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Abstract
Single crystal of Tb0.3Dy0.7Fe2 (Terfenol-D) with a composition close to the pre-transitional rhombohedral side of 
the ferromagnetic morphotropic phase boundary has demonstrated remarkable magnetostrictive properties, 
stimulating intensive research interest in the field of magneto-mechanical transducers and actuators. The 
enhanced magnetoelastic response of (Tb-Dy)Fe2 single crystals has been extensively linked to the structural 
phase transition and magnetic domain evolution. This research utilized the micromagnetic microelastic phase-field 
technique to examine the evolution of domain walls in rhombohedral ferromagnetic single crystals of (Tb-Dy)Fe2, 
which is essential for understanding the magnetostriction “jump” effect. The study involved simulating the creation 
and development of domains and domain boundaries under a periodic boundary condition that allows for non-zero 
strain. It was found that the two typical distinct types of domain walls (i.e., 71° and 109°) exhibited disparate 
responses to the applied magnetic fields. At magnetic field magnitudes below the coercive field, a domain wall 
broadening mechanism was detected within the 71° domain wall. However, upon surpassing the coercive field, a 
process of homogeneous magnetization switching ensued, devoid of evident displacement of the 71° domain walls. 
The magnetization switching effectively elucidated the magnetostriction “jump” effect of the rhombohedral single 
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crystals. The act of sweeping the 109° domain walls resulted in the occurrence of heterogeneous magnetization 
switching. This study elucidates the evolutionary mechanism of two typical rhombohedral domain walls in 
response to applied magnetic fields, potentially offering valuable insights into the future design of excellent 
magnetostrictive materials through domain engineering.

Keywords: Phase-field simulation, ferromagnetic MPB, magnetostriction, domain wall

INTRODUCTION
Giant magnetostrictive materials, i.e., quasi-binary (Tb-Dy)Fe2 alloys, have attracted considerable attention 
due to their potential applications as energy conversion components in magneto-mechanical transducers 
and actuators[1-6]. During the past decades, efforts have been made to develop an anisotropy compensation 
system that minimizes magnetic anisotropy in order to take advantage of the giant magnetostriction at low 
fields[7-10]. Newnham[11] firstly credits the spin reorientation boundary of (Tb-Dy)Fe2 as a magnetic 
equivalent to the morphotropic phase boundary (MPB) of a quasi-binary ferroelectric solid solution, i.e., the 
ferromagnetic MPB, which has been confirmed by Yang et al.[12] and Bergstrom et al.[13]. While the 
ferromagnetic MPB has demonstrated utility as a design approach for achieving highly sensitive 
magnetoelastic responses, the predominant focus in current research has been on materials exhibiting a 
rhombohedral structure, exemplified by Tb0.3Dy0.7Fe2 (Terfenol-D)[13,14]. This is because of the highly 
anisotropic magnetostriction λ111 in the pre-transitional rhombohedral side of ferromagnetic MPB, in which 
giant magnetostriction could be induced by movement of non-180° domain walls or rotation of magnetic 
moments[1,14-16].

As is well known, the magnetization of the rhombohedral (Tb-Dy)Fe2 domains is expected to distribute 
equally along one of the eight <111> easy axes, as shown in Figure 1. The magnetostriction “jump” effect is 
primarily attributed to the motions of 109° and 71° domain walls under applied magnetic fields[17-19], 
although the underlying internal mechanism remains unclear. Several phenomenological approximations, 
such as domain wall motion and magnetization rotation models, have been proposed to elucidate the 
magneto-mechanical behaviors of Terfenol-D[8,20-23]. However, the prevailing mechanisms largely overlook 
the presence of internal magnetic (stress) fields and assume that each domain evolves independently, which 
means no magnetic and elastic long-range interactions among domains are considered. Furthermore, the 
inherent stress resulting from elastic incompatibility in domain walls is of considerable significance, 
particularly in the case of giant magnetostrictive materials with large intrinsic strain. Since Khachaturyan’s 
microelasticity theory[24] was introduced into the phase-field method, it has emerged as a robust technique 
for simulating the mesoscale microstructural evolution of ferroelectric systems[25-28]. Zhang et al. have 
proposed a phase-field model that integrates the Khachaturyan microelasticity theory with micromagnetic 
simulation, enabling the prediction of domain structure stability and temporal evolution[29]. Subsequently, 
comparable micromagnetic microelastic phase-field models have been developed to explore domain 
evolution and magnetoelastic response in proximity to the ferromagnetic MPB[15,16,30,31].

In this work, the micromagnetic microelastic phase-field method was employed to study the formation and 
evolution of domains in (Tb-Dy)Fe2 single crystals within the rhombohedral phase region of the 
ferromagnetic MPB. Particular emphasis was placed on the two distinct categories of domain walls, namely 
71° and 109° domain walls. In the case of the 71° domain wall, the application of an external magnetic field 
below the coercive field leads to the observation of a domain wall broadening effect, while exceeding the 
coercive field results in domain switching. Additionally, the applied external magnetic field in the [100] 
direction leads to 109° domain walls sweeping, which results in heterogeneous magnetization switching.
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Figure 1. Schematic orientations for eight <111> easy axes in the cubic (Tb-Dy)Fe2 unit cell.

MATERIALS AND METHODS
The phase-field model employs the local magnetization vector M (m1, m2, m3) as the primary order 
parameter, with its spatial distribution representing the magnetic domain microstructure. Therefore, the 
domain structure can be derived from the time evolution of the local magnetization configuration as 
governed by the Landau-Lifshitz-Gilbert (LLG) equation, denoted as

where Ms represents the saturation magnetization, and α and γ0 denote the damping constant and 
gyromagnetic ratio, respectively.

The effective magnetic field, denoted as Heff, is calculated by Heff = -(μ0Ms)-1(δEtot/δm) with the vacuum 
permeability μ0 and the total free energy Etot. The total free energy, expressed as[1]

is composed of the magnetocrystalline anisotropy (Eani), exchange (Eexc), magnetostatic (Ems), elastic (Eel), and 
external energy (Eext).

The magnetocrystalline anisotropy energy can be defined as[20,32]
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where K1 and K2 represent the magnetocrystalline anisotropy coefficients, and V indicates the total volume 
of the system.

The exchange energy is determined solely by the spatial variation of the magnetization direction and can be 
written as[29]

where spatial differentiation is denoted by a comma and A is the exchange stiffness constant.

The magnetostatic energy of a system can be denoted as[29,33]

where Hd represents the stray field resulting from the long-range interaction between magnetic moments 
within the system. In the context of a periodic boundary condition, the simulation system is conceptualized 
as a repetitive building block within 3-D space, and the stray field can be expressed as

where ND is the demagnetizing factor dependent solely on the sample’s shape. Additionally,  signifies the 
average magnetization of the simulation system, and ϕ represents the magnetic scalar potential solved 
utilizing the Fourier spectral method under periodic boundary conditions.

The elastic energy resulting from local deformation can be given as[20,24,34]

where cijkl represents the elastic stiffness tensor, eij denotes the elastic strain, εij signifies the total strain, and 
 indicates the stress-free strain. In cubic magnetostrictive materials, the stress-free strain refers to the 

spontaneous lattice deformation associated with local magnetization and is denoted by

Where λ100 and λ111 are the magnetostrictive constants. Khachaturyan’s elastic theory[24] posits that the total 
strain εij can be expressed as the sum of homogeneous strain  and heterogeneous strain , i.e., 

. The heterogeneous strain adheres to an integral relationship, denoted as . The 
equilibrium heterogeneous strain satisfies the mechanical equilibrium condition outlined by the Euler 
equation for elastic displacement, given as
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where the stress component σij is calculated using

Given the assumption of elastic equilibrium at each evolutionary step, the strain and stress values are 
determined by solving the mechanical equilibrium equation  using a Fourier spectral method 
derived from Khachaturyan’s elasticity theory[24]. When a system is exposed to a homogeneous applied stress 

, the total potential energy is denoted as . Furthermore, the competition between 
stress-induced anisotropy and magnetic crystal anisotropy has the potential to influence the magnetization 
behavior of the material[35].

The external energy resulting from the influence of an externally applied magnetic field, denoted as Hex, can 
be established as[36]

The LLG equation is employed to elucidate the progression of domain microstructure, and its numerical
solution is achieved through the Gauss-Seidel projection method[37]. The simulation focuses on the
representative rhombohedral ferromagnetic single system, utilizing material parameters derived from a
combination of experimental data and theoretical computations conducted previously[1,38-41], as outlined
comprehensively in Table 1. Figure 1 provides a schematic illustration of the unit cell of (Tb-Dy)Fe2, which
is cubic. The process of domain formation was simulated using the phase-field method, with a dimension of
512Δx × 512Δx × 1Δx. (The 3D phase-field simulation of the domain formation process can be seen in
Supplementary Figure 1 in Supplementary Materials) The simulation grid Δx is 2 nm, smaller than the
exchange length [42]. A periodic boundary condition that accommodates non-zero strain
is imposed along the three coordinate axes.

RESULTS AND DISCUSSION
Figure 2 illustrates the evolution of domain formation within a representative volume element of the 
rhombohedral ferromagnetic single crystal, guided by energy minimization towards equilibrium. The initial 
state is characterized by a random distribution of magnetization, devoid of any predetermined assumptions. 
The local energy minimum, in conjunction with the presence of inhomogeneous internal stress, serves as 
the driving force for the initiation nucleation and subsequent growth of various domains. (The distribution 
of stress during the domain formation process can be seen in Supplementary Figure 2 in 
Supplementary Materials). At the early stage, metastable rhombohedral and tetragonal variants function as 
intermediates, providing low-energy kinetic pathways to final engineered domain configurations. Similar 
bridging domain mechanism was also identified in previous works[16,31]. Subsequently, the tetragonal variants 
gradually disappear as the studied component is in the rhombohedral phase side. In the rhombohedral 
variants intermediate stages, as shown in Figure 2D and E, the domains of the rhombohedral phase form 
twins of either {100} or {110} twin planes, where the twin boundaries are 109° and 71° ferroelectric domain 
walls, respectively. As the evolution of rhombohedral domains progresses, there is a gradual disappearance 
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Table 1. The material parameters of (Tb-Dy)Fe2 in the work

Parameters Value Units

Saturation magnetization Ms 8 × 105 A/m

First-order anisotropy coefficient K1 -6 × 104 J/m3

Second-order anisotropy coefficient K2 -2 × 105 J/m3

Exchange constant A 9 × 10-12 J/m

Elastic stiffness c11 1.41 × 1011 N/m2

Elastic stiffness c12 6.48 × 1010 N/m2

Elastic stiffness c44 4.87 × 1010 N/m2

Magnetostrictive constant λ111 1,640 ppm

Magnetostrictive constant λ100 100 ppm

Figure 2. Domain formation process of the rhombohedral (Tb-Dy)Fe2 single crystal. The colors correspond to the intensity of 
magnetization along the z direction, while the black arrows indicate the orientations of magnetization.

of 71° domain walls, ultimately resulting in the survival of two 109° domain walls in the final equilibrium 
state. It is worth noting that Figure 2H just depicts one of the ideal states of global energy minimization. For 
the (Tb-Dy)Fe2 single crystals, 71° and 109° domain walls usually coexist to form complex multi-domain 
patterns, which collectively affect the magnetoelastic response. To gain deeper insights into the features of 
both domain walls and their implications for the properties of rhombohedral ferromagnetic single crystals, 
the detailed evolution behavior of these domain walls under magnetic fields oriented along the  and 
[100] directions have been investigated.

We first study the evolution of the 71° domain wall below the coercive field. As shown in Figure 3, the initial 
configuration of the simulation is a domain structure containing four 71° domain walls, which consist of 
[111] and  rhombohedral twins. The periodic triangular wave magnetic field with a peak value of 
30 kA/m is applied, paralleling the  direction. In order to illustrate the detailed evolution of the 
domain wall, we magnify any of the 71° domain walls in the display. The average magnetization along [110] 
and [001] directions, denoted as M[110] and M[001], respectively, are also plotted in Figure 3. When the applied 
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Figure 3. The broadening effect of the 71° domain walls occurs when the applied magnetic field is below the coercive field. The domain 
wall is magnified to illustrate the fluctuations in its thickness.

magnetic field increases along  direction, which is opposite to the magnetization, the 71° domain wall
becomes narrower, as shown from t = 0 to t = T/4. When the applied magnetic field increases along [110]
direction, which is in the same direction of the magnetization, the 71° domain wall becomes wider, as
shown from t = T/2 to t = 3T/4. The domain walls reach their maximum thickness (t = T/4) and minimum
thickness (t = 3/4 T) as the field approaches the positive and negative peaks, respectively. The magnetic field
dependence of M[110] also demonstrates the narrowing and broadening of the 71° domain walls. Specifically,
there is no domain switching throughout the whole process. The value of M[001] stays constant, indicating
that the center of 71° domain walls remains motionless.

Magnetization switching is observed upon surpassing the coercive field, as depicted in Figure 4. When the
applied magnetic field in the     direction increases and surpasses the coercive field, the M[110] value
transitions to a negative state, accompanied by the [111] and  domains switching to the     and
domains. At t = T/2, as the applied field diminishes to zero, the and domains are stable. When
the applied magnetic field in the reverse direction ([110] direction) surpasses the coercive field, M[110]

undergoes a positive jump, accompanied by the  and      domains switching to the [111] and
domains. As the reverse applied field decreases to zero at t = T, the [111] and domains are stable. In
particular, as shown in the dashed line boxes in Figure 4, the significant fluctuation observed in the M[001]

curve indicates the complex domain switching (the domain switching can be seen in Supplementary
Figures 3 and 4 in Supplementary Materials), which is different from the homogeneous polarization
switching observed in ferroelectric domains[43]. The magnetic domain switching near t = T/4 and t = 3T/
4 additionally induces a sudden alteration in the magnetostriction of the single crystal (the
magnetostriction can be seen in Supplementary Figure 5 in Supplementary Materials). Throughout the
aforementioned domain switching, the position of the 71° domain walls remains constant.

Figure 5 shows magnetic field dependence of the 109° domain wall, which consists of  and
rhombohedral twins. At step = 0, a constant magnetic field of 20 kA/m is promptly applied along the [100]
direction. Under the applied magnetic field, the favored  domain expands, displacing the 109° domain
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Figure 4. Magnetization switching occurs upon surpassing the coercive field. The domains before and after switching are depicted on 
the left.

Figure 5. The moving of 109° domain walls and the occurrence of heterogeneous magnetization switching in response to a constant 
magnetic field of 20 kA/m. The merging and disappearance of two domain walls resulted in the formation of a single domain.

walls towards the disfavored  domain. The M[100] gradually increases from the beginning to step = 
7,000, corresponding to the linear movement of 109° domain walls. After that, the curves of M[100] and M[010] 
vibrate violently and remain at constant values. This phenomenon arises due to the convergence and 
subsequent merger of the two 109° domain walls, leading to their eventual disappearance. The  domain 
undergoes a complete transition to , facilitated by the movement of the 109° domain walls, resulting in 
the formation of a single magnetic domain. Heterogeneous strain occurs in the domain switching process to 
accommodate the local deformations. If zero-strain periodic boundary conditions are implemented, the 
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mechanical clamping effect prevents the merging of the two 109° domain walls, thereby inhibiting the 
formation of a single magnetic domain. It is important to acknowledge that the slower movement of the 
109° domain wall can also be induced by applying fields (2 kA/m for example) significantly lower than those 
examined in this study. (The 109° magnetic domain walls move fast under the magnetic field exceeding 
20 kA/m, as shown in Supplementary Figure 6). This implies the absence of a critical magnetic field 
necessary to induce the displacement of 109° domain walls. This occurs because the  domain is favored 
by the [100] applied field, whereas the  domain is in the disfavored region with higher energy. The two 
domain regions compete to drive the 109° domain wall in between from the favored domain region to the 
disfavored one. Generally, this local heterogeneous domain switching can be used in domain engineering[16] 
to tailor the magnetic domain morphology with enhanced magnetostrictive properties.

CONCLUSIONS
This study utilized micromagnetic microelastic modeling through the phase-field method to investigate the 
process of domain formation and the evolution of domain walls in (Tb-Dy)Fe2 single crystals situated in the 
vicinity of the rhombohedral region of the ferromagnetic MPB. Particular emphasis was placed on the 71° 
and 109° domain walls, as their alterations in domain structure under applied magnetic field are crucial to 
the magnetelastic response of giant magnetostrictive materials. In the case of low applied magnetic field, a 
phenomenon of domain wall broadening was noted on the 71° domain walls, whereas in the case of high 
applied magnetic field, homogeneous magnetization switching took place without any observable 
movement of domain walls. The magnetization switching also helps understand the magnetostriction 
"jump" effect of the rhombohedral single crystal. The act of sweeping the 109° domain walls resulted in the 
occurrence of heterogeneous magnetization switching through the movement of domain walls. The detailed 
analysis of the two domain evolution mechanisms provided insightful understanding into the engineered 
domain structures of rhombohedral (Tb-Dy)Fe2 single crystals. Furthermore, these findings offer valuable 
guidance for the future design of magnetostrictive materials through domain engineering.
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