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Abstract
Quadrotors are widely used in transportation, aerial photography, agricultural protection, and other important fields.
Nevertheless, quadrotors with a fixed structure will face great challenges when crossing through or entering narrow
spaces for operations. To improve quadrotor crossing ability in different environments, a morphing quadrotor is de-
signed in this paper, and four servo motors are added to independently change four arm rotation angles. Meanwhile,
the dynamic model and dynamic control allocation matrix are established. In addition, considering that the internal
dynamic variation caused by morphologic changes and external disturbances may compromise system stability, a
control method based on the generalized proportional integral (GPI) observer is proposed to increase the system
robustness, and the corresponding stability analysis is provided. Finally, simulation results demonstrate the effective-
ness of the proposed GPI observer-based active disturbance rejection control method.

Keywords: Morphing quadrotor, dynamic control allocation, generalized proportional integral observer, active dis-
turbance rejection control
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1. INTRODUCTION
Unmanned aerial vehicles (UAVs) are widely used in various fields such as agriculture, transport, and res-
cue [1]. As UAVs, quadrotors have attracted wide attention due to their advantage of vertical take-off and
landing. However, quadrotors with fixed structures cannot cope with complex environments and tasks. For
example, fixed-structure quadrotors usually need complex planning trajectories to cross narrow spaces [2,3]. In
addition, the planning methods may fail to find an available solution when the space is too narrow. In recent
years, morphing-structure quadrotors have begun to attract attention for their ability to adapt to different tasks
by changing their morphology [4]. For example, Bucki et al. design a passive morphing quadrotor, which uses
passive joints to enable morphing [5]; passive joints allow the arms of quadrotors to be folded down; mean-
while, a trajectory planning method is proposed to cross gaps. Zhao et al. design a foldable quadrotor by
using a scissor-like foldable mechanism [6]; aerodynamic effects are investigated to ensure the morphological
change. In addition, Falanga et al. devise a foldable quadrotorwith rotating arms around its airframe [7]; a linear
quadratic regulator controller is proposed to perform a stable flight; they also investigate a geometry-aware
compensation scheme to guarantee higher flight accuracy [8]. Furthermore, Kim et al. design a morphing
quadrotor, which can change its morphology according to payload mass [9]; an optimization method is pro-
posed to determine the optimal morphology, and an adaptive control method is developed to realize stable
flight; With the continuous research on morphing aircraft, Sakaguchi et al. use parallel link modules to design
a novel quadrotor that can morph around the 3-axis and design a control method without thrust loss at any
deformed state [10]. For the near term, Wu et al. develop a connected retractable ring-shaped quadrotor that
can grasp and drop objects through the expansion and contraction of the ring-shaped structure, and a nonlin-
ear model predictive control strategy and a time-variant physical parameter mode are applied to achieve stable
flight [11]. Based on the current research situation above, it can be concluded that the current research on
morphing quadrotors mainly focuses on mechanical structure design and control allocation design. Relatively
speaking, a few studies have considered the anti-disturbance ability of morphing quadrotors despite the fact
that they are more sensitive to disturbances, not to speak of estimating the internal and external disturbances
accurately and quickly.

To increase the robustness of the morphing quadrotor system, Zhang et al. propose an active disturbance
rejection control (ADRC) method [12,13] with an extended state observer (ESO) to eliminate the lumped distur-
bances [14]. The generalized proportional integral (GPI) observer as a high-order ESO is successfully applied
in a series of robotic systems in recent years [15–19] for estimating the disturbances more accurately. Despite all
this, few studies have considered its application to morphing quadrotors.

Quadrotors usually suffer from airflow, sensor noises, ground effects, and unmodeled internal disturbances [20].
In addition, morphological changes make morphing quadrotor control more difficult. The challenges can be
listed as follows: 1) Deviation of the center of gravity (CoG) and changing of the moment of inertia (MoI) of
quadrotors; 2) High system sensitivity to disturbances; 3)The time-varying torque generated bymotors around
axes.

To address the above issues, in this paper, we design a morphing quadrotor whose arms can be folded horizon-
tally. Meanwhile, considering the variation of CoG and MoI, a dynamic model and control allocation strategy
for this morphing quadrotor are established. On this basis, the main contributions can be summarized as
follows:

(1) By analyzing the morphing process of the designed quadrotor, the changing CoG and MoI are calculated
in real time with the assistance of the physical formulas and professional modeling software. The calculated
CoG and MoI will be combined with quadrotor dynamics and a mathematical model which can be applied to
all potential quadrotor morphologies.

http://dx.doi.org/10.20517/ir.2023.18
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Figure 1. Morphing quadrotor system diagram.

(2) A dynamic control allocation strategy is established to make the outputs of actuators more precise by an-
alyzing the distance from the motors to the CoG during the process of morphing and setting the stage for a
stable flight of the morphing quadrotor.

(3) A time-varying physical parameter model is combined with a new GPI observer-based ADRC method to
effectively improve the estimation speed of disturbances and the robustness of morphing quadrotor system for
the first time.

The remainder of this paper is organized as follows: In section 2, a dynamic model of the morphing quadrotor
is established. An ADRC method for the morphing quadrotor based on the GPI observer will be designed
in section 3. In section 4, simulations are carried out to verify the effectiveness of the proposed method. In
section 5, the paper is summarized.

2. MODELING
In this section, the dynamic model of the morphing quadrotor will be introduced. In detail, first, the dynamic
equations will be established. The CoG and MoI for the morphing quadrotor will be acquired subsequently.
In addition, a dynamic control allocation matrix will be introduced to obtain accurate revolutions per minute
(RPM) of each motor.

2.1. Dynamic model
First, morphing quadrotor position state equations are obtained as follows:

𝒆 ¤𝒑 = 𝒆𝒗

𝒆 ¤𝒗 = 𝑔𝒆3 −
𝑓

𝑚
𝑅𝒆3

(1)

where 𝒆 𝒑 = [𝑥 𝑦 𝑧]> and 𝒆𝒗 = [𝑣𝑥 𝑣𝑦 𝑣𝑧]> denote the position vector and velocity vector in the world coordinate
system, respectively, 𝑔 denotes the gravitational acceleration, 𝒆3 = [0 0 1]>, 𝑓 represents the quadrotor lift force,
𝑚 represents quadrotor mass, and 𝑅 denotes the rotation matrix from the airframe coordinate system to the
world coordinate system.

In addition, attitude models can be obtained as follows:{ ¤𝚯 = 𝒃𝝎

𝐽𝑏 ¤𝝎 = −𝒃𝝎 × 𝐽𝒃𝝎 + 𝝉
(2)
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where𝚯= [𝜙 𝜃 𝜓]> and 𝒃𝝎= [𝑝 𝑞 𝑟]> denote the Euler angle vector and angular velocity vector in the airframe
coordinate system, respectively, 𝐽 denotes the MoI matrix, and 𝝉 = [𝜏𝑥 𝜏𝑦 𝜏𝑧]> represents the torque vector.

2.2. Center of gravity
As shown in Figure 1, a morphing quadrotor consists of three parts: a body, arms, and motors. Four arms
are connected with the body through four servo motors, and the servo motors can drive the arms to rotate
horizontally for achieving morphological change. As the arm rotates, the CoG of quadrotors in the airframe
coordinate system will change, which can be obtained as follows:



𝒓𝒎𝒐𝒕𝒐𝒓1 =


𝑥𝑖𝑛𝑖𝑚𝑜𝑡𝑜𝑟1

𝑦𝑖𝑛𝑖𝑚𝑜𝑡𝑜𝑟1

𝑧𝑖𝑛𝑖𝑚𝑜𝑡𝑜𝑟1


+


𝑙1(cos𝜃1 − 1)

−𝑙1sin𝜃1

0


𝒓𝒎𝒐𝒕𝒐𝒓2 =


𝑥𝑖𝑛𝑖𝑚𝑜𝑡𝑜𝑟2

𝑦𝑖𝑛𝑖𝑚𝑜𝑡𝑜𝑟2

𝑧𝑖𝑛𝑖𝑚𝑜𝑡𝑜𝑟2


+


𝑙1sin𝜃2

𝑙1(cos𝜃2 − 1)

0


𝒓𝒎𝒐𝒕𝒐𝒓3 =


𝑥𝑖𝑛𝑖𝑚𝑜𝑡𝑜𝑟3

𝑦𝑖𝑛𝑖𝑚𝑜𝑡𝑜𝑟3

𝑧𝑖𝑛𝑖𝑚𝑜𝑡𝑜𝑟3


+


𝑙1(1 − cos𝜃3)

𝑙1sin𝜃3

0


𝒓𝒎𝒐𝒕𝒐𝒓4 =


𝑥𝑖𝑛𝑖𝑚𝑜𝑡𝑜𝑟4

𝑦𝑖𝑛𝑖𝑚𝑜𝑡𝑜𝑟4

𝑧𝑖𝑛𝑖𝑚𝑜𝑡𝑜𝑟4


+


−𝑙1sin𝜃4

𝑙1(1 − cos𝜃4)

0



(3)

where 𝒓𝒎𝒐𝒕𝒐𝒓𝒊 is the CoG vector of the 𝑖-th motor in the airframe coordinate system, 𝑖=1, 2, 3, 4, 𝒓 𝒊𝒏𝒊𝒎𝒐𝒕𝒐𝒓𝒊
=

[𝑥𝑖𝑛𝑖𝑚𝑜𝑡𝑜𝑟𝑖 𝑦
𝑖𝑛𝑖
𝑚𝑜𝑡𝑜𝑟𝑖

𝑧𝑖𝑛𝑖𝑚𝑜𝑡𝑜𝑟𝑖 ]
> is the initial position vector of the 𝑖-th motor, 𝑙 denotes the arm length, and 𝜃𝑖 repre-

sents the 𝑖-th arm rotation angle.

http://dx.doi.org/10.20517/ir.2023.18
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In addition, when the arm rotates, the CoG of arms can be obtained as follows:

𝒓𝒂𝒓𝒎1 =


𝑥𝑖𝑛𝑖𝑎𝑟𝑚1

𝑦𝑖𝑛𝑖𝑎𝑟𝑚1

𝑧𝑖𝑛𝑖𝑎𝑟𝑚1


+


𝑙1(cos𝜃1 − 1)

−𝑙1sin𝜃1

0


𝒓𝒂𝒓𝒎2 =


𝑥𝑖𝑛𝑖𝑎𝑟𝑚2

𝑦𝑖𝑛𝑖𝑎𝑟𝑚2

𝑧𝑖𝑛𝑖𝑎𝑟𝑚2


+


𝑙1sin𝜃2

𝑙1(cos𝜃2 − 1)

0


𝒓𝒂𝒓𝒎3 =


𝑥𝑖𝑛𝑖𝑎𝑟𝑚3

𝑦𝑖𝑛𝑖𝑎𝑟𝑚3

𝑧𝑖𝑛𝑖𝑎𝑟𝑚3


+


𝑙1(1 − cos𝜃3)

𝑙1sin𝜃3

0


𝒓𝒂𝒓𝒎4 =


𝑥𝑖𝑛𝑖𝑎𝑟𝑚4

𝑦𝑖𝑛𝑖𝑎𝑟𝑚4

𝑧𝑖𝑛𝑖𝑎𝑟𝑚4


+


−𝑙1sin𝜃4

𝑙1(1 − cos𝜃4)

0



(4)

where 𝒓𝒂𝒓𝒎𝒊 is the CoG vector of the 𝑖-th arm in the airframe coordinate system, 𝒓 𝒊𝒏𝒊𝒂𝒓𝒎𝒊
= [𝑥𝑖𝑛𝑖𝑎𝑟𝑚𝑖

𝑦𝑖𝑛𝑖𝑎𝑟𝑚𝑖
𝑧𝑖𝑛𝑖𝑎𝑟𝑚𝑖

]>

is the initial position vector of the 𝑖-th arm, and 𝑙1 denotes the length from the CoG of arms to a body.

Meanwhile, the CoG of the body will not change, which can be obtained as follows:

𝒓𝒃𝒐𝒅𝒚 = 𝒓 𝒊𝒏𝒊𝒃𝒐𝒅𝒚 =


𝑥𝑖𝑛𝑖𝑏𝑜𝑑𝑦

𝑦𝑖𝑛𝑖𝑏𝑜𝑑𝑦

𝑧𝑖𝑛𝑖𝑏𝑜𝑑𝑦


(5)

Finally, the CoG of the morphing quadrotor can be derived as follows:

𝒓𝒄𝒐𝒈 =

𝑚𝑏𝑜𝑑𝑦 𝒓𝒃𝒐𝒅𝒚 +
4∑
𝑖=1

(𝑚𝑎𝑟𝑚𝑖 𝒓𝒂𝒓𝒎𝒊 + 𝑚𝑚𝑜𝑡𝑜𝑟𝑖 𝒓𝒎𝒐𝒕𝒐𝒓𝒊 )

𝑚𝑏𝑜𝑑𝑦 +
4∑
𝑖=1

(𝑚𝑎𝑟𝑚𝑖 + 𝑚𝑚𝑜𝑡𝑜𝑟𝑖 )
(6)

where 𝒓𝒄𝒐𝒈 is the CoG vector of the morphing quadrotor in the airframe coordinate system, 𝑚𝑏𝑜𝑑𝑦 , 𝑚𝑎𝑟𝑚𝑖 , and
𝑚𝑚𝑜𝑡𝑜𝑟𝑖 denote body mass, mass of each arm, and mass of each motor, respectively.

All the initial position vectors mentioned previously can be obtained through SolidWorks.

2.3. Moment of inertia
Morphology change not only affects the CoG but also changes the MoI of the morphing quadrotor. The MoI
of a morphing quadrotor can be obtained through CoGs calculated in the previous subsection.

http://dx.doi.org/10.20517/ir.2023.18
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In addition, it can be assured that the MoIs of the body and motors are hardly affected, which can be obtained
as

𝐽𝑏𝑜𝑑𝑦 = 𝐽
𝑖𝑛𝑖
𝑏𝑜𝑑𝑦 =


𝐽𝑥𝑏𝑜𝑑𝑦 0 0

0 𝐽
𝑦
𝑏𝑜𝑑𝑦 0

0 0 𝐽𝑧𝑏𝑜𝑑𝑦


(7)

𝐽𝑚𝑜𝑡𝑜𝑟𝑖 = 𝐽
𝑖𝑛𝑖
𝑚𝑜𝑡𝑜𝑟𝑖 =


𝐽𝑥𝑚𝑜𝑡𝑜𝑟𝑖 0 0

0 𝐽
𝑦
𝑚𝑜𝑡𝑜𝑟𝑖

0

0 0 𝐽𝑧𝑚𝑜𝑡𝑜𝑟𝑖


(8)

where 𝐽𝑏𝑜𝑑𝑦 is the MoI matrix of the body relative to its CoG coordinate system, which is parallel to the body
coordinate system of the morphing quadrotor, and 𝐽𝑚𝑜𝑡𝑜𝑟𝑖 is the MoI matrix of the 𝑖-th motor relative to its
CoG coordinate system, which is parallel to the body coordinate system of the morphing quadrotor. 𝐽𝑖𝑛𝑖𝑏𝑜𝑑𝑦 and
𝐽𝑖𝑛𝑖𝑚𝑜𝑡𝑜𝑟𝑖 are the initial diagonal MoI matrices of the body and motors, respectively.

The MoI of arms can be obtained as follows:

𝐽𝑎𝑟𝑚𝑖 = 𝑅𝑧 (𝜃𝑖)


𝐽𝑥𝑎𝑟𝑚𝑖

0 0

0 𝐽
𝑦
𝑎𝑟𝑚𝑖

0

0 0 𝐽𝑧𝑎𝑟𝑚𝑖


𝑅𝑧 (𝜃𝑖)> (9)

where 𝐽𝑎𝑟𝑚𝑖 is the MoI matrix of the 𝑖-th arm relative to its own CoG coordinate system, which is parallel to
the body coordinate system of the morphing quadrotor, 𝑅𝑧 (𝜃𝑖) is the rotation matrix with respect to 𝜃𝑖 , and
𝐽𝑖𝑛𝑖𝑎𝑟𝑚𝑖

is the initial diagonal MoI matrices of the 𝑖-th arms.

The MoI of a morphing quadrotor can be obtained through the relevant physical equations

𝐽 = 𝐽𝑏𝑜𝑑𝑦 + 𝑚𝑏𝑜𝑑𝑦𝐴
𝑐𝑜𝑔
𝑏𝑜𝑑𝑦

+
4∑
𝑖=1

(𝐽𝑎𝑟𝑚𝑖 + 𝑚𝑎𝑟𝑚𝑖 𝐴
𝑐𝑜𝑔
𝑎𝑟𝑚𝑖

)

+
4∑
𝑖=1

(𝐽𝑚𝑜𝑡𝑜𝑟𝑖 + 𝑚𝑚𝑜𝑡𝑜𝑟𝑖 𝐴
𝑐𝑜𝑔
𝑚𝑜𝑡𝑜𝑟𝑖

)

(10)

where 𝐽 is the MoI matrix of a morphing quadrotor, 𝐴𝑐𝑜𝑔𝑏𝑜𝑑𝑦 , 𝐴
𝑐𝑜𝑔
𝑎𝑟𝑚𝑖

, and 𝐴𝑐𝑜𝑔𝑚𝑜𝑡𝑜𝑟𝑖
denote length diagonal matrices.

All the initial MoI matrices mentioned above can be obtained through SolidWorks.

2.4. Control allocation
The control allocation matrix will change when the morphology changes. It is necessary to obtain the control
allocation matrix in real time to convert control inputs into accurate RPM generated by actuators.

As shown in Figure 1, the lift force 𝑓 generated by a single motor and propeller can be expressed as follows:

𝑓𝑖 = 𝑐𝑡𝜔𝑖
2, 𝑖 ∈ (1, 2, 3, 4) (11)
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where 𝑐𝑡 is the lift coefficient of a propeller, and 𝜔𝑖 is the RPM of the 𝑖-th motor.

In addition, the control allocation equations can be derived as follows:

𝑓

𝜏𝑥

𝜏𝑦

𝜏𝑧


=



𝑐𝑡 𝑐𝑡 𝑐𝑡 𝑐𝑡

𝑐𝑡𝐿
𝑦
1 −𝑐𝑡𝐿𝑦2 −𝑐𝑡𝐿𝑦3 𝑐𝑡𝐿

𝑦
4

𝑐𝑡𝐿
𝑥
1 𝑐𝑡𝐿

𝑥
2 −𝑐𝑡𝐿𝑥3 −𝑐𝑡𝐿𝑥4

𝑐𝑚 −𝑐𝑚 𝑐𝑚 −𝑐𝑚





𝜔2
1

𝜔2
2

𝜔2
3

𝜔2
4


(12)

where 𝑓 =
4∑
𝑖=1

𝑓𝑖 , 𝜏𝑥 , 𝜏𝑦 , and 𝜏𝑧 represent the torques generated by motors and propellers with respect to the

𝑥−axis, 𝑦−axis, and 𝑧−axis, respectively, 𝐿𝑦𝑖 and 𝐿𝑥𝑖 represent the 𝑖-th motor distance to the 𝑦−axis and 𝑥−axis,
respectively, and 𝑐𝑚 is the torque coefficient.

Due to the arms rotating horizontally, 𝐿𝑦𝑖 and 𝐿
𝑥
𝑖 will change in real time, and the dynamic control allocation

equations can be obtained as follows:


𝜏𝑥

𝜏𝑦

 = 𝑐𝑡


−𝑟 𝑦𝑚𝑜𝑡𝑜𝑟1 + 𝑟
𝑦
𝑐𝑜𝑔 𝑟𝑥𝑚𝑜𝑡𝑜𝑟1 − 𝑟

𝑥
𝑐𝑜𝑔

−𝑟 𝑦𝑚𝑜𝑡𝑜𝑟2 + 𝑟
𝑦
𝑐𝑜𝑔 𝑟𝑥𝑚𝑜𝑡𝑜𝑟2 − 𝑟

𝑥
𝑐𝑜𝑔

−𝑟 𝑦𝑚𝑜𝑡𝑜𝑟3 + 𝑟
𝑦
𝑐𝑜𝑔 𝑟𝑥𝑚𝑜𝑡𝑜𝑟3 − 𝑟

𝑥
𝑐𝑜𝑔

−𝑟 𝑦𝑚𝑜𝑡𝑜𝑟4 + 𝑟
𝑦
𝑐𝑜𝑔 𝑟𝑥𝑚𝑜𝑡𝑜𝑟4 − 𝑟

𝑥
𝑐𝑜𝑔



> 

𝜔2
1

𝜔2
2

𝜔2
3

𝜔2
4


(13)

where 𝑟 𝑦𝑚𝑜𝑡𝑜𝑟𝑖 represents the distance from the 𝑖-th motor to the 𝑦−axis, 𝑟𝑥𝑚𝑜𝑡𝑜𝑟𝑖 represents the distance from
the 𝑖-th motor to the 𝑥−axis, and 𝑟 𝑦𝑐𝑜𝑔 and 𝑟𝑥𝑐𝑜𝑔 are the distances from the CoG of the morphing quadrotor to
the 𝑦−axis and 𝑥−axis, respectively.

Define the following equations 

𝑀 =



𝑐𝑡 𝑐𝑡 𝑐𝑡 𝑐𝑡

𝑐𝑡𝐿
𝑦
1 −𝑐𝑡𝐿𝑦2 −𝑐𝑡𝐿𝑦3 𝑐𝑡𝐿

𝑦
4

𝑐𝑡𝐿
𝑥
1 𝑐𝑡𝐿

𝑥
2 −𝑐𝑡𝐿𝑥3 −𝑐𝑡𝐿𝑥4

𝑐𝑚 −𝑐𝑚 𝑐𝑚 −𝑐𝑚


𝑭 =



𝑓

𝜏𝑥

𝜏𝑦

𝜏𝑧



(14)

The RPM of a motor can be derived as follows:

𝛀 = 𝑀−1𝑭 (15)

where 𝛀=[𝜔2
1, 𝜔

2
2, 𝜔

2
3, 𝜔

2
4].
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3. CONTROLLER DEVELOPMENT
In this section, an ADRC method for the morphing quadrotor based on a GPI observer will be introduced.
Firstly, a GPI observer will be proposed for accurate state estimation. Furthermore, a controller consisting of
a GPI observer and a PD controller is proposed. Theoretical analysis demonstrates that the tracking error 𝑒
will converge to a small neighborhood near the origin.

3.1. The GPI observer
According to the dynamic model of the morphing quadrotor, each state can be rewritten; for example, a rolling
channel can be taken as 

¤𝑥1 = 𝑥2

¤𝑥2 = 𝑓 (𝑥1, 𝑥2, 𝑎, 𝑑) + 𝑏𝑢
𝑦 = 𝑥1

(16)

where 𝑥1 denotes 𝜙, which represents the roll angle of the morphing quadrotor, 𝑥2 represents ¤𝜙, which is the
first derivative of 𝜙, 𝑓 (𝑥1, 𝑥2, 𝑎, 𝑑) denotes the system lumped disturbance, 𝑎 is unknown internal dynamics,
𝑑 represents external disturbances, and 𝑏 is an input parameter varied in real-time, which can be calculated
through dynamic models.

On this basis, the GPI observer can be designed as follows [15,16]:

¤̂𝑥1 = 𝑥2 + 𝜆0(𝑦 − 𝑥1)
¤̂𝑥2 = 𝑧1 + 𝑏𝑢 + 𝜆1(𝑦 − 𝑥1)
¤𝑧1 = 𝑧2 + 𝜆2(𝑦 − 𝑥1)
...

¤𝑧𝑛−1 = 𝑧𝑛 + 𝜆𝑛 (𝑦 − 𝑥1)
¤𝑧𝑛 = 𝜆𝑛+1(𝑦 − 𝑥1)

(17)

where 𝑥𝑖 (𝑖=1,2) represents the system state estimation, and 𝑧𝑖 (𝑖 = 1, ..., 𝑛) represents the augmented state
estimation.

Defining 𝑒 = 𝑦 − 𝑥1, according to Equations (16) and (17), Equation (18) can be transformed by taking the
time derivatives of 𝑒

𝑒 = 𝑦 − 𝑥1 = 𝑥1 − 𝑥1

𝑒(1) = 𝑥1
(1) − 𝑥 (1)1 = 𝑥2 − 𝑥2 − 𝜆0𝑒

𝑒(2) = 𝑥2
(1) − 𝑥 (1)2 − 𝜆0𝑒

(1)

= ( 𝑓 (𝑥1, 𝑥2, 𝑎, 𝑑) − 𝑧1) − 𝜆1𝑒 − 𝜆0𝑒
(1)

𝑒(3) = ( 𝑓 (𝑥1, 𝑥2, 𝑎, 𝑑) (1) − 𝑧1 (1)) − 𝜆1𝑒
(1) − 𝜆0𝑒

(2)

= ( 𝑓 (𝑥1, 𝑥2, 𝑎, 𝑑) (1) − 𝑧2) − 𝜆2𝑒 − 𝜆1𝑒
(1) − 𝜆0𝑒

(2)

...

𝑒(𝑛+1) = ( 𝑓 (𝑥1, 𝑥2, 𝑎, 𝑑) (𝑛−1) − 𝑧𝑛) − 𝜆𝑛𝑒 − 𝜆𝑛−1𝑒
(1) · · · − 𝜆0𝑒

(𝑛)

𝑒(𝑛+2) = 𝑓 (𝑥1, 𝑥2, 𝑎, 𝑑) (𝑛) − 𝜆𝑛+1𝑒 − 𝜆𝑛𝑒(1) · · · − 𝜆0𝑒
(𝑛+1)

(18)

According to Equation (18), Equation (19) can be derived as follow:

𝑒(𝑛+2) + 𝜆𝑛+1𝑒 + 𝜆𝑛𝑒(1) · · · + 𝜆0𝑒
(𝑛+1) = 𝑓 (𝑥1, 𝑥2, 𝑎, 𝑑) (𝑛) (19)
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It can be assumed that 𝑓 (𝑥1, 𝑥2, 𝑎, 𝑑) (𝑛) is uniformly and absolutely bounded. By selecting appropriate coeffi-
cients 𝜆𝑖 of the characteristic polynomial related to 𝑒, 𝑒 will converge to a small neighborhood near the origin.
Defining 𝑧1 = 𝑓 (𝑥1, 𝑥2, 𝑎, 𝑑) − 𝑧1, a conclusion can be derived that ‖𝑧1‖ ≤ 𝜀, where 𝜀 is bounded [19].

3.2. Controller
Each channel of the morphing quadrotor dynamic model can be written as follow:

¥𝑥 = 𝑓 (𝑥1, 𝑥2, 𝑎, 𝑑) + 𝑏𝑢 (20)

The controller is designed as

𝑢 =
1
𝑏
(−𝐾𝑝𝑒 − 𝐾𝑑 ¤𝑒 − 𝑧1 + ¥𝑥𝑑) (21)

where 𝑒 = 𝑥 − 𝑥𝑑 , 𝐾𝑝 and 𝐾𝑑 are the controller gains, 𝑧1 represents the lumped disturbance estimation, and ¥𝑥𝑑
is the second derivative of the desired tracking trajectory.

Defining ¥𝑒 = ¥𝑥 − ¥𝑥𝑑 , it can be derived based on Equations (20) and (21)

¥𝑒 = −𝐾𝑝𝑒 − 𝐾𝑑 ¤𝑒 + ( 𝑓 (𝑥1, 𝑥2, 𝑎, 𝑑) − 𝑧1)
= −𝐾𝑝𝑒 − 𝐾𝑑 ¤𝑒 + 𝑧1

(22)

Furthermore, Equation (22) can be rewritten as

¥𝑒 + 𝐾𝑑 ¤𝑒 + 𝐾𝑝𝑒 = 𝑧1 (23)

It can be known that ‖𝑧1‖ ≤ 𝜀, and 𝜀 is bounded. In order to make the tracking error converges to a small
neighborhood near the origin, appropriate 𝐾𝑝 and 𝐾𝑑 will be selected [19].

4. SIMULATION RESULTS
In this section, comparative simulations for disturbance estimation of the four-order GPI observer and ESO
will be carried out. Meanwhile, the proposed PD+GPI observer controller is compared with a PD controller
to demonstrate the effectiveness of the anti-disturbance capability.

The parameters of the four-order GPI observer are selected as 𝜆0 = 6𝜔0, 𝜆1 = 15𝜔2
0, 𝜆2 = 13𝜔3

0, 𝜆3 = 15𝜔0, 𝜆4
= 6𝜔0, and 𝜆5 = 𝜔0, where 𝜔0 = 50.

The controller parameters are selected as 𝐾𝑝 = 100, 𝐾𝑑 = 20, 𝑏 = 1
𝐽𝑦𝑦

, where 𝐽𝑦𝑦 can be obtained from 𝐽, and it
is changing in real-time with respect to the rotation of arms.

Remark 1: The parameter 𝜔0 determines the response speed of the observer, and when it decreases, the esti-
mated speed of the observer will respond slower. The controller parameters 𝐾𝑝 and 𝐾𝑑 are the PD controller
gains that determine the response speed and overshoot of states, and 𝐾𝑝 and 𝐾𝑑 can be adjusted by following
the tuning process of PID controllers.

As illustrated in Figure 2 and Figure 3, the quadrotor arms are rotating between 7 s to 8 s. In detail, the 1-th
arm rotates from 45 deg to 0 deg, the 2-th arm rotates from 45 deg to 90 deg, the 3-th arm rotates from 45 deg
to 0 deg, and the 4-th arm rotates from 45 deg to 90 deg.
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Figure 2. Morphing quadrotor arms rotating diagram. On the right is the initial morphology, and on the left is themorphology after rotating.
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Figure 3. Rotation of the morphing quadrotor arms.

As illustrated in Figure 4 and Figure 5, it can be seen the response time and estimation of the GPI observer
are faster and more accurate than those of ESO. The GPI observer can track rapidly even if there exists a step
part in the external disturbances, and for internal disturbances, the estimated delay will also not exceed 0.2 s.
A potential reason is that the GPI observer has more augmented states to ensure the accuracy of estimation.

As shown in Figure 5, a square wave, as the external disturbances, is given to the 𝜙 channel, which will affect
the morphing quadrotor position of 𝑦. Simulation results are shown in Figure 6. The quadrotor will oscillate
near the desired position only with a PD controller. Compared with the PD controller, it can be seen that the
PD+GPI observer controller can effectively suppress disturbances and achieve precise position control without
oscillation within 3 s, even the quadrotor suffers from external disturbances and morphological changes at the
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Figure 4. Simulation results of the internal dynamic change estimation. The actual internal dynamic change (black solid lines), the internal
dynamic change estimated by a GPI observer (red solid lines), and the internal dynamic change estimated by an ESO (blue dashed lines).
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Figure 5. Simulation results of external disturbance estimation. The actual external disturbance (black solid lines), the external disturbance
estimated by a GPI observer (red solid lines), and the external disturbance estimated by an ESO (blue dashed lines).

same time between 7 s to 8 s.

A sine wave signal 8 sin(2𝑡) is given to 𝜃 channel as external disturbances in Figure 7, which will affect the
morphing quadrotor position of 𝑥. From Figure 6 and Figure 7, it can be concluded that regardless of which
channel is affected by disturbances, the proposed method can achieve satisfactory anti-disturbance and stable
flight performances within 3 s, although the disturbance forms and desired operating points are different.

To further validate the effectiveness of the proposed method, a sine wave signal 8 sin(2𝑡) is given to the 𝜙
channel and 𝜃 channel at the same time as external disturbances in Figure 8, which will affect the morphing
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Figure 6. Simulation results of position control (Case 1). The desired position (black dashed lines), the position with PD+GPI observer
controller (red solid lines), and the position with PD controller (blue dashed lines).
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Figure 7. Simulation results of position control (Case 2). The desired position (black dashed lines), the position with PD+GPI observer
controller (red solid lines), and the position with PD controller (blue dashed lines).

quadrotor positions of 𝑥 and 𝑦 and the desired operating positions are also changed. It is clearly shown in
Figure 8 that the proposed method can quickly suppress disturbances and maintain system stability in the 𝜙
channel and 𝜃 channel simultaneously, which demonstrates that the proposed method has a wider application
range.

5. CONCLUSIONS
This paper presents a morphing quadrotor, which can cross through obstacles and narrow spaces by rotating
arms. Meanwhile, a dynamic model is established by considering real-time changes of the CoG and MoI.
According to arm rotation angles, a dynamic control allocation matrix is obtained. In addition, a four-order
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Figure 8. Simulation results of position control (Case 3). The desired position (black dashed lines), the position with PD+GPI observer
controller (red solid lines), and the position with PD controller (blue dashed lines).

GPI observer is proposed to estimate the lumped disturbances. On this basis, an ADRC method is proposed
for the morphing quadrotor position control. Finally, simulation results verify the good performance of a four-
order GPI observer and the anti-disturbance ability of a proposed control method. In the future, the proposed
method and other intelligent control methods will be applied to the actual system.
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