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Abstract
Inflammation is an intrinsic part of the body’s immune response, significantly influencing a myriad of physiological 
and pathological processes. There is now clinical and experimental evidence suggesting that inflammation 
accelerates atherosclerosis and its associated complications. The presence of macrophages, T and B cells inside 
the atherosclerotic plaque fueled this concept and steered subsequent research endeavors toward understanding 
the pathophysiology of atherosclerosis including plaque formation and destabilization leading to plaque rupture 
resulting in myocardial injury and remodeling. Understanding the mechanism behind atherosclerosis will aid in 
developing appropriate treatment interventions. Shifting research and drug development from a singular focus on 
cholesterol-lowering agents to include adjunctive anti-inflammatory therapies is crucial. Targeting a root cause, i.e., 
inflammation, will help decrease the incidence and progression of atherosclerosis and improve patient outcomes. In 
this review, we aim to discuss the current understanding of the intricate role of inflammation in the pathogenesis of 
atherosclerosis, myocardial infarction, and cardiac remodeling. This synthesis will encompass an exploration of the 
various inflammatory cells involved, the intricate network of chemokines orchestrating inflammatory responses, 
and the pathways that underpin these cardiovascular conditions. Furthermore, we will explore promising diagnostic 
and therapeutic strategies aimed at addressing inflammation in cardiovascular diseases. These include 
interventions such as colchicine, monoclonal antibodies, and nanoparticles designed to deliver and accumulate 
drugs at the molecular level within cells.
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INTRODUCTION
Atherosclerotic, a chronic inflammatory disease affecting large and medium-sized arteries, is a significant 
contributor to cardiovascular morbidity and mortality worldwide. Despite the importance of controlling 
risk factors like hypertension, diabetes, dyslipidemia, and cigarette smoking, it is crucial to understand and 
investigate the pathophysiology behind atherosclerosis. This chronic inflammatory process primarily affects 
coronary, cerebral, and peripheral vessels. The importance of inflammation in atherosclerosis is further 
highlighted by the fact that patients with inflammatory conditions such as rheumatoid and other 
inflammatory arthritis are at significantly higher risk of developing cardiovascular disease[1]. Traditionally, 
atherosclerosis was viewed as a process of lipid accumulation, mainly driven by low-density lipoprotein 
(LDL) in the arterial intima[2]. However, recent evidence from the last 25 years suggests that atherogenesis is 
an active inflammatory response involving both innate and adaptive immune responses, rather than a 
passive cholesterol accumulation process[3]. The initiation of atherosclerosis is controversial, with theories 
proposing lipid deposition followed by oxidation and leukocyte recruitment, or leukocyte attachment to 
inflamed endothelial cells, leading to lipid accumulation and macrophage foam cell formation[4,5]. 
Macrophage foam cells not only serve as a reservoir, but also as a source of proinflammatory and 
inflammatory mediators such as interleukins (IL) and tumor necrosis factor-α (TNF-α), which promote 
atherosclerotic plaque progression, mineralization and rupture[6].

This atherosclerotic process progresses over years and patients are usually asymptomatic during this phase. 
When the plaque size exceeds the capacity of the artery to accommodate outwards, the arterial lumen 
becomes narrow, leading to flow restriction and/or potential complications such as acute coronary 
syndrome due to plaque rupture or erosion. Matrix metalloproteinases secreted by macrophages cause the 
destruction of the extracellular matrix within the plaque, resulting in a weak fibrous cap that is prone to 
rupture[7]. Additionally, T-cell-mediated interferon gamma (IFN-γ) secretion from within the plaque 
inhibits collagen synthesis, further predisposing plaques to rupture. In several studies, toll-like receptor 2 
(TLR-2) signaling has been implicated in plaque erosion by altering endothelial function[8,9].

In addition to the role of inflammation in atherosclerosis and myocardial infarction (MI), inflammation 
plays a crucial role in cardiac remodeling. As a result of myocardial ischemia, apoptotic and necrotic 
myocardial cells activate immune cells to repair damaged tissue, leading to an initial inflammatory response 
followed by a healing phase characterized by fibroblast activation and the release of anti-inflammatory 
mediators to promote tissue repair and scar formation[10]. This reparative phase is characterized by fibroblast 
activation and proliferation in addition to the release of inhibitory mediators such as IL-10 and 
transforming growth factor (TGF) to suppress inflammation and promote a profibrotic environment[11]. 
Understanding the complex interplay between inflammation, immune responses, and plaque stability is 
crucial in developing targeted therapies to prevent atherosclerotic plaque progression and reduce the risk of 
acute cardiovascular events like MI. Further research into the molecular and cellular mechanisms 
underlying atherosclerosis initiation, progression, and plaque destabilization is essential for advancing 
preventive and therapeutic strategies in cardiovascular medicine. This review will delve into the pivotal role 
of inflammatory responses in the development of atherosclerosis, myocardial infarction, and cardiac 
remodeling.

ATHEROSCLEROSIS, INFLAMMATION, AND THE ROLE OF THE IMMUNE RESPONSE
Atherosclerotic cardiovascular disease has a complex and incompletely understood pathogenesis, which 
extends beyond mere cholesterol accumulation in arterial intima[12-14]. Recent research indicates that chronic 
vascular inflammation, coupled with both innate and adaptive immune responses, contributes to the 
development of this disease[15]. A hallmark of atherosclerosis is leukocyte recruitment and penetration of 
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endothelial cells (EC), mainly macrophages and monocytes, through leucocyte adhesion molecules (LAM) 
on the surface of the EC[16] such as vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion 
molecule-1 (ICAM-1). This recruitment and invasion process has its roots in a complicated chain of 
biological responses. Oxidation of LDL secondary to hypertension, diabetes, or smoking, in combination 
with endothelial activation, triggers an immune response resulting in upregulation of these LAM, attracting 
more macrophages and monocytes to take up oxidized LDL and become foam cells[17]. This process is 
mediated by scavenger receptors, particularly scavenger receptor A (SR-A) and CD36, which recognize and 
internalize oxidized LDL[18]. This is followed by the secretion of chemokines and growth factors by both the 
ECs and macrophages to induce proliferation in the smooth muscle cells (SMC), which stimulates the 
formation of atheroma. Activated SMCs become fibroblasts, fibro-myocytes, and osteoblast-like cells[19]. 
These cells receive stimuli from platelet-derived growth factor and TGF-β secreted by T cells for collagen 
production, which contributes to fibrous cap formation. Furthermore, neutrophils increase tissue damage 
and enhance plaque vulnerability by initiating SMC lysis and death[20]. Cytokines, specifically TNF-α, IL-1B, 
IL-6, and IFN-γ, are not mere bystanders in this process. They play an integral role in every stage of 
atherogenesis - from the initial endothelial activation phase all through to plaque rupture. This underlines 
the importance of these small protein molecules in inflammation and immune responses, signifying them as 
potential therapeutic targets for combating atherosclerotic disease[17].

INFLAMMATION AND MYOCARDIAL INFARCTION
Acute coronary syndrome is often a consequence of a plaque rupture or ulceration within the coronary 
vessels. Studies have identified specific features of vulnerable plaques that predispose them to rupture, such 
as a necrotic core exceeding 30% of the plaque, a thin fibrous cap (< 65 µm), and significant infiltration of 
inflammatory cells like lymphocytes and macrophages[21].

The enlarged necrotic core is due to a lack of collagen with an accumulation of cholesterol in the center, 
likely due to the death of foam cells and release of the large lipid content. Necrotic cells leak intracellular 
components, which triggers an inflammatory response; one of these components is high-mobility group box 
1 (HMGB1) molecules[22]. These molecules bind to TLR2 and TLR4, stimulating macrophages to release 
proinflammatory cytokines such as IL-1α, IL-1β, IL-6, and TNF-α, which in return causes more 
necrosis[23,24]. The stability of the plaque is dependent on a balance between the formation and degradation 
of the fibrous cap; if the breakdown of the ECM and collagen exceeds their formation, a thin fibrous cap is 
formed, which has a higher chance of rupture[19].

Thrombosis is activated upon fibrous cap rupture, superficial erosion, and coronary vasospasm. Fibrous cap 
rupture is the most common and accounts for 76% of men and 55% of women with fatal MI[25]. When 
plaque disruption occurs, thrombogenic substances will be exposed, triggering thrombus formation on the 
affected area[26]. It can be silent if the thrombosis is not occlusive; however, completely occlusive thrombi 
leads to myocardial injury in the area supplied by the occluded artery.

Moreover, studies suggest a link between sympathetic nervous system activation and myocardial infarction, 
with beta-adrenergic stimulation promoting emergency hematopoiesis, leucocyte migration, and 
mobilization, thereby contributing to the inflammatory response and myocardial healing[27,28]. In addition, it 
increases leucocyte migration and mobilization from medullary and extramedullary reservoirs. This 
emergency hematopoiesis will participate in the inflammatory response caused by myocardial ischemia and 
also aid in myocardial healing. This intricate interplay between inflammation, plaque vulnerability, and 
thrombosis underscores the multifaceted pathophysiology of myocardial infarction.
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INFLAMMATION AND REMODELING
Cardiac remodeling post MI is a multifaceted process extending over months or even years that can 
significantly alter the structure and functionality of the heart[29]. This process has substantial prognostic 
implications due to its close association with heart failure. Inflammation is an essential component of tissue 
healing but has also been linked to pathological remodeling and the development of structural and 
functional changes.

Immediately after MI, ischemia leads to a rapid buildup of intracellular calcium, sodium, and hydrogen, 
resulting in tissue acidosis. This induces energy depletion through mitochondrial damage and triggers the 
release of proapoptotic signals to initiate and maintain the inflammatory process that later aids in the 
remodeling process[30].

Repair post MI can be categorized into three overlapping phases: the inflammatory phase, the proliferative 
phase, and the maturation phase[31]. During the inflammatory phase, apoptotic and necrotic cells, along with 
the damaged extracellular matrix, initiate an inflammatory cascade reaction, leading to the release of 
cytokines and chemokines[32]. Subsequently, more leucocytes get attracted to the inflammatory site to aid in 
the clearing dead cells and digesting extracellular matrix tissue. During the proliferative phase, macrophages 
and fibroblasts secrete extracellular matrix proteins to restore structural integrity and start scar formation. 
Switching from the activation to the suppression of inflammatory signals is not a passive process; it likely 
requires the intervention of inhibitory molecules that activate suppressive pathways[33]. Finally, during the 
maturation phase, scar maturation takes place due to the deactivation of reparative cells and the withdrawal 
of the fibrogenic growth factors.

Prolonged inflammation or defective suppression can have catastrophic consequences, such as loss of 
myocyte contractility, leading to chamber dilation, which can subsequently progress to heart failure[31]. The 
fibrotic response after MI can be divided into two types: replacement and reactive fibrosis. Although initial 
reparative fibrosis is important for preventing myocardial wall rupture, exaggerated or reactive fibrosis due 
to excessive deposition of extracellular matrix (ECM) can result in organ distortion and disruption of 
cardiac function[34]. This is defined as pathological remodeling, in which the ECM expansion leads to 
hypertrophy of cardiac myocytes as a trial to compensate for the increased workload by increasing in size to 
improve myocardial function and decrease ventricular wall tension[35].

CARDIOVASCULAR TREATMENT FOR INFLAMMATION AND FUTURE DIRECTIONS
It is currently an ongoing challenge to overcome the adverse effects of pathological remodeling post MI. 
Medications like angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and aldosterone 
antagonists are used in clinical practice for the treatment of the chronic phase of remodeling[36]. However, 
little is known regarding therapies targeting the acute phase of remodeling. Recently, colchicine has 
emerged as a potential treatment (due to its anti-inflammatory properties) to reduce cardiovascular events 
in patients with chronic coronary and acute coronary syndromes[37-39]. The 2023 AHA/ACC/ACCP/ASPC/
NLA/PCNA Guideline for the Management of Patients with Chronic Coronary Disease suggests that in 
patients with chronic coronary disease, the addition of colchicine for secondary prevention may be 
considered to reduce recurrent cardiovascular events[40,41]. Another novel anti-inflammatory agent, 
Ziltivekimab, a monoclonal antibody that targets interleukin-6, is being tested in the Specifying the Anti-
inflammatory Effects of Ziltivekimab (SPIDER) trial [ClinicalTrials.gov ID - NCT06263244]. Many studies 
propose gene therapy for the prevention and treatment of cardiac remodeling, such as B-type natriuretic 
peptide gene delivery, which has been used to prevent cardiac remodeling in rats[42]. Other therapies such as 
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models[43,44].

Recent advancements in nanomedicine research have brought to light significant progress in nanoparticle 
drug delivery systems, particularly in the realm of diagnosing and treating atherosclerosis. The evolution of 
imaging technologies has broadened the scope of research from merely identifying existing atherosclerotic 
plaque in symptomatic patients to characterizing asymptomatic vulnerable plaque. Nanotechnology is 
proving to be instrumental in the field of cardiovascular disease by facilitating the targeted accumulation of 
nanoparticles within atherosclerotic lesions, thereby enabling a meticulous molecular-level analysis of 
delicate markers and the early detection of vulnerable plaque[45].

Drug nanocarriers are commonly employed, either encapsulating drugs within their structures or on their 
surfaces. Various imaging nanoparticles (NPs) such as iron oxide, perfluorocarbon, gadolinium, and gold 
nanoparticles offer diagnostic capabilities for diverse cardiovascular conditions[46]. Beyond their diagnostic 
utilities, NPs hold immense potential for therapeutic applications. For instance, the successful integration of 
Rapamycin into leukosome nanoplatforms has demonstrated a significant reduction in proinflammatory 
cytokine levels and the inhibition of macrophage proliferation, thereby reshaping plaque morphology in 
mouse models[47,48]. Moreover, in contexts beyond atherosclerosis, certain NPs like cerium oxide have shown 
efficacy in mitigating oxidative stress post-myocardial infarction in murine models, thereby reducing the 
incidence of post-MI remodeling[49]. The constant progress in nanotechnology and nanomedicine heralds a 
promising future for the landscape of clinical treatments, ushering in new prospects for personalized and 
targeted healthcare interventions.

CONCLUSION
This review article illuminates the role of inflammation in atherosclerosis, myocardial injury, necrosis, and 
cardiac remodeling. The multifaceted pathophysiology of myocardial infarction underscores the intertwined 
roles of inflammation, plaque vulnerability, and thrombosis. Insights into the role of the immune response 
in atherosclerosis and inflammation highlight potential therapeutics for combating atherosclerotic disease. 
A meticulous understanding of post-MI cardiac remodeling processes can guide prognostic implications 
and the management of heart failure. Although chronic inflammatory disease indeed presents a complex 
and formidable challenge, it also suggests a broad and promising field for the development of innovative 
and efficient treatments.
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