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Abstract
Solid-state light detection and ranging (LiDAR) has the advantages of low cost, small size and strong practicability.
However, it faces challenges in simultaneous localization and mapping applications due to its small field of view and
irregular scanning patterns. A solid-state LiDAR simultaneous localization and mapping system containing intensity
information is proposed. In order to solve the irregular scanning characteristics of solid-state LiDAR, we introduce a
data preprocessing framework and add intensity feature points to the front-end odometer. This improves the accu-
racy and robustness of positioningwhen geometric feature points are scarce, thus solving the problemof feature point
degradation caused by a finite field of view. In the back-end optimization stage, we combine the geometric feature
residuals with the intensity feature residuals through the proposed consistent difference function, so that the system
can maintain good performance even in challenging environments. Finally, we conducted an extensive evaluation of
the proposed algorithm on official datasets and various datasets collected from multiple platforms, and the results
confirmed the validity of our approach. Compared with the corresponding method, in indoor scenes, the absolute tra-
jectory error and relative attitude error are decreased by 54.5% and 5.3%. In outdoor scenes, the absolute trajectory
error and relative attitude error are decreased by 29.6% and 58.8%.
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1. INTRODUCTION
Autonomous robotics is a rapidly developing field and has a good application prospect in various fields. Si-
multaneous localization and mapping (SLAM) is a fundamental aspect of robotics. Visual SLAM [1] solutions
rely heavily on external lighting conditions to capture images and estimate the robot’s pose by extracting or
matching visual features. However, vision-based SLAM systems often fail in low-light or no-light conditions.
Lidar, on the other hand, which uses light detection and ranging (LiDAR) technology, is more robust to envi-
ronmental changes, including weather and lighting conditions. LiDAR-based SLAM [2] can generate accurate
maps that can be used directly for robot navigation and obstacle avoidance, making it increasingly popular in
the field.

In recent years, solid-state lidar has garnered increasing attention and development. Compared to mechanical
lidar, solid-state lidar offers significant advantages in terms of cost, resolution, and performance that cannot
be ignored. However, it also faces several challenges, particularly in SLAM applications. Firstly, its scanning
method is often irregular, which means that higher demands are placed on data processing. Unlike the regular
scanning of mechanical lidar, irregular scanning requires more complex algorithms for point cloud data pro-
cessing to achieve accurate localization andmap construction [3]. Secondly, the field of view of most solid-state
lidars is relatively small, which can lead to feature matching degradation. In situations with a limited field of
view, there may be insufficient matching, resulting in reduced performance of the SLAM system. Furthermore,
during the continuous movement of the lidar, intra-frame motion can cause distortion in the point cloud data.
This distortion can potentially affect the accuracy of the SLAM system and, therefore, requires compensatory
measures to address the issue, such as motion distortion correction.

To solve all these problems, in this paper, we propose an inertial SLAM method for solid-state LiDAR that
includes intensity information. The method enables accurate, robust, real-time positioning and mapping, and
can also operate effectively in challenging degraded environments. In summary, our main contributions are as
follows: (a)We propose a point cloud preprocessing framework specifically designed for the irregular scanning
of solid-state LiDAR. The framework solves the problems of excessive noise caused by irregular scanning and
difficulty in extracting geometric feature points; (b) An intensity normalization method suitable for solid-state
LiDAR is proposed to facilitate the subsequent use of intensity information; and (c) An odometer andmapping
algorithm that includes intensity information as an aid. With more abundant information, the localization
accuracy and robustness in the scenario of scarce geometric feature points are improved.

The rest of this article is organized as follows. In Section 2, we discuss the relevant literature. In Section
3, algorithms for solid-state LiDAR - inertial range measurement and mapping are introduced. Section 3.1
describes the point cloud data preprocessing framework. See Section 3.2 for the feature extraction method.
State estimates with intensity information are presented in Section 3.3. All experimental studies are discussed
in Section 4. Finally, Section 5 summarizes the thesis.

2. RELATED WORKS
Limited computing resources onmobile platforms result in time-consuming processing of large amounts of raw
LiDAR data in SLAM systems. As a solution, several LiDAR-based SLAM frameworks have been proposed
that utilize feature extraction. A pioneering work in this field is lidar odometry and mapping (LOAM) [4],
which extracts geometric edges and surfaces based on the smoothness of raw LiDAR data, and enables real-
time odometry and mapping [5] through plane-to-plane and edge-to-line matching. In order to speed up the
calculation, lightweight and ground-optimized LOAM (LEGO-LOAM) [6] extracts the ground features by seg-
mental clustering of geometric plane points, and adopts two-stage optimization for attitude estimation. Using
lidar alone can lead to motion distortion and low system output frequency issues. Combining IMU (Inertial
Measurement Unit) with lidar can effectively address these problems and significantly improve the system’s
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robustness and accuracy. Unlike the approach of selecting features by sampling uniformity in space, Implicit
Moving Least Squares (IMLS)-SLAM [7] employs a unique sampling strategy that considers the contribution
of points to the observability of the robot’s state. This strategy is designed to ensure both time efficiency and
accuracy. On the other hand, Pan et al. focuses on extracting various classified geometric features from the
scan data and proposes an efficient registration algorithm [8]. This algorithm can perform pose optimization
using point-to-point, plane, and line errormetrics. IMU typically acquires data at amuch higher rate than lidar.
Scholars have proposed various methods to handle high-rate IMU measurements. Zhang [4] and Shan [6] em-
ployed the IMU to correct the skew in point clouds and initialize motion estimates for LiDAR odometry based
on scan matching. The most straightforward approach is to use IMU for state propagation in methods based
on Extended Kalman [9,10]. In the field of graph optimization theory, an effective IMU preintegration tech-
nique has been introduced [11]. This technique, which uses Euler angles to parameterize rotation errors, aims
to prevent redundant integration of IMU measurements. Shen et al. derived covariance propagation using
continuous-time error state dynamics [12]. Forster et al. further enhanced the preintegration theory by incor-
porating posterior IMU bias corrections [13,14]. Qin et al. represents the pioneering tightly-coupled LiDAR-
inertial odometry (LIO) approach that calculates the 6 degrees of freedom (6 DOF) ego-motion through
iterated Kalman filtering [15]. LIO-Smoothing and Mapping (SAM) [16] introduces a tightly-coupled LiDAR-
Inertial SLAM framework that utilizes redundant information frommultiple sensors to achieve more accurate
and robust positioning and mapping results. The above methods are specially designed for rotating LiDAR. To
address the challenges posed by solid-state lidar, such as limited field of view and irregular scanning patterns,
Loam-Livox [17] has developed a software package that can be efficiently integrated with the Livox Mid-40 Li-
DAR. Another approach, FAST-LIO [18], uses a tightly coupled iterative extended Kalman filter to combine
LiDAR functionality with IMU data to achieve an efficient and accurate LiDAR inertial odometer. The new
version of FAST-LIO 2.0 [19] eliminates the need for feature extraction and directly matches the original point
cloud to the entire map, enabling powerful and efficient LiDAR localization and mapping using the ikd-Tree
toolkit. CamVox [20] uses a dense point cloud to automatically calibrate the Livox Lidar and camera, taking ad-
vantage of the features of the non-repeat scan mode. In order to improve the accuracy and computational effi-
ciency, LiLi-OM [21] proposes a keyframe-based LiDAR - Inertial SLAM sliding window optimization method.
In solving optimization-based problems, Zhang et al. proposes an online method to mitigate degradation by
analyzing the geometry of the problem constraints and explaining the impact of environmental degradation on
state estimation [22]. In a separate study, Zhao et al. analyzed the characteristics of the Livox MID-40 LiDAR,
evaluating the intensity distribution of the laser points in the field of view, the accuracy measurement, and the
effect of the color of the target surface on the reflection intensity [23]. This analysis inspired the combination
of geometry and intensity information, providing additional constraints for state estimation. Using intensity
readings from imaging LiDAR, Shan et al. obtains intensity images that aid in real-time robust positioning [24].
Finally, Li et al. introduces twomultiple weighting functions in the optimization process to deal with geometry
and intensity factors, which shows strong robustness in degraded environments [25].

In recent years, in addition to extracting geometric features, there has been exploration into semantic-based
SLAM [26,27]. These approaches go beyond utilizing just geometric plane and edge features; they also extract
semantic information to gain a more comprehensive understanding of the surrounding environment.

3. METHODS
The proposed SLAM framework for solid-state LiDAR is shown in Figure 1. In the figure, red boxes and text
mark the main process position of the innovation point in this paper. In order to cope with the challenge
of irregular scanning and the need for intensity points in subsequent processing, a feature point extraction
algorithm based on intensity and geometric information is proposed. The frame solves the problem of motion
distortion by clutter filtering and motion compensation. Firstly, geometric feature points are extracted based
on spatial distribution to deal with irregular scanning. In order to ensure the accuracy of extraction, the
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Figure 1. System pipeline of solid-state-LiDAR-inertial SLAM with intensity information assistance.

quadratic plane feature confirmation method is adopted. To solve the problem that the small field of view
of solid-state LiDAR leads to the loss of feature points and the degradation of positioning performance, the
intensity information is used to extract the intensity feature points. Then, feature point matching is carried out,
and a matching algorithm containing intensity information is used to mitigate the wrong plane point matching
caused by a limited field of view. Finally, the residual equation is formed by combining the intensity point
residual with the original geometric point residual, and the accurate and robust solid-state LiDAR positioning
output is obtained.

3.1. LiDAR data preprocess
Generally, in solid-state LiDAR systems, in order to improve the accuracy and robustness of positioning, map-
ping and closed-loop detection modules, it is necessary to remove outliers such as points near the blind spot of
the field of view, points with too high or too low intensity values, horizontal incidence angles, shielding points,
and ground points.

Since the point cloud data within a single frame of the Lidar sensor are not generated at the same time, the
intra-frame motion distorts the point cloud and causes motion blur, and some outliers appear. The fast elim-
ination of outliers will improve the accuracy of positioning and mapping. In this paper, a piecewise linear
method is proposed to divide the data of each frame into three segments in chronological order. The incom-
ing frame is divided into three consecutive subframes, each of whichmatches independently with the currently
constructed map. For each subframe, use the pose of the last point in the subframe to project all points onto
the global map. This method reduces the sampling time of each frame to one-third of the original time, speeds
up the processing speed, and can effectively compensate for the motion distortion to reduce the motion blur.
Segmentation technology can take advantage of the multi-core architecture of the CPU by processing each
subframe in parallel in a separate thread. Each subframe matches the global map on a dedicated thread, and
once the match is complete, the matched subframe is registered as part of the global map. To speed up the pro-
cess, a new thread is created to receive the newly registered subframe and a kd tree is constructed to efficiently
match the data for the next frame.

For solid-state lidar, due to its unique scanning mode, no beam segmentation, and higher vertical resolution,
points in the vertical direction can be considered when calculating curvature. In this paper, a region-based
feature point extraction algorithm is proposed to obtain the edge and surface features of point clouds efficiently.
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The kth LiDAR input scan frame P𝑖 maps in two dimensions according to horizontal and vertical resolutions.
Given a point in the nth LiDAR input scan frame 𝑃𝑖 = {𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖} ∈ P𝑖 , the horizontal angle 𝛼𝑖 and vertical
angle 𝜃𝑖 are formulated as:

𝛼𝑖 = arctan
(
𝑦𝑖
𝑥𝑖

)
(1)

𝜃𝑖 = arctan
(
𝑧𝑖
𝑥𝑖

)
(2)

Based on horizontal and vertical detection areas, the entire point cloud frame is divided into𝑀×𝑁 rectangular
areas. The horizontal region range is [𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥], and the vertical region range is [𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥]. For a solid-
state LiDAR, assuming its horizontal resolution is 𝛼𝑟 and vertical resolution is 𝜃𝑟 , the formula for calculating
the parameters of the rectangular area is as follows:

𝑀 =
𝛼max − 𝛼min

𝛼𝑟
(3)

𝑁 =
𝜃max − 𝜃min

𝜃𝑟
(4)

3.2. Robust feature extraction
Calculate the curvature after mapping the point cloud to the 𝑀 × 𝑁 rectangular region. The distance differ-
ence between the points in the square search area around the current point is calculated to obtain the local
smoothness. Taking the current point 𝑃(𝑚,𝑛)

𝑘 as an example, the calculation formula is as follows:

𝑐(𝑚,𝑛)
𝑘 =

1
𝜆
.

∑
𝑃
(𝑖, 𝑗 )
𝑘

∈𝑆 (𝑚,𝑛)
𝑘

(𝑃(𝑖, 𝑗)
𝑘

 − 𝑃(𝑚,𝑛)
𝑘

) (5)

where S (𝑚,𝑛)
𝑘 =

{
p(𝑖, 𝑗)
𝑘 | 𝑖 ∈ [𝑚 − 𝐿, 𝑚 + 𝐿], 𝑗 ∈ [𝑛 − 𝐿, 𝑛 + 𝐿]

}
, 𝐿 is predefined square search area side length,

and 𝜆 is the number of points in that region. 𝑐(𝑚,𝑛)
𝑘 represents the local smoothness of the point; the larger the

value, the steeper the local surface, and the corresponding point is the edge point. Conversely, a lower value
indicates that the corresponding point is a plane point.

In order to ensure the accuracy of the selected plane features and edge features, the two-stage geometric dis-
tribution verification method is used to determine whether the feature points meet the criteria by relying on
the geometric distribution of the point cloud. For the current point, select a certain number of adjacent points,
calculate their covariance matrix, and get the eigenvalue. The eigenvalues are arranged in ascending order 𝜆1,
𝜆2, and 𝜆3. If the set of these points satisfies the geometry of the plane, then 𝜆1/𝜆2 < 𝛼. If the set of these
points satisfies the geometric characteristics of the edge, then 𝜆2/𝜆3 < 𝛽. In this study, 𝛼is set to 0.22 and 𝛽is
set to 0.2 through experimental testing. Intensity feature extraction needs to use the intensity information of
point cloud. Intensity measurements are determined by:

𝐼 =
𝑃𝑟

𝑃𝑒
=

𝐷2
𝑟 𝜌

4𝑅2 𝜂sys𝜂atm cos 𝜃 = 𝜂all
𝜌 cos 𝜃
𝑅2 (6)

where 𝜂all is a constant. Therefore, the surface reflectivity 𝜌 is only related to the incident angle 𝜃 and the
measurement distance 𝑅.

𝜌 ∝ 𝐼𝑅2

cos 𝜃
(7)

Before extracting the intensity features, it is necessary to normalize the intensity values of the point cloud to
obtain a unified intensity feature, and its distance can be directly calculated to correspond with the intensity
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Figure 2. Intensity normalization and feature extraction. The upper left corner is the distribution map before the intensity normalization,
the upper right corner is the distribution map after the intensity normalization, the lower left corner is the feature extraction, and the lower
right corner is the real scene with a camera.

information. When a point is identified as a plane point by two-stage spatial feature determination, the inci-
dence Angle of the point is calculated according to the normal vector of the point. Select the point 𝑃𝑎 farthest
from the solid-state laser radar source point from the plane point set, and then find the point 𝑃𝑏 farthest from
the point 𝑃𝑎 . According to the following geometric formula, we can determine the point 𝑃𝑐 .

p𝑐 = argmax
p𝑖∈P

∥(p𝑎 − p𝑏) × (p𝑎 − p𝑖)∥2 (8)

Planes can be represented by plane equations:

Π : 𝑛𝑥 · 𝑥 + 𝑛𝑦 · 𝑦 + 𝑛𝑧 · 𝑧 + 𝑑𝑖 = 0 (9)

where 𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧 , and 𝑑𝑖 are the parameters of the plane, and the calculation formula is as follows:

n𝑖 =
[
𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧

]𝑇
=

(p𝑎 − p𝑏) × (p𝑎 − p𝑐)
∥(p𝑎 − p𝑏) × (p𝑎 − p𝑐)∥2

(10)

𝑑𝑖 = −
(
𝑛𝑥 · 𝑝𝑥 + 𝑛𝑦 · 𝑝𝑦 + 𝑛𝑧 · 𝑝𝑧

)
(11)

p =
[
𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧

]𝑇
=

1
𝑚

∑
p𝑖∈P

p𝑖 (12)

Where n𝑖 is the unit normal vector of the plane, and p is the center of the plane. The formula for calculating
the incident angle of the point is as follows:

cos 𝜃 =
p𝑇 · n
|p| (13)
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In order to avoid redundancy of point selection based on intensity Angle and geometric Angle, only the nor-
malized intensity information of plane points is considered in calculating the incidence Angle. After intensity
calibration, the intensity value reflects the reflectivity of the point, indicating its material properties. The point
cloud image after intensity processing is shown in Figure 2.

The previous section explains in detail the intensity preprocessing steps and mapping point cloud frames onto
a two-dimensional matrix plane. Based on the surface smoothness of the point, the intensity smoothness is
introduced as a measure to describe the local intensity distribution of the surface. Taking the current point
𝑃(𝑚,𝑛)
𝑘 as an example, the intensity smoothness is calculated by:

𝑐(𝑚,𝑛)
𝑖𝑘 =

1
𝜆
·

∑
𝐼
(𝑖, 𝑗 )
𝑘

∈𝑆 (𝑚,𝑛)
𝑘

(𝐼 (𝑖, 𝑗)𝑘

 − 𝐼 (𝑚,𝑛)
𝑘

) | (14)

The diagram in Figure 2 illustrates the process of feature extraction. Blue denotes geometric plane feature
points, yellow represents geometric edge feature points, and red indicates intensity edge feature points.

3.3. State estimation
For geometric feature points, the matching method can be referenced from Li [21]. However, unlike geometric
information, intensity information differs in the dimensions and cannot be calculated on the original data, so
it needs to be unified under one dimension for fusion. Considering that the range interval of the negative
exponential function is 0-1, the consistency difference function which can integrate the intensity information
and the geometry information is designed. Under the same geometric consistency, the closer the intensity of
two points, the higher their correspondence. The consistency difference function they match is:

𝑤𝑜
𝑖 = 𝑒−(𝑑+𝑑𝐼) (15)

𝑑 =
��p̂𝑘 − p𝐼

�� (16)

𝑑 𝐼 = ∥𝐼 − 𝐼 ∥ (17)

The final consistent difference function 𝑤𝑜
𝑖 , the geometric consistent difference function 𝑑, and the intensity

consistent difference function 𝑑 𝐼 are used in the calculation process of intensity residuals, which is similar to
that of geometric residuals. Each plane point in the current frame p𝑘 ∈ 𝑃𝑘 is mapped to the local coordinate
system using:

p̂𝑘 = T𝑘 · p𝑘 (18)

Where p̂𝑘 denotes the point mapped to the local map, and T𝑘 represents the attitude change estimated in the
previous frame. For intensity feature points, select the point p𝐼 that corresponds to the smallest consistency
cost function in the intensity local plot for calculating the intensity residual D. The intensity residual 𝑓𝐼

(p̂𝑘
)

is computed using:
𝑓𝐼
(p̂𝑘

)
=
��p̂𝑘 − p𝐼

�� (19)

The final residual equations of the system include geometric edge point residuals 𝑓E
(p̂𝑖

)
, geometric planar

point residuals 𝑓S
(p̂𝑖

)
, and intensity feature point residuals 𝑓𝐼

(p̂𝑖
)
:

T∗ = arg min
T∗

∑
p𝑖∈PE

�� 𝑓E (p̂𝑖
) �� + ∑

p𝑖∈PS

�� 𝑓S (p̂𝑖
) �� + ∑

p𝑖∈P𝐼

�� 𝑓𝐼 (p̂𝑖
) �� (20)
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Figure 3. Experimental results. The first column is the localization and mapping performance in Scenes 1,2,3, respectively, from top to
bottom. The second column is the trajectory plot in every Scene. The third column is the comparison of three-axis positions in every Scene.

4. RESULTS
In order to validate the accuracy and robustness of the proposed solid-state LiDAR location algorithm, this
section conducts an experimental evaluation using both publicly available and customized datasets. The com-
putational cost and evaluation metrics of different algorithms were measured on laptops equipped with AMD
6-core 5800H processors and Nvidia 3050 graphics cards.

To quantitatively evaluate the accuracy of the algorithm, two widely used SLAM evaluation indexes, absolute
trajectory error (ATE) and relative attitude error (RPE), are introduced. ATE provides an intuitive represen-
tation of overall positioning accuracy, while RPE compares relative attitude increments rather than absolute
attitude, providing insight into local accuracy. These two indexes effectively measure the accuracy and robust-
ness of the algorithm.

The selection of parameters is based on a comprehensive understanding of the algorithm and results from
experiments across various scenarios. The robustness of the algorithm is verified through systematic exper-
iments in different environmental settings. Additionally, comparative experiments with existing algorithms
are conducted to demonstrate the superiority of our method. Same as Zhao [28], we test the proposed method
in three scenarios.
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Table 1. Experimental error evaluation in Scene 1

Index SSL_SLAM Proposed

ATE 0.33 m 0.1 5m
RPE 0.019 m 0.018 m

Table 2. Experimental error evaluation in Scene 2

Index LiLi-OM FAST-LIO Proposed

ATE 49.44 m 10.88 m 7.6 6m
RPE 0.65 m 0.34 m 0.14 m

We selected three scenarios to evaluate our approach. Scenario 1 involved capturing the indoor environment
of a warehouse using an automated guided vehicle (AGV) equipped with an Intel-L515 solid-state Lidar. Sce-
nario 2 entailed recording an outdoor environment on a university campus library using an AGV with a
Livox-Xsens suite. Scenario 3 depicted a de-escalation scene recorded in an indoor hallway. To showcase
the effectiveness of our method, we compared it with several traditional algorithms in LiDAR systems, includ-
ing Solid-State LiDAR SLAM (SSL-SLAM), LIvox Lidar-inertial Odometry and Mapping (LLI-OM), and Fast
LiDAR-inertial Odometry.

In Scene 1, the ground truth is provided by the VICON system. The data set used in the indoor scene is the
public data set supporting the SSL-SLAM project. The acquisition device is Intel RealSense l,515 solid-state
Lidar, and SSL-SLAM is the only open source algorithm suitable for l,515 solid-state LiDAR. Other algorithms
are not applicable, so we only use this algorithm to compare with our method. The algorithm is evaluated
against ground truth and SSL-SLAM algorithms to assess the localization results. The experimental findings
are presented in Figure 3. It is evident that the SSL-SLAM algorithm exhibits a significant deviation from the
actual ground truth at 35 s, whereas the algorithm proposed in this study only deviates during the final turn.
Towards the end of the experiment, the robot platform moves backward and then forward. For such short
trajectory segments, SSL-SLAM fails to provide accurate localization, whereas our proposed algorithm closely
aligns with real-world conditions on the ground. The error comparison of experimental results is detailed
in Table 1. It can be observed that our proposed algorithm demonstrates superior accuracy and robustness
compared to state-of-the-art algorithms in indoor scenarios. The error level is one order of magnitude lower
due to the introduction of the intensity information of the algorithm in this paper. Especially for indoor
scenes, due to less interference and more one-dimensional data, the accuracy of regular features will be greatly
improved, reflecting the advantages of the algorithm in this paper. The ATE and RPE are decreased by 54.5%
and 5.3%.

Scene 2 is an outdoor. Because the data set used in the outdoor scene is Livox solid-state LiDAR, and the
SSL-SLAM algorithm is inapplicable, so it is not compared with this algorithm. The Livox-Avia LiDAR is used
in sync with the Xsens MTi-G-700 IMU (six-axis, 150 Hz). The ground truth is provided by Real-Time Kine-
matic (RTK). It can be seen from the result figure that compared with the advanced LiLi-OM and FAST-LIO
algorithms, the proposed algorithm has smaller error and higher positioning accuracy and robustness. The
error comparison of experimental results is shown in Table 2. It can be seen that in outdoor scenes, compared
with LiLi-OM and FAST-LIO algorithms, the proposed algorithm has higher accuracy and robustness. Out-
door scenes are much more complex than indoor ones. In the back-end optimization stage, the geometric and
intensity feature residuals are combined to enhance the robustness of the system. The experimental results
show the importance of this step for outdoor scenes. The ATE and RPE are decreased by 29.6% and 58.8%.

Scene 3 is a challenging scenario, the actual length is 274 m, and the duration is 417 s. The LiDAR is directed
toward the ceiling, where there are hardly any geometric edge points. In this scene, the other two algorithms
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Table 3. Experimental error evaluation in Scene 3

Index LiLi-OM FAST-LIO Proposed

ATE ∞ ∞ 0.23 m
RPE ∞ ∞ 0.14 m

Table 4. The computational complexity of each method

Index SSL_SLAM LiLi-OM FAST-LIO Proposed

Scene 1 16% 17%
Scene 2 20% 19% 23%
Scene 3 2.3% 2.1% 21%

have data at the beginning. In the operation process, due to the challenging scene, the positioning failed
successively, so there is no data. The results show that the LiLi-OM and FAST-LIO algorithms fail at 65 and 240
s, respectively, due to the lack of geometric feature points on the ceiling. However, the algorithm successfully
achieved positioning in 417 s, with an acceptable error range. The error comparison of experimental results is
shown in Table 3. In challenging environments, the algorithm manages to keep the error within an acceptable
range when the other two algorithms fail. Because the intensity information is added to the algorithm, and the
residuals of geometric features and intensity features are fused in the residual part, the proposed method can
still obtain a good positioning effect in the degenerate environment with fewer features.

Regarding the complexity of the algorithm, we conducted a comprehensive analysis. All algorithms were tested
on a laptop equipped with an AMD 6-core 5800H processor and Nvidia 3050 graphics card. We recorded the
percentage of CPU usage of each method at execution time and calculated the average usage to evaluate the
computational complexity of each method. The conclusions are shown in Table 4. In Scene 1, only the SSL-
SLAM method is available, and it is found that it occupies the same proportion of resources as the proposed
method. In Scene 2, the LiLi-OM and FAST-LIOmethods and the proposedmethod can successfully complete
all the positioning functions, while the resource proportion of the proposed method is slightly higher because
the algorithm complexity of the proposed method is slightly higher and there are too many feature points in
the scene which need more computing resource. In Scene 3, both LiLi-OM and FAST-LIO methods failed to
complete their tasks and failed to stop after only running for a period of time at the beginning, so the resource
proportion is very small. The proposed method also takes up a smaller proportion of resources than that in
Scene 2 due to fewer feature points.

Despite the introduction of new computational steps, the overall complexity of our algorithms did not increase
significantly due to our skillful optimization of the data processing workflow. In a complex environment,
the algorithm has a fast convergence speed. This is due to the introduction of an adaptive feature extraction
mechanism in the algorithm, which enables it to better adapt to environmental changes and integrate new
observational data faster.

5. CONCLUSIONS
A localization and mapping algorithm for solid-state LiDAR is proposed. To address the problem of irreg-
ular scanning modes of solid-state lidar, a geometric feature extraction strategy suitable for solid-state lidar
is proposed. To solve the problem of feature point loss and degradation caused by a limited field of view in
solid-state lidar location, an intensity normalization method is designed, and an intensity-based feature point
extraction and matching algorithm is proposed. In the process of position update, the intensity point residual
is introduced and combined with the geometric point residual to form a complete residual equation, which
realizes the accurate and robust positioning output of solid-state Lidar. Tests using open source datasets and
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self-collected datasets validate the effectiveness and reliability of the algorithm, which is more accurate and
robust than the most advanced solid-state LiDAR localization algorithms. Compared with the corresponding
method, in indoor scenes, the ATE and RPE are decreased by 54.5% and 5.3%. In outdoor scenes, the ATE
and RPE are decreased by 29.6% and 58.8%. The proposed method can be well adapted to indoor and outdoor
scenes, but only for relatively stable scenes. In addition, due to the small field of view of solid-state lidar, al-
though the proposed algorithm can have relatively good positioning results, there will be drags during map
construction, which will lead to the accumulation of continuous positioning accuracy errors. These are the
areas that should be improved in the future.
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