
Allen et al. J Mater Inf 2024;4:35
DOI: 10.20517/jmi.2024.72

Journal of 
Materials Informatics

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, 
adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as 

long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

www.oaepublish.com/jmi

Open AccessResearch Article

Machine learning enhanced characterization and
optimization of photonic cured MAPbI3 for efficient
perovskite solar cells
Cody R. Allen1, Bishal Bhandari1, Weijie Xu2, Mark Lee1, Julia W. P. Hsu2,*

1Department of Physics, The University of Texas at Dallas, Richardson, TX 75080, USA.
2Department of Material Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA.

*Correspondence to: Dr. Julia W. P. Hsu, Department of Material Science and Engineering, The University of Texas at Dallas, 

800 W Campbell Road, Richardson, TX 75080, USA. E-mail: jwhsu@utdallas.edu

How to cite this article: Allen CR, Bhandari B, Xu W, Lee M, Hsu JWP. Machine learning enhanced characterization and 
optimization of photonic cured MAPbI3 for efficient perovskite solar cells. J Mater Inf 2024;4:35. https://dx.doi.org/10.20517/
jmi.2024.72

Received: 12 Nov 2024  First Decision: 3 Dec 2024   Revised: 11 Dec 2024   Accepted: 17 Dec 2024   Published: 31 Dec 2024

Academic Editors: Ming Hu, Baisheng Sa   Copy Editor: Pei-Yun Wang   Production Editor: Pei-Yun Wang

Abstract
Photonic curing (PC) can facilitate high-speed perovskite solar cell (PSC) manufacturing because it uses
high-intensity light pulses to crystallize perovskite films in milliseconds. However, optimizing PC conditions is
challenging due to its many variables, and using power conversion efficiency (PCE) as the optimization metric is
both time-consuming and labor-intensive. This work presents a machine learning (ML) approach to optimize PC
conditions for fabricating methylammonium lead iodide (MAPbI3) films by quantitatively comparing their
ultraviolet-visible (UV-vis) absorbance spectra to thermal annealed (TA) films using four similarity metrics. We
perform Bayesian optimization coupled with Gaussian process regression (BO-GP) to minimize the similarity
metrics. Refining PC conditions using active learning based on BO-GP models, we achieve a PC MAPbI3 film with an
absorbance spectrum closely matching a TA reference film, which is further verified by its crystalline and
morphological properties. Thus, we demonstrate that the UV-vis absorption spectrum can accurately proxy film
quality. Additionally, we use an AI-based segmentation model for a more efficient grain size analysis. However,
when we use the optimized PC condition to fabricate PSCs, we find that interaction between MAPbI3 and the hole
transport layer (HTL) during PC critically degrades the PSC performance. By adding a buffer layer between the HTL
and MAPbI3, the optimized PC PSCs produce a champion PCE of 11.8%, comparable to the TA reference of 11.7%.
Using UV-vis similarity metrics instead of device PCE as the objective in our BO-GP method accelerates the
optimization of PC processing conditions for MAPbI3 films.
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INTRODUCTION
In recent years, the efficiency of perovskite solar cells (PSCs) has improved remarkably, with power
conversion efficiencies (PCEs) reaching up to 26.7%[1]. Of the primary benefits for perovskites are the low
cost and outstanding optoelectronic properties of solution-processed films, making PSCs an attractive
addition to next-generation photovoltaic technologies[2]. Perovskite active layers often require a thermal
annealing (TA) step to convert a deposited precursor film into a fully crystalline film that has high
absorbance and large grains, and thus long diffusion length and high mobility[3,4]. However, this process
typically takes tens of minutes of annealing at 100 to 150 °C and is a bottleneck for large-scale PSC
manufacturing[5]. Previous works on photonic curing (PC), utilizing a xenon flash lamp to deliver intense
broadband light to the film, reduced the annealing time of perovskite films to ~20 ms[6-8]. Therefore, this
technique can be a candidate to replace TA in the scale-up manufacturing of PSCs.

All previous works on using PC for crystallizing perovskite films vary only by the amount of time over
which light illuminates the sample, the pulse length (ms), and the energy the light delivers to the sample in
one pulse, the radiant energy (J/cm2)[6,7,9-12]. In this work, we use a more sophisticated pulse that includes
micro-pulses (µpulse), which split a single pulse into several smaller sub-pulses with a specified duty cycle.
Using these additional features allows us to shape the temperature profile of the thin film, ultimately gaining
more control over how the film crystallizes. The addition of these two variables requires optimization of a
four-dimensional input space. In the case of problems with only two variables, a typical varying
one-variable-at-a-time approach is often sufficient to properly parameterize the space. However, this
method often fails in higher dimensional input spaces, where the interdependence of the variables requires
an impractically large number of test conditions to confidently reach any conclusion. Xu et al. showed
success in using Bayesian optimization coupled with Gaussian process regression (BO-GP) as an effective
tool to optimize the PC of a different methylammonium lead iodide (MAPbI3) recipe using the device PCE
as the objective for optimization[12]. While PCE is the ultimate goal of the MAPbI3 PC optimization process,
making and testing a set of PSCs can take as long as two days to complete. When coupled with the fact that
each sample needs to be produced numerous times to check for reproducibility, relying on PCE as the
objective function in BO is labor-intensive and time-consuming, presenting a bottleneck in processing
optimization.

Various studies have applied machine learning (ML) modeling along with high-throughput material,
optical, and electronic characteristics to optimize perovskite materials[13-15], e.g., finding optimal triple-cation
perovskite composition using photoluminescence[16] and employing machine vision and optical imaging of
perovskite films to predict film quality and estimate short-circuit current density[17]. In this work, we
perform BO to optimize PC conditions to crystallize MAPbI3 by measuring their ultraviolet-visible (UV-vis)
absorbance spectra, which are used as a proxy for good PSCs. We quantitatively compare the UV-vis
absorbance around the bandgap (600-850 nm) for TA and PC MAPbI3 using mathematical similarity
metrics. UV-vis absorbance is chosen because it is a fast material characterization method, in addition to
providing crucial information about MAPbI3 thin film properties. Beyond light absorption, shifts and
changes in the shape of the absorbance curve can indicate grain size and uniformity (including the presence
of pinholes, defects, and intermediaries)[18], film thickness[19], and crystallinity[20], which all play key roles in
determining the PCEs of MAPbI3 PSCs.

Furthermore, we employ a ML method to improve grain size determination. The usual ASTM E112-13 line
intercept method of grain size determination[21] is time-consuming and based on a limited amount of data
from the image. By implementing an AI image segmentation model, we use data from the entire image and
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quickly return average crystal grain sizes that agree with the results for the standard method.

Finally, we fabricate p-i-n PSCs using the optimized PC MAPbI3 condition with a NiOx hole transport layer 
(HTL) at the bottom. Unexpectedly, our optimized PC PSCs exhibit significantly lower PCEs than TA 
devices despite their similar UV-vis absorbance. Based on the film temperature simulation using Simpulse®, 
we hypothesize that this is caused by an elevated MAPbI3 film temperature during PC, resulting in 
previously known interfacial reaction between NiOx HTL and the MAPbI3 active layer[22,23]. We find that the 
use of a buffer layer on top of the NiOx alleviates this reaction, significantly improving the PCE for PSCs 
made with PC MAPbI3.

MATERIALS AND METHODS
Materials
Patterned and unpatterned indium tin oxide (ITO) substrates (10 ohm/sq) were purchased from Kintec. 
Lead iodide (PbI2) was purchased from TCI America and methylammonium iodide (MAI) was purchased 
from GreatCell Solar. All other chemicals were purchased from Sigma-Aldrich or Fisher. Chemicals were 
used as received unless otherwise specified.

Perovskite film preparation for training dataset
Samples for the training dataset were prepared on unpatterned ITO substrates. The MAPbI3 precursor was 
prepared using established procedures[24,25]. Briefly, equal molar PbI2 and MAI were dissolved in 
2-methoxyethanol (2-MOE) to make a 0.8 M solution with 40 mole % of N-methyl-2-pyrrolidone (NMP). 
The MAPbI3 precursor was deposited onto spinning ITO substrates at 5,000 rpm for 15 s in a N2-filled 
glovebox. For thermal annealed (TA) samples, the MAPbI3 precursor films were immediately annealed at 
100 °C for 10 min inside the glovebox, while the PC samples were transferred to a Pulse Forge Invent PC 
tool and pulsed in ambient air with conditions given in Supplementary Table 1.

PSC fabrication
We used patterned ITO substrates to make p-i-n PSCs. The substrates were cleaned sequentially with soapy 
water, deionized (DI) water, acetone, and isopropanol, followed by a 20-min UV-ozone treatment. The 
NiOx precursor was prepared according to the following instructions. First, 0.1 M nickel nitrate hexahydrate 
and acetylacetone in 2-MOE were stirred overnight, and the solution was filtered through a 0.2 µm 
polytetrafluoroethylene (PTFE) filter immediately before usage. 60 µL of NiO precursor was spin-coated at 
3,000 rpm for 30 s onto each sample followed by drying at 60 °C for 3 min. The temperature was increased 
to 150 °C and held for 5 min before increasing to 250 °C for calcination for a further 30 min. The hot plate 
was then turned off and the samples were allowed to cool for 20 min.

The samples were then either transferred to a glovebox for MAPbI3 precursor deposition or had a PbI2 or a 
[2-(3,6-Dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic Acid (MeO-2PACz) buffer layer added. A PbI2 
buffer layer was applied by spin coating 0.1 M PbI2 in dimethylformamide (DMF) at 3,000 rpm for 50 s in 
an N2-purged glovebox before annealing at 100 °C for 15 min[26]. The samples were then taken out of the 
glovebox and rinsed with an additional 1 mL of DMF to remove unbound residual PbI2 before being dried 
and returned to the glovebox. A MeO-2PACz buffer layer was made by spin coating a 0.5 mg/mL solution 
of MeO-2PACz in ethanol at 3,000 rpm for 30 s in ambient air before transferring to an N2 glovebox for TA 
at 100 °C for 10 min[27].

All samples were then spin-coated with the MAPbI3 precursor as described in the previous sub-section. 
Subsequently, the electron transport layer (ETL) was deposited by spin coating 20 mg/mL 
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phenyl-C61-butyric-acid methyl ester (PC61BM) in chlorobenzene at 1,200 rpm for 60 s followed by spin-
coating 60 µL of a 0.5 mg/mL bathocuproine (BCP) solution in ethanol at 4,000 rpm for 30 s. The top 
electrodes were deposited by thermal evaporation of 100 nm of Al followed by 50 nm of Ag. The diode area 
is 0.11 cm2.

Materials characterization
Device current density - voltage (J-V) measurements were taken using a 2635A Keithly source meter under 
an AM 1.5G 100 mW/cm2 illumination from an AAA solar simulator (Abet). Using a 0.0491 cm2 aperture, 
device forward scans were measured using a voltage sweep of -0.2 to 1.2 V with reverse scans sweeping from 
1.2 to -0.2 V at 70 mV/s. The following material characterization techniques were taken on TA/PC MAPbI3 
film samples on unpatterned ITO substrates. X-ray diffraction (XRD) patterns for each condition were 
measured using a Rigaku Mini Flex diffractometer at a scan speed of (3°/min) with Cu Kα radiation (λ = 
1.518 Å). Scanning electron microscope (SEM) images of MAPbI3 films were taken using a Zeiss Supra 40 
SEM at an acceleration voltage of 5 kV in a 7:3 InlenseDuo:SE2 mode. Atomic force microscopy (AFM) was 
performed on at least three 5 × 5 μm2 areas using an Asylum Research MFP-3D system. MAPbI3 film 
thickness was measured using a Keyence optical profilometer (VK-X3100) in a laser confocal mode. 
Absorbance data for all TA/PC MAPbI3 films was measured using an Ocean Optics USB 4000 spectrometer.

PC on MAPbI3 and temperature simulation
PC of MAPbI3 thin films was performed using a 500 V / 3 A PulseForge Invent system with a single lamp 
driver. Prior to pulsing a sample, the radiant energy for each PC condition was verified using a National 
Institute of Standards and Technology (NIST)-traceable bolometer. Samples were pulsed with the 
appropriate PC condition within 30 s after spin-coating. The pulsing procedure would involve securing the 
sample face-up onto the PulseForge Invent platform with two magnetic strips. Successful observation of 
crystallization is indicated by a color change from light brown to dark brown with a shiny appearance, 
similar to fully converted TA MAPbI3 films, immediately after PC.

Simulations of temperature vs. time for all PC samples were made using the built-in software SimPulse®. 
Simulated temperatures for each condition were taken on a material stack consisting of (from top down) 
MAPbI3 (270 nm), ITO (155 nm), and soda-lime glass (1.1 mm). MAPbI3 film thickness was nominally the 
same for all TA/PC annealing conditions [Table 1]. ITO and glass thickness were verified via specifications 
provided by the manufacturer. The thermal and optical properties for temperature simulations of ITO and 
glass were built into the SimPulse® database. All simulated material properties are available in 
Supplementary Table 2.

ML method
Initial sampling
Initial PC conditions were chosen using a quasi-random Latin Hypercube Sampling (LHS) for the four PC 
parameters on the PulseForge Invent tool in “µpulse” mode. The four input parameters (range, increment) 
correspond to the pulse length (10-50 ms, in steps of 0.1 ms), radiant energy (3.0-13.5 J/cm2, in steps of 
0.1 J/cm2), number of µpulses (2-30, in steps of 1), and the duty cycle (20%-70%, in steps of 5%). The ranges 
were determined by the limit of the instruments or the desired outcome. For example, radiant energy above 
13.5 J/cm2 completely ablates the MAPbI3 films. The ranges and increments for the four inputs result in over 
13 million combinations, which is impossible to investigate with traditional methods. A set of 20 initial LHS 
conditions was selected from these combinations in a space-filling method to survey the outcomes for the 
defined input space [Supplementary Table 1].

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202412/jmi4072-SupplementaryMaterials.pdf
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Table 1. A summary of material properties for MAPbI3 thin films produced by TA and the three PC conditions

Annealing 
condition

Fréchet distance 
similarity

Normalized (110) 
MAPbI3 peak intensity

σRMS 
(nm)

Average grain 
size (nm)

MAPbI3 film 
thickness (nm)

Peak interface 
temperature (°C)

TA 1.02E-02 1.0 14 ± 1 161 ± 61 270 ± 10 100

PC 03 
(6.80 J/cm2)

2.84E-02 0.67 22 ± 1 151 ± 52 270 ± 7 334

PC 25 
(11.5 J/cm2)

1.32E-02 0.85 12 ± 1 223 ± 84 263 ± 5 464

PC 04 
(12.2 J/cm2)

6.35E-02 0.94 15 ± 0 313 ± 121 280 ± 7 509

MAPbI3: Methylammonium lead iodide; TA: Thermal annealed; PC: Photonic curing.

Similarity metric calculations
Quantitative comparisons between samples made by PC and TA are evaluated using four similarity metrics: 
two versions of the Procrustes distance, Fréchet distance, and root mean square distance (RMSD). All 
similarity metrics were calculated using prebuilt or user-generated MATLAB functions. Procrustes distance 
seeks to measure the dissimilarity between two curves represented by the same number of points by 
performing a rotation, translation, and scaling factor to minimize the sum of squares distance[28]. Curves 
that only differ by rotation, translation, or scale factor will have a Procrustes distance of zero. Procrustes 
distance was calculated using the built-in MATLAB function “procrustes”[29]. To emphasize the shape of the 
absorbance curve due to translational shift, which reflects scattering or band gap change, we modified the 
MATLAB function “procrustes” to deactivate rotation and scaling. This is referred to as the modified 
Procrustes similarity metric. The discrete Fréchet distance was used to compare two curves with the same 
number of points by searching for the minimal “maximum” pairwise distance between the two curves[30]. 
The discrete Fréchet distance, as calculated for this study, is a function that returns the maximum Euclidean 
distance between two discretely defined curves with the same endpoints[31]. RMSD was used as the final 
metric to serve as a baseline by simply measuring the average magnitude of the difference between 
corresponding points and returning the results as a single number. While cosine similarity is a common 
method for comparing curves, it produced similar values for all curves and was not able to provide useful 
information. The GP model we developed was designed for maximization, and because our distance metrics 
sought to minimize, we inverted the values to properly train the model. To invert and scale each metric, we 
took the absolute value of its logarithm. Additional information about scaling is available in Supplementary 
Materials. All scripts and functions associated with this study will be available in the GitHub repository (See 
Data Availability).

Active learning based on BO-GP models
In the interest of not biasing ourselves with a single metric, we trained four models on all four metrics 
described above. The models were built in MATLAB using the “fitrgp” function with all the associated 
information about functions and model parameters available in Supplementary Materials. The model was 
trained using the Matern 5/2 kernel function with automatic relevance determination (ARD) enabled. ARD 
allowed for independent tuning of characteristic length scales and scale factors for each input dimension. 
While the GP model can update the kernel hyperparameters as it learns from the dataset[12,32], this method 
did not work well for our data. When hyperparameters were allowed to be automatically tuned, a severely 
underfit model resulted. Therefore, we fixed the kernel hyperparameters by analyzing the variation 
amplitude and spacing of data for the four input variables.

A detailed explanation of how the kernel hyperparameters were chosen for each input variable is available in 
the Supplementary Materials. Feature importance for the four independently tunable PC variables can be 
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inferred by comparing their characteristic length scales. A smaller length scale indicates that the model is 
more sensitive to changes in that feature, meaning that small variations in the feature value lead to 
significant changes in the model’s output. Conversely, a larger length scale suggests that the feature varies 
more slowly and has a less pronounced impact on the model’s predictions. Supplementary Table 3 shows 
that the length scale hyperparameters of pulse length and radiant energy are ~2 to 3× shorter than those of 
the number of µpulses and duty cycle, indicating that pulse length and radiant energy are more important.

The noise variance for each GP model was calculated as the standard deviation for each similarity metric 
from the LHS PC condition of which most samples were produced. We consider this value to be the 
uncertainty in making reproducible PC MAPbI3 films. Noise variance values were held constant during 
active learning iterations as the measurement uncertainty was not expected to change with the addition of 
new samples to the dataset. The acquisition function for the models was the upper confidence bound 
(UCB). Following the literature[12,33,34], a UCB exploration hyperparameter of b = 1 was used to maintain a 
balance between exploration and exploitation when picking the next condition. Each similarity metric 
model would suggest a new condition to try; thus, in each BO iteration, we have a total of four new 
conditions, one from each GP model. The search for optimized PC conditions is declared successful when a 
PC condition produces similarity metric values comparable to the values for two TA MAPbI3 films (~10-10 
Procrustes distances, < 2.0 × 10-2 Fréchet distance, and < 2.0 × 10-1 RMSD); i.e., the similarity is within the 
experimental uncertainty.

Grain size determination
In literature, the ASTM E112-13 line intercept method[21] is the standard for determining average grain size 
for crystalline samples. However, the ASTM method is a cumbersome process that often requires manually 
placing several random line segments onto an image and counting the number of grain boundaries that are 
crossed. The average for a single image can then be calculated after tabulating the total length of the line 
segments and the total number of boundaries crossed. The drawbacks of this method to analyze multiple 
images include its time-consuming and tedious nature, the use of only limited data, and possible bias from 
the researchers in choosing the lines. In this study, we propose an alternative approach whereby a set of 
images of the same size and magnification can be analyzed in minutes. Using an artificial intelligence (AI) 
segmentation model derived from Facebook’s open-source Segment Anything Model[35] in a Google 
Collaborate environment, we can generate masks that correspond to the location of crystalline grains within 
an SEM image. We can then extract the size of the grains and quickly display the information within our 
script. The results from the AI segmentation model are compared to those from the ASTM E112-13 
method. Our AI segmentation method is much faster in processing multiple SEM images and uses all data 
in the image.

RESULTS AND DISCUSSION
UV-vis spectra
Supplementary Table 1 displays the input variables of the PC conditions and the four similarity metrics 
when compared to the TA sample made at the same time. All PC conditions mentioned in the rest of this 
study will be referenced as PC ## where “##” represents the number of the PC condition as labeled in 
Supplementary Table 1. The first 20 rows (PC 00 to PC 19) constitute the LHS conditions used as the 
training dataset for the initial GPR models. Of note from the LHS conditions was PC 07. Condition PC 07 
(13.2 J/cm2) was a particularly high radiant energy pulse that ablated the MAPbI3 from the substrate upon 
exposure and suggested an upper limit to the allowable radiant energy delivered to the film.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202412/jmi4072-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202412/jmi4072-SupplementaryMaterials.pdf
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The first round of GP-generated conditions consists of PC 20 to PC 23 in Supplementary Table 2 and 
corresponds to a single new condition picked according to each of the four GP models. The four new 
conditions did not add any significant information about the dataset with none of the conditions producing 
a film with a new champion distance among any of the metrics. The models were rerun with the addition of 
these new data points, and the second round of GP-generated conditions (PC 24 to PC 26) were picked as 
the next most promising optimization conditions for the models trained on the first three similarity metrics 
(excluding RMSD due to overfitting). Condition PC 25, suggested by the Fréchet distance model, showed a 
particularly strong similarity to the TA reference. It was the only condition to achieve Procrustes distance 
values of 10-10 and one of only two conditions to yield Fréchet and RMS distances < 2.0 × 10-2. UV-vis 
spectra of MAPbI3 made using PC 03 (6.8 J/cm2), PC 04 (12.2 J/cm2), and PC 25 (11.5 J/cm2) are shown in 
Figure 1. PC 03, PC 25, and PC 04 are chosen to represent PC MAPbI3 films produced with low, optimal, 
and high radiant energy conditions. PC 03, a lower-energy condition, shows a clear UV-vis shift, although 
its Fréchet distance is small [Table 1]. In contrast, PC 04, a higher-energy condition, may appear not too 
different from the TA reference at first glance but has a poor Fréchet distance.

The low similarity metrics of PC 25 suggest that we have found an optimized PC condition that can produce 
MAPbI3 films with the same UV-vis absorption spectrum as the TA sample. To verify the conversion, we 
created a final round of conditions (PC 27 to PC 30) that were all picked from the model trained on Fréchet 
distances. None of the new four conditions produced similarity metrics better than PC 25, and we 
concluded that the model was properly trained. Figure 2A corresponds to the final heat maps of the 
expected maximum values of the inverted scaled Fréchet distance in each pair of input parameters of all 
available PC conditions with the color-coded points corresponding to each round of LHS and GP-generated 
PC conditions with the best condition, PC 25, marked with a “red star”. The calculation of inverted scaled 
values of the Fréchet distance is detailed in the Supplementary Materials. Figure 2A clearly shows that the 
model has converged to an “optimal area” within the input parameter space. This area generally 
corresponds to a condition with a medium pulse length (> 20 ms), relatively higher radiant energy 
(9-12 J/cm2), a large number of µpulses (> 20), and a mid-ranged duty cycle (40%-60%). The fact that the 
model is neither overfitted nor underfitted in Figure 2A strengthens our confidence that the correct 
hyperparameters were selected. The associated parity plot for measured vs. predicted outputs for the Fréchet 
distance model is shown in Figure 2B. A slope of near unity and a small y-intercept suggest that the 
surrogate model accurately represents the experimental data. The heat maps and parity plots for models 
trained on the other three metrics are shown in Supplementary Figures 1 and 2, respectively.

Material properties for photonic cured MAPbI3

To evaluate the quality of the MAPbI3 produced via PC, PC MAPbI3 films for the three conditions PC 03, 
PC 25, and PC 04 representing films produced with low, optimal, and high radiant energies were examined. 
We first performed XRD on all MAPbI3 films and a precursor film [Supplementary Figure 3]. For all 
annealed samples, tetragonal MAPbI3 perovskite is the dominant crystalline feature with strong intensities 
displayed for the (110) and (220) major reflections at 14.2° and 28.4°, respectively. The TA sample and the 
two higher radiant energy PC samples show a small PbI2 (001) peak at ~12.7°. The lower radiant energy 
condition (PC 03) and the precursor film both share a small peak around 8.2°, consistent with an 
intermediate MAPbI3 phase for 2-MOE-based, NMP-assisted MAPbI3

[24]. Previous works on PC of DMF/
dimethyl sulfoxide (DMSO)-based MAPbI3 using radiant energy similar to PC 03 also contained residual 
DMSO adducts[11]. The peak intensity for the (110) MAPbI3 crystallographic reflection normalized to the TA 
sample served as the benchmark for the crystallinity of PC samples. Table 1 shows that the crystallinity of 
PC samples increases with increasing radiant energy.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202412/jmi4072-SupplementaryMaterials.pdf
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Figure 1. UV-vis absorbance curves for TA reference and three PC ITO/MAPbI3 samples showing the discrepancy of the curves for 
different PC conditions. UV-vis: Ultraviolet-visible; PC: Photonic curing; ITO: Indium tin oxide; MAPbI3: Methylammonium lead iodide.

We measured surface roughness (σRMS) using AFM images shown in Supplementary Figure 4 with the results 
available in Table 1. The roughness of the PC 25 MAPbI3 was 12 nm, the lowest of the three PC conditions. 
Condition PC 03 displays the highest surface roughness. We postulate that this is caused by poor crystal 
grain planarization due to the sample not being exposed to enough heat for long enough during 
crystallization. Other work has shown that with perovskite thin films, higher annealing temperatures lead to 
increased grain size, which in turn reduces the surface roughness[36]. The high radiant energy sample, PC 04, 
also shows a higher surface roughness compared to PC 25 due to a larger number of small PbI2 crystals on 
the surface of the film, as evident in the SEM images in Supplementary Figure 5. Rough MAPbI3 active 
layers have been attributed to reduced adhesion and worse coverage of subsequent ETLs/HTLs[37], and an 
increased number of surface defects[38].

The morphology of MAPbI3 films is compared in Supplementary Figure 5. The SEM images for two higher 
radiant energy conditions, PC 25 and PC 04 [Supplementary Figure 5C and D], show small light-colored 
crystals, most likely PbI2, decorating the MAPbI3 grain boundaries, consistent with XRD. Previous work on 
PC MAPbI3 films made from a DMF/DMSO-based recipe also reported PbI2 crystals when processed with 
high radiant energy[7]. The SEM images of TA MAPbI3 films in Supplementary Figure 5A show no obvious 
signs of PbI2 on the surface, even though XRD for TA MAPbI3 indicates its presence in the bulk, suggesting 
that most PbI2 could be located there. Another possible explanation for the observed discrepancy between 
XRD and SEM for the TA sample could be a larger beam spot of XRD, which measures a broader area, 
whereas SEM analyzes smaller regions of the sample. Furthermore, films produced with PC 25 and PC 04 
where the PbI2 is present on the surface have a weaker PbI2 (001) reflection compared to the TA reference, 
suggesting that PbI2 segregation is kinetically limited, as previously reported[7]. The MAPbI3 film produced 
with condition PC 03 shows a rougher crystal morphology [Supplementary Figure 5B] consistent with the 
surface roughness results measured by AFM.

SEM grain size analysis using AI segmentation
In this section, we demonstrate the power of using AI segmentation to better quantify the grain size in an 
SEM image. Starting with an unedited SEM image [Figure 3A], we compare the conventional process using 
the standard ASTM E112-13 line intercept method [Figure 3B] and the new AI segmentation method 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202412/jmi4072-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202412/jmi4072-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202412/jmi4072-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202412/jmi4072-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202412/jmi4072-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202412/jmi4072-SupplementaryMaterials.pdf
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Figure 2. (A) Heat maps for the BO-GP model using inverted scaled Fréchet distance as the output metric projected on each pair of input 
variables; (B) The parity plot comparing the predicted inverted scaled Fréchet distances vs. the experimentally determined inverted 
scaled Fréchet distance for all PC conditions. BO-GP: Bayesian optimization coupled with Gaussian process regression; PC: Photonic 
curing.

[Figure 3C]. As previously mentioned, the manual ASTM method typically takes tens of minutes to hours to 
quantify the average grain size for multiple images. Using the AI segmentation method, we can quickly run 
each image through a script that generates masks for each grain in the image [Figure 3C]. The script then 
tabulates the size of each grain and outputs the average and standard deviation for each image and for the 
whole set of images. Our method of grain size determination is fast (~3 min for five images). Furthermore, 
we can compare the amount of data used between the two methods by dividing the sum of the lengths, in 
pixels, of the eight random lines used in the ASTM method in Figure 3B by the pixels of the entire image 
used in the AI segmentation method. A simple estimate shows that the AI segmentation method uses ~200 
times more pixels in calculating the average grain size. This gives us confidence that the grain size and 
distribution we obtain using the AI segmentation method reflect the morphology shown in the images more 
truthfully.
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Figure 3. (A) An unprocessed TA MAPbI3 SEM image; (B) depicts the ASTM E112-13 line method for grain size determination; (C) 
shows masks for each grain generated by the AI segmentation model in the image; (D) The average grain diameters calculated using 
the AI segmentation model for the four types of MAPbI3. The scale bar in (A)-(C) is 100 nm. TA: Thermal annealed; MAPbI3: 
Methylammonium lead iodide; SEM: Scanning electron microscope; AI: Artificial intelligence.

As shown by the red circles in Figure 3C, the current segmentation model has some issues including double 
counting masks and poor grain edge detection. We validated and confirmed the accuracy of the model by 
first comparing the average grain diameters from the ASTM 112-13 method and our AI segmentation 
method. For example, in Figure 3, the grain size for this TA MAPbI3 is 146 ± 6 nm from the ASTM E112-13 
method and 152 ± 65 nm from the AI segmentation method, comparable within the standard deviation 
range. Note that the larger standard deviation for the AI segmentation method accurately reflects the size 
distribution when all grains in the image are used for analysis. Statistical values comparing the grain sizes 
calculated from multiple images using the ASTM E112-13 and AI segmentation methods for each annealing 
condition are available in Supplementary Table 4.

We also compared the model’s output with an “ideally” segmented SEM image, which was obtained via an 
additional manual process to remove all overlapping masks. By removing overlapping masks and 
recalculating the grain size, the average diameter only differs by ± 5% compared to the automatic AI 
segmentation method. Currently, our model works without any image pre-processing and minimal post-
processing, which only removes extreme outliers such as small PbI2 crystals. Further improvement on the 
AI segmentation method for grain size determination with pre- and post-processing features is the subject 
of future work.

The grain size distributions determined using the AI segmentation method for samples made using different 
annealing conditions are shown in Figure 3D and detailed in Table 1. By setting a lower threshold for 
masks, most PbI2 crystals in PC 25 and PC 04 are filtered out and not confused with MAPbI3 grains. 
Consistent with the crystallinity data from XRD and the results of a previous study on PC MAPbI3

[7], the 
average grain size for photonic cured samples increases as the radiant energy delivered to the sample 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202412/jmi4072-SupplementaryMaterials.pdf
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increases. Generally, MAPbI3 with larger crystal grain sizes corresponds to better PSC device performance 
as larger crystal grains reduce the likelihood of recombination events and trap states at the grain boundary, 
resulting in improved charge carrier lifetime and mobility[39-42].

PSCs using optimally photonic cured MAPbI3

Next, we compare PSC performance for p-i-n type devices made using TA and PC MAPbI3 films. NiOx is 
chosen as the base HTL. All PC PSCs used the optimized PC condition PC 25. In addition to the annealing 
method, the MAPbI3/NiOx interface is chemically modified. PSC J-V characteristics for all devices are 
shown in Figure 4 and Supplementary Table 5. The champion device J-V curves are shown in Figure 5.

Using NiOx as the HTL, MAPbI3 PSCs made by TA show PCEs of 10.3% ± 1.0%, while devices made by PC 
25 show significantly worse J-V characteristics with an average PCE of 1.19% ± 0.75%. The PC PSCs 
primarily suffer in short-circuit current density (Jsc) with a still significant reduction to both open-circuit 
voltage (Voc) and fill factor, as seen in Figure 4 between black and red. These results are very unexpected as 
the Fréchet distance calculated from the UV-vis absorption spectra taken on these devices [Supplementary 
Figure 6] is small, agreeing with the results of PC MAPbI3 on ITO shown in Figure 1 and Table 1. Thus, the 
reduced J-V characteristics are not caused by the PC MAPbI3 itself. Since our device structure is p-i-n, 
MAPbI3 is deposited on the HTL, which undergoes the same processing conditions as the MAPbI3. 
Consequently, there could be an unanticipated problem at the PC MAPbI3/NiOx interface.

Previous work showed that MAPbI3 and NiOx begin to react at temperatures as low as 120 °C with 
significant damage occurring as temperatures approach 180 °C under steady state heating[23]. The reaction 
causes the decomposition of MAPbI3, severely degrading overall PSC J-V characteristics, consistent with 
what we see in PSCs with PC MAPbI3 on NiOx HTL[22]. As displayed in Table 1, the peak interface 
temperature for condition PC 25 simulated by SimPulse® reaches 464 °C, well above the threshold for 
MAPbI3/NiOx interact ion.  SimPulse®  s imulated temperature vs .  t ime curve for  PC 25 
[Supplementary Figure 7] shows that the temperature at MAPbI3/NiOx interface stays above 120 °C for ~154 
ms. PC involves non-equilibrium heating, so a direct comparison with TA using hot plates or ovens cannot 
be made. Nonetheless, we believe that these elevated temperatures and extended exposure are sufficient to 
cause the interfacial degradation using PC 25 as the processing condition for MAPbI3 on top of NiOx. We 
postulate that adding a barrier layer capable of withstanding high temperatures could buffer the MAPbI3/
NiOx interfacial reaction. Shutting off the undesired reaction could boost device J-V characteristics back to 
the level of regular TA counterparts. Previous works have suggested that using a buffer layer can serve as an 
effective barrier to improve performance and perverse the long-term stability of perovskite PSCs made with 
NiOx HTL[26,43]. Another set of PC 25 devices using a NiOx HTL and a PbI2 buffer layer were fabricated. As 
Figures 4 and 5 show, the PbI2 buffer layer did produce a moderate improvement in device PCE, jumping 
from 1.19% ± 0.75% to 5.43% ± 0.43%, but still falling far short of the TA MAPbI3/NiOx reference. These 
results give credence to the idea that the issue of decreased J-V characteristics and device PCE is not caused 
by the quality of the PC 25 MAPbI3 but more so due to the detrimental interaction of MAPbI3 and NiOx at 
high temperatures.

Next, we investigated a more recently studied HTL/buffer layer, MeO-2PACz. Depositing MeO-2PACz on 
top of the NiOx HTL and processing MAPbI3 using PC 25 produce PSC devices with PCEs slightly better 
than the TA MAPbI3/NiOx reference [Figures 4 and 5, Supplementary Table 5]. Photonic cured PSCs with 
NiOx HTL + MeO-2PACz show a Jsc of 16.5 mA/cm2, closing in on the 17.2 mA/cm2 we report for the TA 
MAPbI3/NiOx in Supplementary Table 5. The Voc and fill factor for the PC 25 sample are boosted slightly 
compared to the TA device. To verify that PC 25 is the optimal PC condition for MAPbI3 processing, we 
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Figure 4. Box plots for the statistical analysis of J-V characteristics for all PSC devices produced with different combinations of HTLs 
and annealing conditions. All PSCs contain NiOx as the base-HTL. Plot labels contain the MAPbI3 annealing type, and any addition of 
HTL buffer layer. MeO-2PACz is abbreviated as SAM in this plot’s labels. PSC: Perovskite solar cell; HTLs: Hole transport layers; 
MAPbI3: Methylammonium lead iodide; SAM: Self-assembled monolayer.

Figure 5. Champion forward and reverse J-V scans for devices produced with different HTL combinations and different MAPbI3 
annealing conditions. MeO-2PACz is abbreviated as SAM in this plot’s labels. HTL: Hole transport layer; MAPbI3: Methylammonium 
lead iodide; SAM: Self-assembled monolayer.

compared PSCs fabricated on NiOx HTL + MeO-2PACz using PC 03, PC 25, and PC 04. The J-V parameters 
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[Supplementary Figure 8] show that PSC fabricated on NiOx + MeO-2PACz using PC 25 performed better 
than those made using other PC conditions. The results for TA devices fabricated on NiOx HTL + MeO-
2PACz are also included.

CONCLUSIONS
In this work, we demonstrate that UV-vis absorbance can function as an effective metric for training a 
BO-GP model to predict optimal PC conditions for making high-quality MAPbI3 films. We identified an 
optimal MAPbI3 PC condition (PC 25), which produces a UV-vis spectrum closely matching that of the TA 
MAPbI3, achieving similarity metric values significantly better than other PC conditions. Material 
characterization shows that PC 25 produces smooth MAPbI3 films with large grains and high crystallinity. 
Additionally, we used an AI-based segmentation model to determine grain size from SEM images, offering a 
quick and more effective analysis alternative to the standard ASTM E112-13 line intercept method. As a 
final test, we present p-i-n PSC results using NiOx as the HTL. Despite the high quality of MAPbI3 films 
made using PC 25, the PSC performance is degraded due to MAPbI3/NiOx interfacial reaction from PC 
processing. Inserting a buffer layer of MeO-2PACz brings average PCEs comparable to that of PSCs made 
with TA MAPbI3. These results indicate the importance of a high-quality perovskite active layer and 
possible interactions between the active layer and charge transport layers that cannot be predicted by the 
quality of perovskite films alone. When developing a ML framework for process optimization, careful 
consideration of device architecture and adjacent materials is needed to define the objective for the BO-GP 
models.
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