tumor cells, in order to detect tumors and validate the treatment response [Table 1]. Hypometabolism on FDG PET in brain lesions and stability over a period is indicative of nonmalignancy. [24] When it is difficult to differentiate preoperatively a primary brain tumor from metastasis, [25] FDG PET may be helpful in depicting areas of systemic involvement, [26] or localizing the primary cancer site. [27,28] Occasionally, patients may present with brain lesions, radiologically compatible with brain metastases that after biopsy are proven to be multifocal gliomas.^[29,30] In such cases, FDG PET may aid in pinpointing the area of stereotactic biopsy,^[31,32] assist in tumor delineation during radiotherapy planning^[33] and assessment of treatment response.^[34] In a study of 81 recurrent glioma patients studied by FDG PET, it was found that the higher the FDG uptake by the tumor it was associated with worse survival.^[35] In addition, pretreatment uptake of FDG in 25 patients with recurrent gliomas subsequently | 1 | | 1 3 | | , , | |---|---|---|---|---| | Table I: Represen | tative studies on utili | ty of FDG PET and compa | rison with other tracers in patie | ents with primary | | brain tumors | | | | | | Study | No. of patients | Reason for the exam | Results (%) | Study conclusion | | Colavolpe et al.[12] | 25 patients with recurrent glioma | To assess utility of FDG
PET/CT in patients
receiving bevacizumab and
irinotecan therapy | FDG uptake was the most powerful predictor of both PFS and OS using the RANO criteria | Pretreatment FDG PET
predicts survival in
recurrent glioma patients
following anti-angiogenic
therapy | | Santra et al.[13] | 90 patients with possible recurrent glioma | To compare FDG PET/CT with contrast MRI | PET sensitivity: 70
Specificity: 97
MRI sensitivity: 95
Specificity: 23 | FDG PET/CT was an accurate modality to detect glioma recurrence | | Borbely et al.[14] | 59 patients with
primary and recurrent
brain gliomas (50 had
MET PET; 33 had
FDG PET) | To compare FDG PET with
MET PET for <i>in vivo</i> grading
of malignant gliomas | FDG PET superior to MET PET
for grading of gliomas | FDG PET recommended
for grading but MET
PET may be used for
assessing the extent of
the tumor | | Singhal <i>et al.</i> ^[15] | 102 patients with
confirmed gliomas
were followed for
an average of 34.6
months after PET | To compare FDG PET with MET PET and MRI | MET PET superior to FDG PET
and MRI in predicting survival in
low-grade gliomas | For low grade gliomas
MET PET preferred to
FDG PET | | Yamaguchi <i>et al</i> . ^[16] | 26 patients with untreated or recurrent adult gliomas had preoperative FDG (n = 25) and/or MET (n = 22) PET | To compare FDG PET with MET PET | FDG better for tumor grade
MET better for delineating the
extent of the tumor | Both tracers complement
each other to plan
the extend of tumor
resection | | Tripathi <i>et al.</i> ^[17] | 15 patients with untreated or recurrent low grade gliomas | To compare FDG PET with FDOPA PET and FLT PET | FDOPA PET superior to both
FDG and FLT PET for detection
of low grade gliomas | FDOPA PET should be
the radiotracer of choice
for low grade glioma | | Chen et al.[18] | 25 patients with with
untreated or recurrent
adult gliomas | To compare FDG PET with FLT PET | FLT PET better to image
recurrent high-grade tumors, to
correlate with Ki-67 values, and
predict tumor progression and
survival | FLT a promising tracer
of proliferation in
high-grade gliomas | | Enslow et al.[19] | 15 recurrent glioma patients | To compare FDG PET with FLT PET | Both FDG PET and FLT PET could differentiate between tumor recurrence and radiation necrosis | FLT PET offers no
advantage over FDG
PET | | Karunanithi <i>et al.</i> ^[20] | 28 patients with recurrent gliomas | To compare FDG PET with FDOPA PET for diagnosis of recurrence | FDG sensitivity: 47.6
FDG specificity: 100
FDOPA sensitivity: 100
FDOPA specificity: 85.7 | The difference between FDOPA and FDG PET was significant for low grade glioma but not for high grade tumors | | Tripathi et al.[21] | 35 patients with recurrent glioma | To compare FDG PET with MET PET | FDG sensitivity: 81.2
FDG specificity: 88.9
MET sensitivity: 94.7
MET specificity: 88.9 | MET should be the radiotracer of choice for recurrent gliomas | | Potzi et al.[22] | 28 patients with recurrent GBM | To evaluate FDG and MET PET for recurrent glioma | | FDG PET of limited value;
MET PET not superior to
conventional imaging | | Nihashi et al.[23] | Meta-analysis of 26
heterogenous studies | To evaluate the diagnostic accuracy of PET and compare it with conventional imaging modalities | FDG PET and MET PET with acceptable accuracy for diagnosing recurrent glioma | Prospective studies
with direct comparisons
between various imaging
modalities required | PET: Positron emission tomography; CT: Computed tomography; MRI: Magnetic resonance imaging; RANO: Response assessment in neuro-oncology; FDG: (18)F-flurodeoxyglucose; FET: O-(2-(18)F-fluoroethyl)-l-tyrosine; GBM: Glioblastomamultiforme; MET: (11)C-methionine; FDOPA: (18)F-FDOPA; FLT: 3'-Fluoro-3' deoxythymidine; PFS: Progression-free survival; OS: Overall survival; HGG: WHO grades III or IV; LGG: WHO grades I or II treatment with bevacizumab and irinotecan predicted response to the treatment and correlated with overall survival. [12] Similar predictive value of FDG-PET was reported with other therapies in glioma patients. [36] FDG PET compared to MRI scans with and without contrast enhancement had much higher specificity (97% vs. 23%) for detection of recurrence in 90 glioma patients clinically suspicious of tumor growth. [13] ## OTHER POSITRON EMISSION TOMOGRAPHY TRACERS AND COMPARISON WITH (18)F-FLURODEOXYGLUCOSE During the last several years, new PET tracers have been developed for a wide range of biological targets [Table 2].[37] PET of amino acid transport and metabolism could be a reliable method in assessing a metabolic response after treatment of a tumor or in establishing a treatment-related effect, depending on the rate of the tracer uptake by tumor. Employment of imaging amino acid transport may prove to have an important clinical role in the management of brain tumor patients since it may result in changes in therapeutic management. [62] For example, application of O-(2-(18)F-fluoroethyl)-L-tyrosine (FET) PET/CT in newly diagnosed brain tumors could predict their biologic behavior in most of the cases. [48,52,63] FET represents an artificial amino acid not incorporates into proteins but transports into active glioma cells. [46] FET-PET may be more accurate than FDG-PET for differentiation of malignant gliomas from low-grade gliomas, [64,65] by their low FET uptake on PET in the low-grade tumors. [66,67] Thus, in a study of 88 patients with an intracerebral lesion observed by MRI, FET PET was performed, followed by biopsy in 60 patients. The sensitivity of FET PET for high-grade tumors (WHO III-IV) was reported 94% and for low-grade tumors (WHO I-II) 68%. However, there were | Tracer | Mechanism | No. of studies | Untreated or recurrent glioma | Advantages | Disadvantages | |-----------------------------------|---|----------------|--|--|---| | AMT ^[38] | Amino acid PET tracer not incorporated into proteins but transported into gliomas via the kynurenine pathway | 1 | Recurrent | AMT PET could
differentiate between
tumor and XRT necrosis | False positive results can occur in cortical dysplasia with epileptic focus ^[39] | | MET PET ^[40] | MET is transported by the LAT1
amino acid transporter into
glioma and is incorporated into
proteins ^[41] | 5 | Upfront ^[15]
Recurrent ^[41-44] | MET uptake correlated with prognosis ^[15] MET PET could differentiate between tumor and XRT necrosis ^[40,42] Correlate with OS and outcome ^[43,44] | Short half-life (20 min) requiring on site production; MET may accumulate in brain abscesses or inflammation ^[45] | | FET PET | FET is an artificial amino acid transported into active glioma cells but incorporated into proteins ^[46] | 5 | Upfront ^[47,48]
Recurrent ^[49-51] | FET PET could differentiate glioma from nonneoplastic tissue FET PET distinguished active tumor from radiation necrosis; ^[50,51] dynamic FET uptake could differentiate between high and low grade tumors ^[49] | Rare false positive
in granulomatous
conditions and
reactive astogliosis ^[52]
or false negative
cases ^[53] | | FDOPA PET:
(18)F-FDOPA | I-DOPA is the precursor of
dopamine and is transported
physiologically into the brain
and abnormally into the brain
tumors ^[54] | 2 | Upfront ^[55]
Recurrent ^[55,56] | Correlation of FDOPA uptake, tumor proliferation and grade Diagnostic accuracy of recurrence similar to MRI ^[56] | Diagnostic
usefulness mostly
in upfront gliomas;
limited data | | FLT PET ^[57,58] | FLT is an analog of
deoxythymidine, which is
composed of deoxyribose and
the pyrimidine base thymine and
phosphorylated by thymidine
kinase 1 during DNA synthesis ^[59] | 2 | Upfront ^[57]
Recurrent ^[58] | FLT PET could differentiate between high and low grade tumors FLT-PET responses correlated with OS | FLT may accumulate
in benign
lesions with BBB
disruption ^[45] | | CHO:
(18)F-fluoromethylcholine | During glioma cell proliferation choline is trapped into the cells to produce phosphatidylcholine, a necessary constituent of the plasma membrane ^[60] | 1 | Various brain
lesions (tumors or
nontumors) | Higher uptake in malignant tumors | It may also
accumulate in
various inflammatory
processes ^[61] | PET: Positron emission tomography; MRI: Magnetic resonance imaging; XRT: Radiation therapy; BBB: Blood brain barrier; MET: (11)C-methionine; AMT: Alpha-(11)C-methyl-l-tryptophan; FDG: (18)F-flurodeoxyglucose; FET: O-(2-(18)F-fluoroethyl)-l-tyrosine; FDOPA: (18)F-FDOPA; FLT: 3'-fluoro-3' deoxythymidine; PFS: Progression-free survival; OS: Overall survival - 3'-Deoxy-3'-18F-fluorothymidine PET-derived proliferative volume predicts overall survival in high-grade glioma patients. J *Nucl Med* 2012;53:1904-10. - Wardak M, Schiepers C, Cloughesy TF, Dahlbom M, Phelps ME, Huang SC. ¹⁸F-FLT and ¹⁸F-FDOPA PET kinetics in recurrent brain tumors. Eur J Nucl Med Mol Imaging 2014;41:1199-209. - 77. Chen Y, Guillemin GJ. Kynurenine pathway metabolites in humans: disease and healthy States. *Int J Tryptophan Res* 2009;2:1-19. - Schnell O, Krebs B, Carlsen J, Miederer I, Goetz C, Goldbrunner RH, Wester HJ, Haubner R, Pöpperl G, Holtmannspötter M, Kretzschmar HA, Kessler H, Tonn JC, Schwaiger M, Beer AJ. Imaging of integrin alpha (v) beta (3) expression in patients with malignant glioma by [18F] Galacto-RGD positron emission tomography. Neuro Oncol 2009;11:861-70. - Hirata K, Shiga T, Fujima N, Manabe O, Usui R, Kuge Y, Tamaki N. (11)C-Methionine positron emission tomography may monitor the activity of encephalitis. *Acta Radiol* 2012;53:1155-7. - Lee BY, Newberg AB, Liebeskind DS, Kung J, Alavi A. FDG-PET findings in patients with suspected encephalitis. Clin Nucl Med 2004;29:620-5. - Mascarenhas NB, Lam D, Lynch GR, Fisher RE. PET imaging of cerebral and pulmonary Nocardia infection. Clin Nucl Med 2006;31:131-3. - Tsuyuguchi N, Sunada I, Ohata K, Takami T, Nishio A, Hara M, Kawabe J, Okamura T, Ochi H. Evaluation of treatment effects in brain abscess with positron emission tomography: comparison of fluorine-18-fluorodeoxyglucose and carbon-11-methionine. *Ann Nucl Med* 2003;17:47-51. - 83. Kang K, Lim I, Roh JK. Positron emission tomographic findings in a tuberculous brain abscess. *Ann Nucl Med* 2007;21:303-6. **Cite this article as:** Assimakopoulos A, Polyzoidis K, Sioka C. Positron emission tomography imaging in gliomas. Neuroimmunol Neuroinflammation 2014;1(3):107-14. Source of Support: Nil. Conflict of Interest: No. Received: 28-07-2014; Accepted: 27-08-2014