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Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most prominent causes of liver-related morbidity in the 
Western world. NAFLD is a chronic disease characterised by accumulation of triglycerides in hepatocytes. Upon 
damage, hepatocytes drive regeneration to sustain homeostasis of the liver. However, 30-40 years of ongoing 
replication induced by chronic lipid damage and oxidative stress increase senescence of the hepatocytes. At 
this stage, activation of a reserve compartment is seen, known as the hepatic progenitor cells (HPCs). HPCs are 
bipotent cells which can differentiate into hepatocytes or cholangiocytes depending on the underlying aetiology 
in order to facilitate liver regeneration. Activation of HPCs is observed as ductular reaction (DR), comprising 
an expansion of transit amplifying cells of the terminal branches of the biliary tree. DR is usually observed in 
advanced NAFLD but is also associated with histological severity and distinct molecular profiles. In this context, 
information about HPCs and their activation in the form of DR may add a both diagnostic and prognostic values 
when assessing NAFLD patients. In this review, we analyse HPCs characteristics and development, and the 
clinical impact of their activation in subjects with NAFLD.
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INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide[1]. The 
natural history of NAFLD includes a wide range of phenotypes, from completely asymptomatic conditions 
to a relatively fast progression to its necroinflammatory form [non-alcoholic steatohepatitis(NASH)] 
with or without fibrosis and eventually liver cirrhosis and/or hepatocellular carcinoma (HCC)[2,3]. 
NAFLD is commonly considered the hepatic manifestation of the metabolic syndrome and frequently 
develops in patients with an altered metabolic environment and who often present comorbidities such 
as obesity, diabetes, arterial hypertension, or dyslipidaemia[4]. However, it should be kept in mind that 
these characteristics, and hence NAFLD, may also be found in non-obese individuals[5]. Sedentary 
lifestyle and overnutrition are classically considered as drivers of NAFLD, though recent studies suggest 
that diets with high fructose intake increase the risk of NAFLD and NASH[6]. Consequently, NAFLD is 
considered a complex disease, which occurs as a result of the interaction between environmental risk 
factors and a susceptible polygenic background[7]. Recent advances in the field have made it increasingly 
clear that genetic factors play an important role in determining response to high-calorie, high fat diets 
and subsequent metabolic stress in NAFLD patients. Several genetic modifiers have now been identified, 
including single nucleotide polymorphisms in PNPLA3 (patatin-like phospholipase domain-containing 
protein 3), TM6SF2 (transmembrane 6 superfamily member 2), and HSD17B13 (hydroxysteroid 17-beta 
dehydrogenase 13)[8-10].

At present, the clinical diagnosis of NAFLD is ultimately confirmed by histological assessment of tissue 
following liver biopsy that remains the “gold standard” method for disease classification[11]. Although 
invasive, liver biopsy rarely results in complications and allows defining the histological hallmarks of 
the disease (steatosis, hepatocyte ballooning, lobular inflammation, and fibrosis stage)[12] and accurately 
excludes other chronic liver diseases which may have similar presentations[13]. It is therefore clinically 
important to distinguish the features of patients who may develop severe disease in order to optimise 
treatment and follow up. In this context, information about hepatic progenitor cells (HPCs) and their 
activation in the form of ductular reaction (DR) may add both diagnostic and prognostic values when 
assessing NAFLD patients. As there are currently no approved treatments for NASH, lifestyle modification 
and diet represent the only available standard of care. In addition, drugs with a potential benefit for 
patients with NAFLD (e.g., vitamin E or pioglitazone) are limited by the burden of their side effects and the 
impracticality to be administered to all individuals with the disease[14]. Hence, the efforts of the scientific 
community are towards the discovery of biomarkers able to stratify patients and identify a target population 
at increased risk of disease progression. In this review, we analyse the characteristics and development of 
HPCs, and the clinical impact of HPC activation in subjects with NAFLD.

HEPATIC PROGENITOR CELL-MEDIATED REGENERATION
Upon injury, the liver can self-renew by proliferation of hepatocytes and cholangiocytes followed by 
proliferation of mesenchymal and endothelial cells[15]. However, it has been shown that in many chronic 
liver diseases, including NAFLD, hepatocytes and cholangiocytes become increasingly senescent[16-18]. This 
may be due, in part, to ongoing replication over a 30-40 year period of chronic damage, as well as a range 
of other factors such as oxidative stress, cholestasis, or hypoxia[19]. At this point, activation and proliferation 
of a reserve compartment known as HPCs, can be seen in the smallest terminal branches of the biliary tree, 
the canals of Hering, where they are normally quiescent [Figure 1][20-22]. In human disease, activation of 
HPCs presents itself in the form of DR, a transient amplification of HPCs, which can be seen at the portal-
parenchymal interface[23-25]. However, in rodents, HPCs are termed “oval cells” due to their characteristic 
shape and are seen to expand more as single cells rather than the DR typically seen in humans[26].

HPCs are bipotent cells which possess the ability to differentiate into cholangiocytes or hepatocytes 
depending on the underlying aetiology and on which cells are most damaged[27]. The strong differentiation 
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potential of HPCs was recently demonstrated by Lu et al.[28] using targeted deletion of Mdm2 (E3 ubiquitin-
protein ligase) in murine hepatocytes to induce cell senescence. In these mice, there was significant 
activation of HPCs followed by complete liver regeneration. Furthermore, isolation and transplantation 
of HPCs from wild-type mice confirmed a substantial contribution of HPCs towards regeneration of 
hepatocytes and cholangiocytes as well as restoration of the liver parenchyma. Using lineage tracing mouse 
models, Raven et al.[29] showed that concurrent inhibition of hepatocyte proliferation by p21 overexpression 
directly triggered ductular reaction. Upon differentiation towards hepatocytes, HPCs have been shown 
to gradually lose their biliary features[27,30], including markers such as keratin 19 (K19) and keratin 7 (K7). 
Loss of K19 is seen early in differentiation, with expression of K7 and epithelial cell adhesion molecule 
(EPCAM) lost later on in hepatocyte differentiation [Figure 2][30].

HPCs reside in a specialised micro-environment, their so-called niche. Upon HPC activation and 
differentiation, the composition of the niche changes during chronic disease which is aetiology dependent 
and is characterised by infiltrating inflammatory cells, specific extracellular matrix composition, 
vascularisation, innervation, and even growth factors[31,32]. In addition to the changes in biomarker 
expression, commitment to a specific cell fate of HPCs is further defined by alternate activation of different 
pathways through interaction with the different cells in their niche. For example, expression of the Notch 
ligand Jagged 1 during biliary regeneration promotes Notch signalling in HPCs and, consequently, 
their differentiation to cholangiocytes[33]. Conversely, an increase in Wnt3a expression by macrophages 
gives rise to canonical Wnt signalling in HPCs, resulting in maintenance of Numb expression, an 
inhibitor of Notch signalling, and commitment to a hepatocyte cell fate[33]. Similarly, YAP and HIPPO 
signalling have an opposite function in regulating liver cell fate[34]. The extracellular matrix also plays 

Figure 1. Schematic overview of hepatic progenitor cell activation, observed as ductular reaction, in human non-alcoholic fatty liver 
disease. Image has been created using BioRender
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an important role in determining the cell fate of HPCs. Laminins in particular have been reported to sustain 
biliary features and differentiate induced-pluripotent stem cells into cholangiocytes[35-37], whereas the inhibition of 
laminin deposition in a mouse model of chronic parenchymal damage has been described to result in enhanced 
differentiation of HPCs/oval cells into hepatocytes[38]. Using mouse models of chronic biliary injury, Peng et al.[39] 
showed that the disruption of the integrin receptor a5b6, an adhesion receptor that interacts with 
fibronectin and transforming growth factor beta 1, not only inhibited the response of oval cells to tissue 
damage but also reduced fibrosis. This suggests that HPCs and their niche can have, besides a role in 
liver regeneration, a pro-fibrotic effect. DR and the presence of intermediate hepatocytes is a phenome 
of older age and advanced disease[40]. Promotion of the appropriate pathways therefore plays a key role in 
parenchymal regeneration and resolution of liver injury.

PORTAL INFLAMMATION AND DUCTULAR REACTION IN NAFLD 
Portal chronic inflammation has been associated with features of metabolic syndrome in NAFLD patients. 
The Nonalcoholic Steatohepatitis Clinical Research Network (NASH CRN) has shown that patients with 
mild or moderate portal inflammation were more likely to present higher BMI, higher insulin values, 
and insulin resistance when compared to patients with no signs of portal inflammation[41]. In addition, a 
significantly higher rate of patients with portal inflammation took medication for the treatment of diabetes 
and/or cardiovascular and hypertensive conditions. Histologically, patients with portal inflammation 
had significantly increased ballooning and advanced fibrosis, together with a higher likelihood of a 
definite NASH diagnosis[41]. Another study investigated the clinical features of 160 biopsy-proven NAFLD 
patients and the correlation with portal inflammation[42]. They confirmed patients with a higher degree of 
portal inflammation presented higher age, BMI, cholesterol, alanine aminotransferase, gamma-glutamyl 
transpeptidase, and ferritin as well as arterial hypertension and diabetes. In a cohort of 619 NAFLD 
patients with a median follow-up duration 12.6 years, Angulo et al.[43] showed using univariate analysis 
that there was a significantly different survival free of liver transplantation and survival free of liver-related 
events according to ballooning grade, portal inflammation grade, the NASH categories, and fibrosis stage, 
but not among steatosis grade, lobular inflammation grade, or NAFLD Activity Score (NAS) categories[43]. 
Moreover, they found a significant correlation between fibrosis and portal inflammation, although in the 
multivariate analysis only fibrosis was associated with long-term outcome for patients.

Figure 2. HPCs in NASH with moderate fibrosis (F2 stage) (needle biopsy sample). Keratin 7 immunostaining decorates the interlobular 
bile ducts, ductular reaction/HPCs (arrows). HPCs: hepatic progenitor cells; NASH: non-alcoholic steatohepatitis
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The extent of DR in adult and paediatric NAFLD patients has been strongly associated with the diagnosis of 
NASH, disease severity, including histological features such as hepatocyte ballooning, lobular inflammation, 
and fibrosis, but also portal inflammation[17,44]. In this context, the distinct micro-environment of DR 
could play a pivotal function in the homing of immune cells into the portal tract. In particular, portal 
leukocytes expressing CD3, CD8, or CD68, exhibit a significant and incremental variation across NAFLD 
stages[45]. Although these leukocytes were also observed in control livers and at early disease stages, all 
types of portal leukocytes significantly increased with the progression of NASH in concomitant with DR 
and fibrosis deposition. Interestingly, the increase in portal macrophages in patients with mild NAFLD has 
been reported to precede the expression of proinflammatory cytokines such as IL1B and TNF[45]. Numerous 
cytokines link inflammation with HPC proliferation and differentiation, such as TNF-like weak inducer of 
apoptosis (TWEAK), transforming growth factor beta, interferon-gamma, and interleukin 17[46-49]. Many 
of these key modulators of liver inflammation and regeneration can be tracked back to portal infiltration. 
Infiltrating T helper (Th)17 lymphocytes have been implicated in several types of liver diseases including 
NAFLD and alcoholic liver disease[45,50], while TWEAK has been reported to originate from infiltrating 
macrophages[51].

Furthermore, the degree of DR also reflects the amount of parenchymal damage. Patients carrying 
the PNPLA3 I148M variant have been characterized by a prominent activation of HPC niche that was 
associated with a more aggressive histological pattern and portal fibrogenesis, and increased oxidative 
stress[52]. Interestingly, these patients displayed increased portal infiltration of pro-inflammatory S100A9-
positive macrophages. The influx of S100A9-positive cells in advanced NAFLD has been correlated with 
an increase of monocyte-derived C-C motif chemokine receptor 2 (CCR2)-positive macrophages in the 
portal tract[53]. There is compelling data in both mouse models and humans which show that macrophage 
infiltration into the liver is predominantly controlled by CCR2 and its ligand C-C motif chemokine 
ligand (CCL2)[54-56]. It has been shown through CCR2-/- mice that CCR2 plays an important role in the 
recruitment of monocyte-derived macrophages and stellate cells[57]. Earlier studies in high fat diet-fed 
mice also demonstrated that CCL2 and CCR2 were crucial in development of steatosis, insulin resistance, 
and obesity[58,59]. More recent studies have now confirmed that monocyte-derived macrophages primarily 
express CCR2 and the inflammatory phenotype associated with steatosis, fibrosis, and angiogenesis, rather 
than Kupffer cells[53]. This supports a potentially key role of recruited macrophages in the development 
and progression of NAFLD. Therapeutic inhibition of CCR2-positive monocyte-derived macrophages 
using cenicriviroc has been reported to reduce fibrosis in human disease[60]. Although the effect on NASH 
amelioration was limited, patients on the cenicriviroc arm achieved significant improvement in fibrosis 
stage by ≥ 1 stage and no worsening of steatohepatitis when compared to those on placebo [20% vs. 10%; 
OR: 2.20 (95%CI: 1.11‐4.35)]. These results were more prominent in patients with higher histological 
NASH activity and were equally represented in all fibrosis subgroups[60]. If we consider that fibrosis is the 
main driver of outcomes in NASH patients[43], we can still consider these results as relevant. Interestingly, 
mild or no portal inflammation at baseline were among factors predicting cenicriviroc response, in terms 
of fibrosis regression[60]. In other words, although cenicriviroc targets specificreceptors, the complexity of 
the inflammatory portal milieu may predict treatment response in patients with NAFLD. As mentioned, 
HPCs were linked to increased portal fibrogenesis, hence they might be considered as therapeutic target in 
future design.

Nevertheless, portal chronic inflammation acquires even more significance since it may not disappear 
after NASH pharmacological or bariatric surgical treatment, as highlighted in studies from clinical 
trials[61]. Indeed, increased portal inflammation in post-treatment liver biopsies has been related to NASH 
resolution[62]. Despite considerable evidence of the importance of macrophage infiltration in disease 
progression, current research into the mechanisms involved in their recruitment during NAFLD is very 
limited and remains incompletely understood.
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HEPATIC PROGENITOR CELL SECRETOME
HPCs are not only associated with portal inflammation but they themselves can affect the recruitment, 
differentiation, and functional properties of immune cells by secreting a range of proteins[63]. HPCs 
have been reported to be a source of the chemokine CCL2 which can, apart from attracting CCR2-
positive monocytes, induce a distinct metabolic shift in hepatocytes[64-66]. In vitro, CCL2 can induce lipid 
accumulation in primary mouse hepatocytes and in human HCC cell lines, while overexpression of Ccl2 
in mice induces hepatic steatosis, decreases AMP-activated protein kinase activity and alters the hepatic 
mitochondrial dynamics[65,66]. In paediatric NAFLD, the expression of resistin and glucagon Like Peptide 1 
(GLP-1) in HPCs has been correlated with advanced features of NAFLD, fibrosis and steatosis, respectively, 
while the expression of adiponectin in HPCs was inversely correlated with the NASH Activity Score[44]. 
Serum protein and hepatic mRNA levels of the adipokine resistin have been reported to be increased in 
adult patients with NASH[67], while adiponectin plasma levels are markedly diminished in patients with 
visceral obesity, type 2 diabetes mellitus, and NASH[68,69]. Resistin can increase the uptake of oxidised low-
density lipoprotein by macrophages through their scavenger receptors, thereby promoting foamy cell 
formation in vitro, suggesting that HPCs influence macrophage function[70-72]. Recently, our group showed 
that the formation of foamy macrophages in human NAFLD is mediated by the macrophage scavenger 
receptor 1, resulting in the release of pro-inflammatory cytokines, such as TNFa, but also inducing 
metabolic changes in the liver[73,74]. Adiponectin, on the other hand, is regarded as an anti-inflammatory 
modulator in NAFLD and is protective against HCC formation[69,75]. Though HPCs in NAFLD show a 
decreased expression of adiponectin, indicative for a shift towards a pro-inflammatory phenotype, they also 
secrete GLP-1, which can decrease transaminases and reduce intrahepatic triglycerides and macrophage 
infiltration in a NASH mouse model[44,76]. In a double blinded, randomised trial, NASH patients treated 
with the GLP-1 analogue liraglutide showed reduced metabolic dysfunction, insulin resistance, and 
lipotoxicity compared to the placebo group[77]. This suggests that some of the factors released by HPCs can 
also be anti-inflammatory. The dual pro- and anti-inflammatory phenotype, and the pleiotropic metabolic 
effects of the HPC secretome on other cells in the liver highlights the complexity of the progenitor cell-
mediated regeneration during NAFLD progression.

GENE SIGNATURES OF ADVANCED NAFLD
Over recent years, high-through transcriptomic analyses have been used in efforts to examine changes 
that occur as NAFLD progresses [Table 1]. Though some studies are limited to dichotomous comparisons 
between mild and advanced disease, the expression of HPC markers has been found to be enriched in more 
advanced stage of the disease[78-84]. In a small cohort of 22 patients with NAFLD or alcoholic liver disease, 
Starmann et al.[78] reported the expression of KRT7, KRT23, and p62 to be enriched in steatohepatitis 
when compared to steatosis. K23 has been described as a stress-related DR marker associated with 
prominent inflammation and fibrosis in chronic liver disease, that can be induced in vitro by treatment 
with TWEAK and the type I acute phase inducer interleukin (IL)-1b[85]. Interestingly, other transcriptomics 
studies using larger NAFLD cohorts, have reported that the expression of TNF receptor superfamily 
member 12A (TNFRSF12A), the receptor for TWEAK, is increasingly expressed in advanced NAFLD[83,84]. 
Immunopositivity for TNFRSF12A in NASH has been described to be found in DR, endothelial cells and 
myofibroblasts[86]. This means that TWEAK not only induces HPC proliferation but could also induce 
pathways protective against cell stress.

Hepatocytes can activate the p62-KEAP1-NRF2 pathway to cope with oxidative stress[87]. Phosphorylation 
of p62 disrupts the cytoplasmic binding of KEAP1 to NRF2, facilitating the transport of NRF2 to the 
nucleus where it regulates autophagy and “stemness” pathways[88,89]. In NASH, p62-positive Mallory-Denk 
bodies, cytoplasmic inclusions commonly observed in ballooned hepatocytes, correlate with increased 
parenchymal necroinflammation[90]. Similarly, the expression of the sonic hedgehog signaling molecule, 
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found in ballooned hepatocytes, correlates with the grade of hepatocyte ballooning and fibrosis stage[91]. 
Interestingly, expression of GLI2, the transcription factor downstream of the sonic hedgehog pathway, 
has been found to be expressed in DR and was associated with portal inflammation and fibrosis stage in 
a cohort of 30 NAFLD patients[91]. In chronic liver disease, including biliary fibrosis and viral hepatitis, 
sonic hedgehog signaling is believed necessary to generate, maintain, and expand certain populations of 
HPCs[92,93]. It is still not fully known whether ballooned hepatocytes can directly activate HPCs, though 
activation of similar pathways would suggest so. This would explain the association between DR and the 
histological severity in NAFLD. Recently, our group showed that the expression of HPC markers was 
associated with a high NAFLD Activity Score using RNA sequencing performed on 206 NAFLD biopsy 
samples[84]. Unsupervised clustering stratified the 206 NAFLD patients based on disease activity, fibrosis 
stage, age, serum aspartate aminotransferase, type 2 diabetes mellitus, and carriage of the PNPLA3 rs738409 
variant[84]. Intriguingly, this was correlated with a high gene expression of HPC markers including CD24, 
EPCAM, JAG1, KRT7, KRT19, LAMC2, SOX9, TACSTD2, THY1, and TNFRSF12A [Table 1]. 

In conclusion, HPC activation in NAFLD, observed as DR, has been associated with histological severity 
and distinct molecular profiles, and may confer both diagnostic and prognostic values when assessing 
NAFLD patients. 
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