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Abstract
Aim: This study intends to assess the occurrence of multi-drug resistant (MDR) resistant pathogens among exotic 
pets from France (2017-2019).

Methods: Isolates were identified using MALDI-TOF-MS. Antimicrobial susceptibility testing was conducted for 21
antimicrobials and  was assayed by disk diffusion methods. Statistical analyses were carried out using GraphPad
Prism® (version 9.4.1).

Results: Isolates (n = 2,100) recovered from samples of 10 small mammals (n = 1,555), 23 birds (n = 287), and 18 
reptiles (n = 208) species were identified as Enterobacterales (n = 634), Pseudomonadaceae (n = 176), Pasteurellacea 
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(n = 276), Staphylococcaceae (n = 563), Streptococcaceae (n = 259), and Enterococcaceae (n = 186). Consistent high
resistance rates were observed among diverse genera and/or species to beta-lactams, tetracyclines, and
macrolides. Notably, a significant prevalence of MDR bacteria was identified, with 22.8% (n = 479/2,100,
P < 0.05). Furthermore, 23.5% (P < 0.05) of these MDR bacteria displayed resistance to all tested antimicrobials:
E. faecalis (n = 47/49; 95.0%), E. coli (n = 19/52; 36.5%), Klebsiella spp. (n = 12/32; 37.5%), S. epidermidis
(n = 7/25; 28.0%), Streptococcus spp. (n = 6/68; 8.8%), Enterococcus spp. (n = 6/23; 26.0%), Staphylococcus 
spp. (n = 4/51; 7.8%), Lactococcus spp. (n = 4/8; 50.0%), Citrobacter spp. (n = 3/7; 42.8%), Raoultella spp. (n 
= 2/3; 66.6%), Serratia spp. (n = 1/9; 11.1%), Pasteurella spp. (n = 1/14; 7.1%), and S. xylosus (n = 1/28; 3.5%).

Conclusions: This study emphasizes exotic pets as an emergent reservoir of MDR bacteria, focusing on E. faecalis 
as a potential route of transmission of MDR bacteria to humans, other animal species and environment. Urgent 
measures, including the establishment of mandatory monitoring for antimicrobial resistance (AMR) and the 
enforcement of restrictive antibiotic use policies in exotic pets, should be implemented to mitigate the risk of 
further spread and safeguard public and animal health.
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INTRODUCTION
Antimicrobial resistance (AMR) is one of the foremost global public health threats, capturing a position 
within the top ten concerns worldwide. AMR affects human, animal, and environmental health, making it 
an urgent issue that requires a comprehensive One Health approach[1]. This focuses on the risk assessment 
of AMR’s emergence, transmission, and maintenance at the interface between all sectors (human, animal, 
agriculture, and environment)[2]. Additionally, resistant bacteria are mainly determined by selective events 
related to environments with high selective pressure, such as the hospital and animal-production setting, 
due to the misuse of antimicrobials[3-6].

Furthermore, in recent years, a new paradigm is currently emerging - the adoption of a wide range of exotic 
species, including many with origins in the wild. This trend has facilitated unprecedented interactions and 
contact between wildlife, domestic animals, and humans, leading to potential ramifications[7]. Nevertheless, 
the AMR is poorly reported worldwide in this niche[8-10].

Noteworthy, approximately 60% of existing human pathogens and over 75% of those that have appeared 
during the past two decades can be traced back to animals. Among these pathogens, a considerable number 
have been directly linked to wildlife[11].

Furthermore, the current misunderstanding of antimicrobial use and the prevalence of AMR in exotic 
animals, among other pets, led the European Union (EU) to adopt Regulation (EU) 2019/6, which 
establishes specific provisions for veterinary medicinal prescribing. One notable provision is the 
introduction of electronic prescriptions, which play a crucial role in enhancing the monitoring and control 
of antimicrobial consumption across different animal species. These ensure that pivotal information 
regarding the consumption of these compounds per animal group is captured.

Previously, the monitoring of antimicrobial consumption and AMR in veterinary medicine was primarily 
outlined in Directive No. 2003/99/EC. However, this predominantly concentrated on food-producing 
animals such as livestock and aquatic animals[12]. Notably, the scarce information available on AMR in pets 
comes from a few studies conducted by research groups, which mainly cover dogs and cats[13,14].



Cardoso et al. One Health Implement Res 2023;3:161-76 https://dx.doi.org/10.20517/ohir.2023.30                            Page 163

In order to effectively tackle the misuse of antimicrobials, EMA updated its categorization in 2017, where 
Critically Important Antimicrobials (CIA) for Human Medicine are classified into two of four categories, 
i.e., A (Avoid), which is not authorized in veterinary medicine in the EU, and B (Restrict) applied to those 
which are critically important in humans,  and their use in animals should be restricted and considered only 
when no antimicrobials of the remaining categories C or D are clinically effective. Nevertheless, these 
antimicrobials can be used in pets under exceptional circumstances, supported by justification[15].

Despite the inherent risks of using those categories of antimicrobials in pets, the stringent regulations 
surrounding their usage bring notable advantages.

It should be noted that France is among the European Union member states that have implemented an 
epidemiological network surveillance program to monitor AMR in animal pathogenic bacteria. This 
program includes data from various pets, including dogs, cats, and other species. However, the information 
related to the last mentioned group is not reported by specific species or category due to the limited number 
of antimicrobial susceptibility testing (AST) performed[16].

This study aimed to assess the prevalence of MDR pathogens between 2017 and 2019 from exotic pets 
originating from France and highlight if exotic pets are a reservoir of MDR bacteria and possess 
antimicrobial profiles that are relevant to human health.

METHODS
Database source and management
The data used for this retrospective study was provided by a veterinary clinic specializing in caring for new 
species of pets, “Clinique des NAC”, based in Toulouse, France.

The dataset details comprise information on clinical samples (animal species, sample collection date, and 
origin) and microbiology outcomes (bacterial identification and antimicrobial susceptibility testing results). 
Duplication samples, repeated results, or data with confidential information were removed to comply with 
Regulation (EU) 2016/679.

Study design and samples characterization
A total of 2050 samples were collected during clinical practice between 2017 and 2019. Clinical specimens 
were classified according to exotic pets’ division: 23 birds (n = 287), 10 small mammals (n = 1555), and 18 
reptiles (n = 208) species [Table 1]. Different clinical specimens were analyzed, such as nasal (n = 563), oral 
(n = 296), cutaneous (n = 287), ocular (n = 240), ear (n = 222), gastrointestinal tract (n = 163), 
musculoskeletal (n = 115), internal organs (n = 67), lungs (n = 59), urinary tract (n = 23), and reproductive 
tract (n = 15) [Supplementary Table 1].

Bacterial identification and study of antimicrobial agents susceptibility
Etiologic agents’ identification was performed by Maldi-ToF MS at the Human Medical Biology Laboratory 
“BIOLAB” Avenir, Toulouse, France. Antimicrobial Susceptibility Testing (AST) was held to 21 
antimicrobials [penicillins (P), amoxicillin-clavulanic acid (AMC), cefalexin (CL), ceftiofur (CTF), fusidic 
acid (FUS), gentamycin (GEN), tobramycin (TOB), neomycin (NC), framycetin (FCT), tylosin (TL), 
azithromycin (AZM), tiamulin (TIA), tetracycline (TET), doxycycline (DOX), enrofloxacin (ENR), 
marbofloxacin (MRB), clindamycin (CLM), lincomycin (LMC), chloramphenicol (CHL), florfenicol (FN), 
sulfamethoxazole-trimethoprim (SXT)] and was determined by disc diffusion method according to national 
standards (Comité de l’antibiogramme de la société française de microbiologie. Recommendations 
vétérinaires, 2018, 2019) by disk diffusion methods following European guidelines[18].

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202312/ohir3030-SupplementaryMaterials.pdf
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Table 1. Distribution of clinical specimens by animal species[17]

Mammals 
(n = 1,555)

Birds 
(n = 287)

Reptiles 
(n = 208)

Oryctolagus cuniculus 1,173 Phasianidae 53 Testudines 85

Cavia porcellus 122 Psittacus erithacus 42 Pogona vitticeps 22

Murinae 120 Ara 29 Iguanidae 15

Mustela putorius furo 75 Cacatua 21 Python regius 14

Chinchilla 25 Falco peregrinus 17 Chamaeleonidae 13

Erinaceus europaeus 14 Columbidae 16 Boa constrictor 11

Meriones unguiculatus 9 Amazona 13 Gekkonidae 9

Octodon degus 8 Melopsittacus undulatus 12 Varanidae 7

Phodopus 7 Nymphicus hollandicus 12 Elaphe 6

Mustela lutreola 2 Parabuteo unicinctus 12 Python molurus 5

Ecletus roratus 11 Gongylophis colubrinus 4

Agapornis 8 Physignathus cocincinus 4

Anatidae 7 Naja 3

Aquila chrysaetos 5 Pantherophis guttatus 3

Aquila rapax 4 Atheris hispida 2

Falco rusticolus 4 Crocodylia 2

Hieraaetus pennatus 4 Morelia spilota 2

Serinus canaria domestica 4 Epicrates cenchria 1

Strigiformes 4

Gyps rueppellii 3

Aratinga 2

Cyanoramphus auriceps 2

Falco jugger 2

“n”: Number of isolates.

Due to the lack of representativeness of some isolates to perform AST, a cut-off was used, which excluded 
genera/species with less than 20 isolates. However, all isolates were considered for the analysis of the MDR 
profile. Additionally, the classification of isolates as susceptible, resistant, or with intermediate susceptibility 
was done according to EUCAST (2019) guidelines. MDR was considered when isolates were resistant to 
three or more antimicrobial agents of different families[19].

Statistical analysis
The prevalence of AMR across genera and/or species, along with the distribution of MDR bacterial profiles, 
was assessed through statistical analysis employing the Chi-square test (P  < 0.05), within GraphPad Prism® 
(version 9.4.1.).

RESULTS
Bacterial diversity
In this study, 2,100 isolates were identified as Gram-negative (n = 1,086) and Gram-positive (n = 1,014) 
bacteria from the collection of 2,050 samples between 2017 and 2019.

A high diversity of bacterial genera and species was found in both bacterial groups. In the Gram-negative 
bacteria, 15 Genera were identified: 634 isolates belonging to Enterobacterales: Escherichia coli (n = 155), 
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Enterobacter spp. (n = 131), Klebsiella spp. (n = 111), Serratia spp. (n = 66), Proteus spp. (n = 65), Pantoea
spp. (n = 30), Citrobacter spp. (n = 23), Providencia rettgeri (n = 15), Morganella spp. (n = 14), Raoultella
spp. (n = 10), Salmonella spp. (n = 6), Rahnella spp. (n = 4), Yersinia pseudotuberculosis (n = 2) Erwinia
pyrifolia (n = 1) and Tatumella ptyseos (n = 1); 176 isolates were identified as Pseudomonadaceae:
Pseudomonas aeruginosa (n = 127) and Pseudomonas spp. (n = 49); and 276 belonged to Pasteurellaceae:
Pasteurella spp. (n = 226), Haemophilus spp. (n = 26), Mannheimia spp. (n = 16), Actinobacillus spp. (n = 6),
and Chelonobacter oris (n = 2) [Supplementary Table 2][17].

Regarding to Gram-positive bacteria, 563 isolates were identified within the Staphylococcaceae:
Staphylococcus spp. (n = 212), S. xylosus (n = 143), S. aureus (n = 122), S. epidermidis (n = 47), Gemella spp.
(n = 38) and Macrococcus caseolyticus (n = 1); 259 isolates belonged to Streptococcaceae: Streptococcus spp.
(n = 249) and Lactococcus spp. (n = 10), and finally Enterococcaceae with 192 isolates: Enterococcus faecalis
(n = 125), Enterococcus spp. (n = 58), and Vagonococcus fluvialis (n = 3) [Supplementary Table 3][17].

According to the sample’s origin, nasal, oral, cutaneous, and ear were the most frequent, followed by the
gastrointestinal tract, musculoskeletal, lungs, and internal organs specimens [Supplementary Table 1].

The most predominant Gram-negative bacteria were Escherichia coli, followed by Enterobacter spp.,
Klebsiella spp., Serratia spp., and Proteus spp., whereas Gram-positive bacteria were Streptococcus spp.,
followed by Staphylococcus spp., S. xylosus, S. aureus, and Enterococcus faecalis[17].

Antimicrobial susceptibility testing
Gram-negative bacteria susceptibility profile
Over the triennium spanning 2017-2019, isolates exhibited high resistance levels to beta-lactams (80% to
100%: Enterobacter spp.; E. coli; P. aeruginosa; Klebsiella spp.) as well as to tetracyclines (76% to 96.3%:
Klebsiella spp; E. coli; Enterobacter spp.; Serratia spp.) [Figure 1].

It is noteworthy that Enterobacterales demonstrated a notable resistance percentage to tetracyclines, notably
to DOX (E. coli: 94%/92%/97%; Enterobacter spp.: 91%/94%/100%; Klebsiella spp.: 89%/92%/89% and 
Serratia spp.: 100%/95%). In contrast, Pasteurella spp., from 2017 to 2018, showed a marked 
decline in the percentage of resistant isolates (43% and 13%, respectively)[17].

Regarding the susceptibility profile of E. coli, an increase in resistant isolates was observed in the 2017/18
biennium to fluoroquinolones (ENR: 26%/21%/28%; MRB: 20%/18%/26%), the same was observed for
Serratia spp. (ENR: 4%/11%; MRB: 0%/4%; 2018-2019)[17].

Enterobacterales and Pseudomonadaceae showed a high distribution of isolates carrying resistance to beta-
lactams (AMC - E. coli: 90%/91%/95%; Klebsiella spp.: 100%; CFT - Enterobacter spp.: 80%; P. aeruginosa:
90%/100%/100%). It is also worth noting that in 2017/18, both Proteus spp. and Klebsiella spp. had an
increase in resistance to SXT (30%/41%; 33%/43%, respectively). However, it was observed a reduce in
resistance to aminoglycosides and fluoroquinolones between 2017-2018: GEN - E. coli: 58%/42%/40%;
Enterobacter spp.: 75%/55%/50%; Klebsiella spp.: 81%/43%/40%; Proteus spp.: 38%/7%; P. aeruginosa: 33%/
28%/10%; Pasteurella spp.: 33%/15%/11%; MRB - Enterobacter spp.: 31%/20%/6%; Klebsiella spp.: 26%/34%/
15%; Proteus spp.: 20%/7%; ENR - Enterobacter spp.: 47%/31%/33%; Klebsiella spp.: 55%/57%/30%; Proteus
spp.: 25%/18%. Additionally, Pasteurella spp. showed a positive evolution in its susceptibility profile to most
of the antibiotic families tested [Table 2][17].

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202312/ohir3030-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202312/ohir3030-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202312/ohir3030-SupplementaryMaterials.pdf


Page 166                                                                                                                             Cardoso et al. One Health Implement Res 2023;3:161-76 https://dx.doi.org/10.20517/ohir.2023.30

Table 2. Antimicrobial resistance of Gram-negative bacteria recovered from exotic pet specimens[17]

Antimicrobials
Year/Sample

P AMC CL CFT AZM GEN TET DOX ENR MRB CHL FLF SXT CLD TIA

E. coli

2017, n = 43/188 18/20 7/12 34/36 10/38 9/34 7/10 8/41

2018, n = 72/271 32/35 15/18 11/26 6/11 54/59 14/67 11/62 11/12 2/12 15/56

2019, n = 40/175 20/21 1/10 6/15 8/13 31/32 11/40 10/38 9/34

Enterobacter spp.

2017, n = 39/188 18/24 9/10 31/34 17/36 12/39 13/35

2018, n = 56/271 17/31 15/20 44/47 16/51 10/49 9/38

2019, n = 36/175 8/10 10/20 33/33 11/33 2/34 9/31

Klebsiella spp.

2017, n = 34/188 13/16 5/12 25/28 18/33 9/34 2/10 10/30

2018, n = 49/271 12/12 13/30 8/15 35/38 27/47 16/47 18/42

2019, n = 28/175 8/20 5/13 17/19 8/27 4/27 3/19

Proteus spp.

2017, n = 20/188 5/13 5/20 4/20 3/10

2018, n = 29/271 1/15 5/28 2/28 9/22

Serratia spp.

2018, n = 25/271 1/15 9/10 23/23 1/24 0/23 1/21

2019, n = 29/175 2/19 20/21 3/28 1/28 0/20

Pseudomonas aeruginosa

2017, n = 38/58 9/10 7/21

2018, n = 58/77 16/16 14/50

2019, n = 31/41 12/12 3/29

Pasteurella spp.

2017, n = 77/84 17/38 1/10 6/18 5/37 31/72 9/74 3/76 0/15 0/16 2/68 3/11

2018, n = 88/109 18/49 1/11 0/14 7/48 2/42 10/79 7/83 3/87 2/69 7/28

2019, n = 61/83 8/30 1/13 3/18 4/36 1/21 8/54 5/55 2/59 1/44 1/16

P: Penicillin; AMC: amoxicillin-clavulanic acid; CL: cefalexin; CFT: ceftiofur; AZM: azithromycin; GEN: gentamycin; TET: tetracycline; DOX: doxycycline; ENR: enrofloxacin; MRB: marbofloxacin; CHL: chloramphenicol; 
FLF: florphenicol; SXT: sulfamethoxazole-trimethoprim; CLD: clindamycin; TIA: tiamulin; “n”: number of isolates.
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Over the study period from 2017 to 2019, all isolates exhibited elevated resistance rates to macrolides 
ranging from 50.9% to 98.9%, with a focus on E. faecalis and S. xylosus, followed by Enterococcus spp and 
S. aureus. Additionally, high levels of resistance were observed for beta-lactams (38.6% to 80.7%: 
Enterococcus faecalis, S. aureus, and S. xylosus) as well as tetracyclines (45.5% to 74.2%: S. epidermidis, 
S. xylosus, and E. faecalis), as depicted in Figure 2.

The observed resistance levels to fluoroquinolones displayed by Enterococci are also a cause for 
concern(ENR - E. faecalis: 92%/98%/100%; Enterococcus spp.: 85%/80%, 2017/18). In addition, a slight 
enhancement in susceptibility to MRB was detected (E. faecalis: 90%/96%/85%; Enterococcus spp.: 81%/74%, 
2018/19 and 2017/18, respectively).

Staphylococcaceae demonstrated an upward trend of resistance to beta-lactams and tetracyclines during 
2017/18 (Staphylococcus spp. - P: 57%/43%/55%; AMC: 13%/13%/38%; CFX: 19%/8%/25%; CFT: 9%/23%; 
TET: 24%/26%/40%, 2017-2018; S. epidermidis - DOX: 50%/59%)[17].

Staphylococcaceae, Streptococcaceae, and Enterococcaceae showed increased resistance to macrolides at high 
rates (AZM - S. aureus: 59%/72%/87%; S. epidermidis: 53%/82%; S. xylosus: 81%/86%; Satphylococcus spp.: 
51%/64%/71%; Streptococcus spp.: 38%/52%/63%; Enterococcus faecalis: 96%/100%/100%; Enterococcus spp.: 
67%/80%, 2017/18). However, the Staphylococaceae evolved favorably in its susceptibility profile to the 
remaining antibiotic classes[17].

Streptococcus spp. revealed a rise in resistance profile to lincosamides (CLD: 21%/38%, 2017/18). A positive 
evolution in susceptibility to beta-lactams, tetracyclines, and fluoroquinolones has also been detected (MRB: 
58%/48%/41%)[17].

It is noteworthy that Enterococci have exhibited a gradual decline in resistance to tetracyclines (TET - 
E. faecalis: 79%/60%/55%; DOX - E. faecalis: 82%/78%/71%; Enterococcus spp.: 80%/33%, 2017/18) 
[Table 3][17].

Multidrug-resistant profiles of Gram-negative and positive bacteria
It should be noted that a high percentage of isolates were MDR profile carriers: E. faecalis (63.2%, n = 79/
125) followed by S. epidermidis (53.2%, n = 25/47), Enterococcus spp. (39.7%, n = 23/58), E.coli (33.5%, 
n = 52/155), Citrobacter spp. (30.4%, n = 7/23), Enterobacter spp. (29.7%, n = 39/131), Klebsiella spp. (28.8%, 
n = 32/111), Streptococcus spp. (27.3%, n = 68/249), Staphylococcus spp. (24.0%, n = 51/212), S. xylosus 
(19.6%, n = 28/143), S. aureus (18.9%, n = 23/122), Serratia spp. (13.6%, n = 9/66), Pasteurella spp. (6.2%, n = 
14/226), and Proteus spp (4.6%, n = 3/65) [Figure 3][17].

Other isolates with low sample representativeness were also MDR carriers: Gemella spp. (7/38) Lactococcus 
spp. (n = 8/10), Raoultella spp., Salmonella spp. and Mannheimia spp. (n = 3/10, 3/6, and 3/16, respectively), 
Vagonococcus fluvialis (n = 2/3), and Rahnella spp., Actinobacillus spp., and Chelonobacter oris (n = 1/4, 1/6, 
and 1/2, respectively)[17].

The most prevalent co-resistance pattern observed in the MDR bacteria was the simultaneous resistance to 
both tetracyclines and fluoroquinolones (n = 194) [Tables 4 and 5]. Among the gram-negative bacteria, the 
most prominent co-resistance profile was the B-lactams-tetracyclines-fluoroquinolones combination 
(n = 52), followed by the aminoglycosides-tetracyclines-fluoroquinolones profile (n = 40). The first profile 
may also be associated with resistance to aminoglycosides [Table 4][17].

Gram-positive bacteria susceptibility profile
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Table 3. Antimicrobial resistance of Gram-positive bacteria recovered from exotic pet specimens[17]

Antimicrobials
Year/Sample

P AMC CL CFT AZM GEN TET DOX ENR MRB CHL FLF SXT CLD TIA

S. aureus

2017, n = 44/193 11/17 23/39 8/18 3/11 11/39 18/42 10/43 15/15 3/34

2018, n = 52/198 7/21 31/43 9/26 2/19 4/42 7/49 7/50 2/40

2019, n = 26/122 4/13 20/23 0/13 0/10 1/20 3/25 3/25 0/21

S. epidermidis

2017, n = 18/193 9/17 8/16 13/18 10/18 4/13

2018, n = 20/198 14/17 7/17 8/18 7/19 2/10

S. xylosus

2017, n = 42/193 13/15 26/32 2/21 7/12 20/38 27/39 13/41 5/31

2018, n = 37/198 8/11 24/28 0/20 5/14 14/32 4/35 2/34 5/28

Staphylococcus spp.

2017, n = 70/193 13/23 2/16 3/16 26/51 16/35 7/29 13/57 31/69 18/69 12/18 2/50 7/12

2018, n = 78/198 12/28 2/16 1/12 1/11 44/69 7/46 9/34 15/62 18/74 12/72 15/54 5/11

2019, n = 64/122 12/22 6/16 4/16 3/13 32/45 6/41 6/15 12/49 9/60 8/60 9/17 7/45

Streptococcus spp.

2017, n = 84/87 4/13 1/11 27/72 7/16 36/76 54/77 49/84 9/20 0/14 16/68 3/14 2/12

2018, n = 96/103 7/23 2/16 46/88 10/26 36/87 60/87 40/83 5/17 19/69 6/16 2/11

2019, n = 69/69 4/18 1/18 43/68 4/18 13/59 42/63 27/66 3/10 13/47

Enterococcus faecalis

2017, n = 40/62 9/10 6/18 25/26 11/14 28/34 35/38 36/40 11/11

2018, n = 58/89 8/15 4/28 43/43 9/15 35/45 55/56 48/50 6/11

2019, n = 27/41 5/12 18/18 6/11 12/17 26/26 22/26

Enterococcus spp.

2017, n = 22/62 2/13 8/12 12/15 17/20 17/21

2018, n = 28/89 5/19 20/25 7/21 24/30 20/27

P: Penicillin, AMC: amoxicillin-clavulanic acid; CL: cefalexin; CFT: ceftiofur; AZM: azithromycin; GEN: gentamycin; TET: tetracycline; DOX: doxycycline; ENR: enrofloxacin; MRB: marbofloxacin; CHL: chloramphenicol; 
FLF: florphenicol; SXT: sulfamethoxazole-trimethoprim; CLD: clindamycin; TIA:  tiamulin; “n”: number of isolates.
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BLC-TET-FL 8 AMN-TET-FL-SUL 6 BLC-TET-FL 10 BLC-AMN-FL-ANF 1

BLC-TET-ANF 4 BLC-TET-FL 4 AMN-TET-FL-SUL 7 AMN-TET-FL 1

BLC-TET-POL-FL 4 BLC-AMN-TET-FL 3 TET-POL-FL 5 TET-POL-FL 1

BLC-FL-ANF 3 AMN-TET-ANF-PL 3 TET-FL-SUL 3

BLC-TET-PL 3 AMN-TET-POL-FL 
-SUL-PL

3 TET-POL-FL-SUL 3 Actinobacillus spp.

AMN-TET-FL 3 TET-FL-SUL-PL 3 BLC-AMN-TET-FL 2 BLC-TET-FL-PL 1

TET-FL-SUL 3 BLC-AMN-TET 2 BLC-AMN-TET-FL 
-SUL

1

BLC-AMN-TET 2 AMN-FL-ANF 2 AMN-TET-POL 1 Chelonobacter oris

BLC-AMN-TET 
-FL-SUL

2 AMN-TET-SUL 2 BLC-AMN-TET 1

BLC-TET-FL-SUL 2 TET-FL-ANF 2 Serratia spp.

BLC-TET-POL 2 TET-FL-SUL 2 TET-FL-SUL 3 Mannheimia spp.

BLC-TET-SUL 2 BLC-AMN-TET 
-ANF-PL

1 TET-FL-PL 2 BLC-TET-FL 2

AMN-TET-ANF 2 BLC-AMN-TET 
-POL-FL-SUL

1 BLC-TET-FL 1 BLC-AMN-TET-FL 1

AMN-TET-FL-SUL 2 BLC-TET-FL-SUL 1 AMN-TET-FL-ANF 1

TET-FL-ANF 2 BLC-TET-POL-FL 
-ANF

1 AMN-TET-FL-ANF 
-SUL

1 Pasteurella spp.

TET-POL-FL 2 BLC-TET-POL-FL 
-ANF-SUL

1 AMN-TET-FL-SUL 1 BLC-AMN-TET 3

AMN-POL-ANF 1 TET-FL-ANF-SUL 1 BLC-TET-FL 3

AMN-POL-PL 1 TET-POL-ANF 1 Morganella spp. BLC-AMN-FL 1

AMN-TET-POL 1 TET-FL-SUL 1 BLC-TET-FL-SUL 1

TET-ANF-PL 1 Citrobacter spp. BLC-TET-SUL 1

TET-FL-ANF-SUL 1 BLC-POL-AMN-TET 
-POL-FL-ANF

1 Rahnella spp. AMN-FL-SUL 1

TET-FL-SUL-PL 1 BLC-POL-AMN-TET 
-POL-FL-ANF-SUL-PL

1 AMN-TET-FL-ANF 1 AMN-TET-FL 1

BLC-TET-FL 1 AMN-TET-FL-SUL 1

Proteus spp. AMN-TET-FL-SUL 1 Raoultella spp. TET-FL-PL 1

BLC-AMN-FL-SUL 1 AMN-TET-POL 1 BLC-TET-SUL 1 TET-FL-SUL 1

BLC-AMN-FL 
-SUL-PL

1 TET-FL-ANF-SUL 1 BLC-TET-POL-FL 
-SUL

1

AMN-FL-SUL 1 TET-POL-SUL 1 BLC-AMN-TET-POL 
-FL-ANF-SUL

1

MDR: Multi-drug resistant; BLC: beta-lactams; AMN: aminoglycosides; TET: tetracyclines; POL: polymyxins; FL: fluoroquinolones; ANF: 
anphenicols; SUL: sulphonamides; PL: pleuromutilines; “n”: number of isolates.

Table 5. Phenotypic features of Gram-positive bacteria carriers of heterogeneous MDR profiles[17]

S. aureus n Staphylococcus spp. n Gemella spp. n E. faecalis n

MAC-AMN-FL-ANF 3 BLC-MAC-TET 7 MAC-TET-SUL 3 MAC-TET-FL 29

BLC-AMN-FL-ANF 2 BLC-MAC-FL-SUL 6 MAC-AMN-FL 2 BLC-MAC-TET-FL 22

BLC-AMN-TET 2 BLC-MAC-AMN-FL 5 MAC-TET-FL-SUL 1 MAC-TET-FL-ANF 10

BLC-MAC-AMN 2 AMN-TET-FL 5 TET-FL-ANF 1 BLC-MAC-TET-FL 
-ANF

9

MAC-TET-FL 2 BLC-MAC-ANF 4 MAC-TET-FL-ANF 
-PL

4

Escherichia coli n Enterobacter spp. n Klebsiella spp. n Salmonella spp. n

Table 4. Phenotypic features of Gram-negative bacteria carriers of heterogeneous MDR profiles[17]
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BLC-MAC-AMN-TET 
-FL-ANF-SUL-PL

1 BLC-MAC-TET-FL 4 Lactococcus spp. TET-FL-ANF 3

BLC-MAC-ANF 1 FUS-AMN-FL 4 BLC-TET-FL-SUL 5 MAC-FL-ANF 2

BLC-MAC-TET-FL 1 BLC-AMN-TET 3 MAC-FL-SUL 2

BLC-MAC-TET-FL 
-ANF

1 BLC-MAC-TET-SUL 3 MAC-TET-FL 1 Enterococcus spp.

BLC-TET-FL-ANF 1 MAC-AMN-TET-FL 
-ANF

3 MAC-TET-FL 5

AMN-FL-ANF 1 MAC-TET-FL-PL 3 Streptococcus spp. BLC-MAC-TET-FL 4

AMN-TET-FL 1 BLC-MAC-AMN-TET 
-FL-SUL

1 MAC-TET-FL 19 MAC-FL-ANF 4

FUS-BLC-MAC-AMN 
-TET-FL-ANF-SUL

1 FUS-BLC-MAC-AMN 
-TET-FL

1 TET-FL-SUL 8 BLC-FL-ANF 2

FUS-MAC-FL 1 FUS-FL-ANF 1 BLC-MAC-TET-FL 7 BLC-MAC-FL 2

MAC-AMN-ANF 1 FUS-MAC-AMN 1 MAC-TET-FL-ANF 
-SUL

6 BLC-MAC-FL-ANF 2

MAC-TET-FL-SUL 1 MAC-TET-SUL 6 MAC-TET-FL-ANF 2

TET-FL-ANF 1 S. epidermidis MAC-TET-FL-SUL 5 FL-TET-ANF 1

BLC-MAC-TET-FL 7 BLC-MAC-TET-FL 
-SUL

4 TET-ANF-PL 1

S. xylosus BLC-MAC-FL 5 MAC-TET-FL-LIN 4

MAC-TET-FL 10 BLC-AMN-TET-FL 2 BLC-MAC-FL 3 Vagonococcus spp.

BLC-MAC-FL 6 BLC-MAC-AMN-TET 
-FL-SUL

2 MAC-FL-SUL-PL 3 MAC-TET-FL 2

BLC-MAC-TET-FL 5 FUS-BLC-MAC-AMN 
-TET-FL-SUL

2 BLC-FL-ANF-SUL 1

BLC-TET-FL-ANF 3 MAC-AMN-TET-FL 
-SUL

2 BLC-MAC-TET-FL 
-ANF-SUL

1

MAC-TET-FL-SUL 3 MAC-TET-FL 2 MAC-TET-PL 1

MAC-AMN-FL 1 BLC-TET-FL-ANF 1

AMN-TET-FL 1

MAC-AMN-FL 1

MDR: Multi-drug resistant; BLC: beta-lactams; MAC: macrolides; AMN: aminoglycosides; TET: tetracyclines; FL: fluoroquinolones; ANF: 
amphenicols; SUL: sulphonamides; PL: pleuromutilins; LIN: lincosamides; “n”: number of isolates.

Figure 1. Distribution of antimicrobial resistance among Gram-negative bacteria collected from exotic pet specimens (P < 0.05; Chi-
square test).
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Figure 2. Distribution of antimicrobial resistance among Gram-positive bacteria collected from exotic pet specimens (P < 0.05; Chi-
square test).

Figure 3. Distribution of MDR profile by genera or species (P < 0.05; Chi-square test)[17]. MDR: Multi-drug resistant .

high rate resistance against macrolides [Table 5][17].

Concerned results should also be highlighted within these MDR profiles, where a high number of isolates 
carrying resistance to all antimicrobials tested was detected with emphasis on Enterococcus faecalis (n = 47/
79), followed by E.coli (n = 19/52), Klebsiella spp. (n = 12/32), S.epidermidis (n = 7/25), Streptococcus spp (6/

While Gram-positive isolates demonstrate a notable co-resistance profile to macrolides-tetracyclines-
fluoroquinolones (n = 102), that may also be linked to

68), Enterococcus spp. (n = 6/23), Staphylococcus spp. (n = 4/51), Lactococcus spp. (n = 4/8), Citrobacter spp.
(n = 3/7), Raoultella spp. (n = 2/3), Serratia spp (1/9), Pasteurella spp (1/14) and S. xylosus (n = 1/28) 
[Figure 4][17].
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DISCUSSION
Gram-negative and Gram-positive bacteria-resistant carriers to critically or highly important antimicrobial
agents (e.g., aminopenicillins with beta-lactamase inhibitors, Cephalosporins, fluoroquinolones,
aminoglycosides, macrolides, and amphenicols), as considered by World Health Organization and
recognized by European Medicines Agency, were detected in this study[15,17,20].

A parallel study on exotic pets from the Iberian Peninsula reported similar results on high rates of AMR to
different antimicrobial classes. Nevertheless, data on the MDR profile was not consistent with our study
concerning the distribution of bacterial genera/species that stand out most frequently (study of Muñoz-
Ibarra et al., 2022: S. marcescens - 94.4% followed by C. freundii - 50%, M. morganii - 47.4%, K. pneumoniae -
46.6%, E. cloacae - 44% and E. coli - 38.3% vs. in this study E. faecalis - 63.2%, followed by S.epidermidis -
53.2%, Enterococcus spp. -39.65%, E.coli - 33.5%, Citrobacter spp. - 30.4% Enterobacter spp. - 29.7%,
Klebsiella spp. - 28.8%, Streptococcus spp. - 27.3%,  Staphylococcus spp. - 24.0%, S.xylosus - 19.5%, S.aureus -
18.9%, Gemella spp. - 18.4%, Serratia spp. - 13.6%, Pasteurella spp. - 6.2%, and Proteus spp 4.6%)[8,17].

Furthermore, the distribution of resistance profiles observed in this study highlighted certain disparities
compared to the official results published by France. Notably, the official reports solely encompass food-
producing animals, horses, cats, and dogs, while this work extends its focus to include exotic pets, which
hinders the possibility of making direct comparisons with the findings of this study[16,17]. In our work, Gram-
negative bacteria revealed high rates of resistance to cefalexin, disagreeing with data reported by the Agence
Nationale de Sécurité Sanitaire de l’Alimentation, de l'Environnement et du Travail (83% vs. 13%)[16,17]. The
same was observed for the fluoroquinolones, sulphonamides, and tetracyclines (ENR: 4%-8%; SXT: 66%;
TET/DOX: 80%; food-producing animals/cats/horses). Nevertheless, some Enterobacterales, P. aeruginosa,

Figure 4. Prevalence of MDR bacteria resistant to all antimicrobials tested (P < 0.05; Chi-square test). MDR: Multi-drug; nT: total 
number of MDR isolates; nR: number of isolates resistant to all antimicrobials tested; %: percentage of MDR isolates.
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This work has provided valuable data to shed light on acknowledging AMR prevalence in exotic pets. The 
resistance rates documented are noticeably higher compared to those reported at the national level. 
However, it is worth highlighting that the National Report does not present specific data concerning the 
species that were investigated in this study. Furthermore, it is noteworthy to mention that the genus 
Enterococci, which stands out for the high occurrence of MDR isolates, is not included or reported[16].

It can be justified by the policies of each country in the strictness of the implementation of guidelines, in 
some cases, being almost exclusively dependent on the responsibility of the veterinarian. However, specific 
measures have been undertaken for the CIA through a Decree publication limiting the use of 3rd- and 4th-
generation cephalosporins and fluoroquinolones, and AST is mandatory for veterinarians before using or 
prescribing those molecules. The goal of reducing the use of fluoroquinolones and 3rd and 4th-generations 
cephalosporins by 25% (between 2013 and 2016) was regulated in law and has been exceeded. Between this 
period, sales of 3rd- and 4th-generation cephalosporins and fluoroquinolones decreased by 94% and 84%, 
respectively. Tetracyclines, penicillins, sulfonamides, and macrolides are the highest-selling antimicrobials 
in France. Additionally, between 2010 and 2021, a marked decline in the consumption of antimicrobials 
used in animals in France was observed[27].

Despite global efforts to implement preventive measures, there is currently a lack of comprehensive 
monitoring through epidemiological surveillance regarding the transmission routes of MDR strains. 
Furthermore, the documented colonization events between humans and pets are not being adequately 
monitored or recorded[28]. Scientific literature has described that one of the most significant hazards to 
human health is the transfer of methicillin-resistant strains of S. aureus, vancomycin-resistant Enterococcus, 
or carbapenemases from pets[3,29]. Indeed, carbapenemases from companion animals have been extensively 
reported worldwide (19 countries from Asia, Americas, Europe, Africa, and Oceania)[29]. Nevertheless, large-
scale data on the genotype MDR profile is not available. In this regard, a recent study underscores the 
urgent requirement to prioritize scientific research and effective communication to establish a solid 
evidence base for antimicrobial treatment practices in exotic species that will play a crucial key in 
formulating appropriate recommendations for antimicrobial use in these species[30].

It is worth noting that a positive evolution in the distribution of susceptible isolates from Enterobacterales, 
P. aeruginosa, and Pasteurella spp. to aminoglycosides agreed with the National Report and other 
studies[16,17,23].

In contrast, Enterobacter spp., currently emerging in human and veterinary medicine, showed a high rate of 
resistance to aminoglycosides (GEN - 50% to 75%) in our data, contrary to what has been reported by other 
studies and National Report (dog, cat, and equines)[16,17,24]. Isolates of Enterobacterales  and 
Pseudomonadaceae stood out for their high resistance rate to beta-lactams (AMC - 100%), and thus do not 
fit with official data (cuniculture)[16,17].

Concerning Gram-positive isolates, they revealed an alarming increase in resistance rates to macrolides, 
fluoroquinolones, amphenicols, and tetracyclines, where E. faecalis stood out. In fact, several authors widely 
described this resistance profile, spanning across the animal production environment, companion animals, 
general environmental contexts, and healthy and hospitalized humans[3,5,25,26].

and Pasteurella spp. approached the officially reported data, and an increase in the distribution of 
susceptible isolates was observed above the national average[16,17]. However, other studies from Italy and 
Lebanon reported higher resistance rates in E. coli (rabbits: ENR- 67%; poultry: GEN: 70%, SXT: 59%, 
respectively)[21,22].
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Of particular concern is the simultaneous use of metal-based food additives, particularly copper 
compounds, in the diets of both food-producing animals and pets. This practice demands attention as it has 
the potential to contribute to the co-selection, persistence, and transference of AMR genes intra and inter-
species, promoting its dissemination to animals, humans, and the environment[5,25].

Our findings emphasize the emergence of exotic animals as a reservoir for MDR isolates, particularly 
focusing on E. faecalis and E. coli. Among the identified MDR profiles, resistance to CIAs was observed.

These results suggest that exotic animals could serve as potential hotspots for bacterial diversification. To 
comprehensively address this global issue, large-scale studies encompassing antimicrobial susceptibility and 
genotyping of MDR profiles in exotic pets are essential. Additionally, veterinarians play a pivotal role in 
antimicrobial consumption control as key leaders in recognizing and implementing recommendations by 
official bodies to fight AMR. This work presents the first extensive study conducted on exotic pets from 
France, providing valuable insights into the status of AMR.
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