. Overall, these nomenclatures are applicable to 
various types of patients in clinical practice.

EPIDEMIOLOGY OF MASLD
To our knowledge, there are no studies evaluating the epidemiology of MASLD in the general population, 
but only in individuals with risk factors. According to Perazzo et al., epidemiological data from NAFLD and 
MAFLD in the general population can apply to the MASLD definition. In a cohort of 10,651 individuals 
without SLD diagnosis, the prevalence of NAFLD, MAFLD, and MASLD was 34.7%, 34.9%, and 33.4%, 
respectively[1]. Subsequently, Song et al. assessed the prevalence of specific SLD subtypes among 1,016 
randomly selected individuals with SLD diagnosed by proton magnetic resonance spectroscopy. NAFLD, 
MAFLD, and MASLD prevalence were 25.7%, 25.9%, and 26.7%, respectively[27]. In another study, among 
15,453 subjects, the prevalence of NAFLD, MAFLD, and MASLD was 11.6%, 15.2%, and 10.7%, 
respectively[28]. In a single-center cohort study of 745 patients, with SLD diagnosis based on magnetic 
resonance imaging derived proton density fat fraction (MRI-PDFF), the prevalence of NAFLD, MAFLD, 
and MASLD was 81%, 84%, and 84%, respectively. However, among 104 patients with SLD diagnosed with 
liver biopsy, the prevalence changes (99% NAFLD, 100% both MAFLD and MASLD)[17]. These studies 
showed no significant difference in prevalence between MASLD, NAFLD and MAFLD in the general 
population[1,27-29]. However, these results in a target population might change. For example, the prevalence of 
MASLD and MAFLD in lean patients is different. Among 170 patients with lean NAFLD, 142 (83.5%) 
satisfied the MASLD criteria, while only 84 (49.4%) had MAFLD. Despite this, it should be considered that 
lean NAFLD is a relatively rare case compared to the overwhelming majority of obese patients[30]. Therefore, 
more clinical trials on the target population are needed. Table 1 summarizes the epidemiological studies 
regarding NAFLD, MAFLD, and MASLD.

RISK FACTORS OF MASLD
Age, gender, tobacco, ethnicity, and genetic factors
Various risk factors, such as older age, male gender, tobacco, ethnicity, and genetic factors, are involved in 
the development of MASLD[1,31,32]. The prevalence of MASLD in males is higher than in females 
(26% vs. 13%)[11]. Indeed, sex hormones have an important role in the metabolism of macronutrients. 
Specifically, estrogen promotes lipid metabolism by increasing the expression of lipoprotein lipase, an 
enzyme involved in triglyceride hydrolysis, and inhibiting lipolysis, which converts triglycerides into fatty 
acids. At the same time, progesterone may increase metabolic rate and energy expenditure, contributing to 
changes in appetite and weight regulation, while testosterone affects lipid metabolism by enhancing 
lipolysis, the degradation of stored fat, and reducing adipocyte proliferation and differentiation. 
Furthermore, this latter influences glucose metabolism by enhancing insulin sensitivity and glucose uptake 
in skeletal muscle[33]. Estrogen has been shown to have protective effects on the liver, including reducing 
hepatic fat accumulation and inflammation (NASH)[34-37]. As a result, premenopausal women usually have a 
lower risk of fatty liver disease compared to age-matched men. However, after menopause, when estrogen 
levels decline, women may become more susceptible to the disease development[38]. Furthermore, 
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Table 1. Epidemiological studies about NAFLD, MAFLD and MASLD

Authors Patients NAFLD prevalence MAFLD prevalence MASLD prevalence

Perazzo et al., 2023[1] 10,651 patients without SLD diagnosis 34.7% 34.9% 33.4%

Song et al., 2023[27] 1,016 patients without SLD diagnosis 25.7% 25.9% 26.7%

He et al., 2023[28] 15,453 patients without SLD diagnosis 11.6% 15.2% 10.7%

Yang et al., 2023[29] 717 patients (SLD diagnosed with MRI-PDFF) 
104 patients (SLD diagnosed with liver biopsy)

81% 
 
99%

84% 
 
100%

84% 
 
100%

De et al., 2023[30] 170 patients with lean NAFLD n.a. 49.4% 83.5%

SLD: Steatotic Liver Disease; NAFLD: Non-alcoholic fatty liver disease; MAFLD: Metabolic Dysfunction-associated Fatty Liver Disease; MASLD: 
Metabolic Dysfunction-associated Steatotic Liver disease; MRI-PDFF: Magnetic Resonance Imaging Derived Proton Density Fat Fraction; n.a.: not 
available.

differences in body fat distribution between males and females may also influence the development of liver 
steatosis: men tend to accumulate fat in the abdominal region (android obesity), which is associated with a 
higher risk of metabolic disorders such as insulin resistance, while women typically store fat in the hips and 
thighs (gynoid obesity), which may confer protection from the disease development[39]. In addition, tobacco 
and alcohol use promotes the development of liver steatosis[40]. In this regard, men consume more alcohol 
and tobacco than women. For this reason, the male gender and an unhealthy lifestyle are risk factors linked 
to MASLD development[41]. Furthermore, a recent study showed that the number of alcoholic liver disease 
and MASLD-related deaths was higher in the white American population compared to the African 
American population during the 1999-2020 period[32]. Finally, genetics play a key role in the development of 
fatty liver disease. Recent studies have identified various genetic factors that contribute to an individual's 
susceptibility to MASLD and its progression. One such factor is the patatin-like phospholipase domain-
containing 3 (PNPLA3) gene, which has been strongly associated with MASLD risk. PNPLA3 p.I148M 
variant has been found to increase the accumulation of fat in the liver and elevate the risk of developing the 
disease and its more severe forms[42]. In this regard, recent investigations indicated that the prevalence of the 
PNPLA3 p.I148M variant was found to be highest among Hispanics (49%), followed by European-
Americans (23%) and African-Americans (17%)[43,44]. At the same time, variations in the transmembrane 6 
superfamily member 2 (TM6SF2) gene have also been implicated in fatty liver disease. Some TM6SF2 
variants are associated with increased liver fat content and higher risks of MASLD and its complications, 
including liver fibrosis and cirrhosis[45]. In this regard, a recent study revealed that Caucasian individuals 
who were homozygous for the variant exhibited notably increased levels of alanine aminotransferase and 
aspartate aminotransferase in comparison to heterozygous carriers. Additionally, Caucasian populations 
demonstrated significantly higher liver fat content, unlike Hispanics, when comparing homozygous and 
heterozygous carriers[46].

Cardiovascular and metabolic features
Low levels of high-density lipoproteins (HDL) and an increase in glucose levels, homeostatic model 
assessment, triglycerides and BMI are positively correlated with hepatic steatosis, fibrosis progression, and 
the outcome of patients, including mortality. In this regard, it is necessary to assess the medical records and 
the historical data (especially the daily alcohol intake) of patients and then the clinical-laboratory 
parameters already mentioned[1,47-49]. The predominant cardiovascular risk factor of MASLD is BMI > 
23 kg/m2[17]. T2DM is an independent predictor of MASLD and its complications, especially if associated 
with tobacco consumption[50,51]. In this context, several classes of antidiabetic drugs have favorable effects on 
liver function[52]. The lifestyle plays an important role in the MASLD pathogenesis. Indeed, poor sleep 
quality and an unhealthy diet, such as a Western diet (characterized by high salt content and highly 
processed foods), are risk factors for MASLD development[53-55]. On the other hand, the use of the 
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Mediterranean diet in MASLD patients improves disease outcomes[56,57]. The protective effect of plant-based 
food is also related to linalool. Linalool attenuates oxidative stress, inhibits lipogenesis, and promotes fatty 
acid oxidation, thereby reducing the accumulation of fats in the liver[58]. Neighborhood-level social 
determinants of health are an important factor for MASLD outcomes. Indeed, “affluence” compared to 
“disadvantage” was associated with lower mortality risk, incident CVD, and incident liver-related events[59]. 
An unhealthy lifestyle affects sleep quality, which in turn is a risk factor for MASLD development[60]. 
Increased levels of bile acids (BA) are related to a higher prevalence of MASLD[53,61].

Inflammatory bowel diseases
Inflammatory bowel diseases (IBDs) determine a chronic and systemic inflammation state. This condition is 
an independent risk factor for MASLD in lean patients[62,63].

GUT MICROBIOTA IN MASLD
Gut microbiota in health and disease
Gut microbiota is a complex ecosystem comprising approximately 1014 bacteria, with Firmicutes and 
Bacteroidetes as predominant phyla. Its eubiosis maintains the health status[64]. However, its imbalance 
(dysbiosis) has been linked to the development of T2DM, IBD, CKD, and liver diseases[65]. The microbiota's 
role in metabolizing choline, phosphatidylcholine, and carnitine leads to trimethylamine-N-oxide, which is 
associated with atherosclerosis and increased mortality in CVD and CKD[66]. Gut dysbiosis is correlated with 
the development of colorectal cancer (CRC)[67]. Indeed, CRC patients have a higher abundance of 
Bacteroidetes but a lower abundance of Firmicutes phyla[68]. IBDs are linked to Proteobacteria/Firmicutes 
imbalance[69,70].

Gut microbiota in MASLD pathogenesis
Recent research focuses on the role of gut dysbiosis in CLD, including MASLD[71,72]. Pre-clinical studies 
indicate that Bacteroidetes are linked to MASLD development, and targeted interventions can mitigate 
disease progression[73]. Qiao et al. evaluate how the higher abundance of Bacteroides xylanisolvens in the 
intestinal tract of attenuated mice reduced MASLD progression[74,75]. A recent study showed how a high-fat 
diet (HFD) induced MASLD, altering Firmicutes/Bacteroidetes ratio. Additionally, treatment with a 
butyrate-producing bacterium, Kineothrix alysoides, mitigated liver fat accumulation by restoring gut 
eubiosis[76]. Further investigations explored the association between gut microbiota and MASLD 
complications, revealing specific bacterial strains' potential therapeutic effects: Bacteroides vulgatus reduced 
atherosclerotic lesion formation, while Bacteroides uniformis reduced cholesterol and triglyceride levels, 
alleviating hepatic steatosis severity[77,78]. Dysbiosis promotes the fermentation of complex carbohydrates, 
leading to SCFAs production[79-81]. Furthermore, lactate produced by Lactobacillus and Bifidobacterium 
genera prolongs post-meal satiety by providing a substrate for neuronal cells[82,83]. Gut imbalance and altered 
BA homeostasis may contribute to metabolic dysregulation in T2DM and obesity[84-85]. Additionally, oxygen-
free radicals modulated by the bacterial microflora could overcome antioxidant barriers that cause cellular 
damage, inflammation, and even apoptosis. Excessive generation of oxygen free radicals caused by gut 
dysbiosis and translocation of bacterial endotoxin to the liver is closely related to the pathogenesis of 
NAFLD and dysmetabolic comorbidities that promote the progression into MASLD[86]. Liver damage is 
linked to an altered intestinal epithelial barrier. In a pre-clinical study, an HFD-induced gut dysbiosis with 
intestinal vascular barrier damage led to bacterial translocation into the portal circulation. Genetic 
manipulation of the β-catenin pathway and obeticholic acid treatment prevented barrier disruption[87]. In 
another study, mice with liver cirrhosis exhibited increased gut permeability, bacterial translocation, and 
FXR receptor modulation. Treatment with FXR agonists improved the epithelial barrier, reducing bacterial 
translocation and liver damage[88]. Figure 2 summarizes the pathway that involves the gut microbiota in 
MASLD pathogenesis.
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Figure 2. Gut microbiota and MASLD pathogenesis. MASLD: Metabolic Dysfunction-associated Steatotic Liver Disease; BAs: Bile Acids; 
BMI: Body Mass Index; FFA: Free Fatty Acids; HDL-C: High-Density Lipoproteins Cholesterol.

MASLD COMPLICATIONS
Relationship between liver steatosis and metabolic comorbidities
The new nomenclature MASLD emphasizes the relationship between NAFLD and metabolic comorbidities. 
Recent studies reveal a 46.7% prevalence of MASLD in T2DM patients, while the cardiovascular event rate 
was 2.03 per 100 person-years in MASLD individuals[89,90]. In MASLD, intrahepatic toxic lipid accumulation 
induces endothelial dysfunction and atherogenic dyslipidemia, marked by reduced HDL and elevated low-
density lipoproteins and triglycerides levels[91]. The liver produces inflammatory biomarkers that usually 
increase in MASLD patients[92]. Visceral adiposity in MASLD alters hormone metabolism, adipokine 
production, and insulin-related factors, fostering systemic inflammation and insulin resistance. Elevated 
insulin-like growth factor 1 levels correlate with CRC risk. Adiponectin and leptin, reduced in obese 
MASLD patients, influence CRC progression[93-95]. Gut dysbiosis could also mediate MASLD-associated 
carcinogenesis, probably through increased intestinal permeability in both the small and large intestine, 
leading to bacterial translocation, systemic inflammation, and tumorigenesis, as shown in CRC[96]. Increased 
permeability of the small intestine is known in patients with CLD. In a recent study, small intestinal 
permeability was assessed by a double sugar (lactulose:rhamnose) assay in patients with CLD and in healthy 
controls. Small intestinal permeability was significantly higher in the CLD group than in healthy controls[97]. 
Furthermore, in a recent study, the bacterial composition in the small intestine was evaluated through 
biopsies during double-balloon enteroscopy. As reported by the Authors, Proteobacteria and Firmicutes 
phyla were abundant in the jejunum and proximal ileum, while Firmicutes and Bacteroidetes phyla were 
abundant in the distal ileum[98].

MASLD and non-dysmetabolic diseases
MASLD is linked to non-dysmetabolic diseases, including CKD, IBD, endocrinopathies, and lung diseases. 
MASLD patients exhibit a higher prevalence of CKD, potentially associated with hyperuricemia or 
T2DM[99]. Studies indicate a correlation between hypothyroidism severity and MASLD, while limited 
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evidence is available on hyperthyroidism. Low prolactin levels are associated with MASLD in women[100]. 
NAFLD is related to decreased adult lung function and obstructive sleep apnea syndrome development[101], 
while data on MASLD are lacking. MASLD patients have a higher risk of developing sarcopenia due to 
nutritional disorders, gut dysbiosis, and insulin resistance[102,103]. A mutual relationship between sarcopenia 
and insulin resistance exists due to mammalian target complex 1 rapamycin (mTORC1) action in skeletal 
muscle. Hyperinsulinemia activates mTORC1, but prolonged activation causes a negative feedback signal, 
leading to mTORC1 inhibition, autophagy, and increased protein degradation[104].

Hepatocellular carcinoma and cholangiocarcinoma
Hepatocellular carcinoma (HCC) ranks among the most prevalent solid tumors globally and stands as the 
third leading cause of mortality worldwide. Major culprits for HCC include hepatitis B virus (HBV) and 
hepatitis C virus (HCV) infections, alcohol abuse, exposure to aflatoxin, and schistosomiasis[105]. Notably, 
NAFLD has emerged as a significant contributor to HCC development in recent years[106]. Particularly in the 
United States, NAFLD has become the fastest-growing cause of HCC among liver transplant recipients and 
candidates. A similar trend was observed in Europe, South Korea, and Southeast Asia, where NAFLD-
related HCC cases have risen over the last two decades[107]. Notably, HCC associated with NAFLD tends to 
occur at an older age compared to viral-induced cases, often diagnosed at later stages, leading to poorer 
survival rates compared to those linked to viral or alcoholic hepatitis[108]. Importantly, NAFLD-related HCC 
may develop without liver cirrhosis, with a significantly higher prevalence observed in individuals with non-
cirrhotic NASH compared to other liver diseases[109]. The pathogenesis of HCC in NAFLD involves insulin 
resistance and metabolic dysfunction, triggering the release of free fatty acids and subsequent oxidative 
stress, along with the secretion of proinflammatory cytokines, such as interleukin-6 and tumor necrosis 
factor-α. Obesity exacerbates this process by inducing chronic inflammation, activating oncogenic 
transcription factors like STAT3, and fostering gut dysbiosis with hepatocarcinogenesis promotion[110]. The 
transition from NAFLD to MAFLD has highlighted its role as a primary cause of HCC[111]. Furthermore, 
HCC development in MAFLD is closely linked to the degree of fibrosis and can occur in non-cirrhotic 
livers[112]. The recent shift to the terminology of MASLD has prompted a reassessment of HCC risk, 
revealing higher risks for first-degree relatives of MASLD patients[113]. The scientific research has highlighted 
the role of non-coding RNAs, specifically microRNAs/small regulatory RNAs (miRNAs/miRs), in liver 
diseases. MiR-21-5p, implicated in MASLD progression to hepatocarcinogenesis, activates peroxisome 
replication, inducing lipid peroxidation and inflammation-fibrosis. Inhibiting miR-21-5p may offer 
therapeutic potential in HCC[114]. Additionally, gut dysbiosis contributes to HCC by increasing hepatic 
exposure to bacterial metabolites, activating toll-like receptor-4, and promoting fibrosis, emphasizing the 
therapeutic potential of gut microbiota modulation[115]. Cholangiocarcinoma (CCA), an aggressive neoplasm 
of the bile ducts, accounts for approximately 3%-5% of all gastrointestinal cancers. The prognosis of CCA is 
poor because 95% of patients die within five years. According to a recent meta-analysis of seven case-control 
studies, NAFLD was significantly associated with an increased risk of CCA for both subtypes[116]. On the 
other hand, a more recent analysis showed that NAFLD is associated with an elevated risk of both total 
cholangiocarcinoma and intrahepatic cholangiocarcinoma (iCCA) but without a significant association with 
extrahepatic cholangiocarcinoma (eCCA)[117]. Furthermore, CCA arising from NASH patients has a severe 
prognosis compared to that from NAFLD[118]. In recent years, the association between MAFLD and CCA 
was evaluated. In this regard, emerging risk factors like obesity, T2DM, and MAFLD were primarily 
associated with iCCA, while traditional risk factors such as biliary cysts, liver cirrhosis, HBV, and HCV 
infections were associated with both iCCA and eCCA[119]. Moreover, a recent study involving 173 patients 
who underwent liver resection for iCCA found a high prevalence of MAFLD, significantly correlated with 
changes in body composition such as sarcopenia and visceral obesity[120]. The association between MASLD 
and CCA, especially with iCCA, has been proposed, supported by findings in mice models, demonstrating 
that MASLD exacerbates cholangitis and iCCA development[121,122]. Additionally, overexpression of 
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osteopontin in the tumor stroma of MASLD patients with iCCA has been observed, suggesting its potential 
as a predictive biomarker and therapeutic target[123]. Nevertheless, further studies are needed to elucidate the 
specific relationship between MASLD and CCA. Hepatic and extrahepatic complications of MASLD have 
been reported in Figure 3.

CONCLUSIONS
MASLD has been defined as SLD with at least one of the five cardiometabolic risk factors without excessive 
alcohol intake. Furthermore, it is a multi-factorial disease with a significant public health impact. Indeed, 
risk factors and complications necessitate the involvement of several medical specialists. Moreover, given 
the recent proposal of this new nomenclature, there is an urgent need to perform further clinical studies on 
large cohorts of patients. At the same time, future research should implement the use of new diagnostic 
tools and robust biomarkers for early detection of MASLD, especially in patients at risk. In this regard, the 
application of new algorithms and artificial intelligence could help in clinical practice. Nevertheless, further 
evidence is needed to clarify the clinical impact of MASLD in real-world settings.
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Figure 3. Hepatic and extrahepatic complications of MASLD. MASLD: Metabolic Dysfunction-associated Steatotic Liver disease, CVD: 
Cardiovascular Disease; CKD: Chronic Kidney Disease; HCC: Hepatocellular Carcinoma; CCA: Cholangiocarcinoma; IBD: Inflammatory 
Bowel Disease.
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