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Abstract
Despite our growing understanding of the genomic landscape of diffuse pleural mesotheliomas (DPM), there has 
been limited success in targeted therapeutic strategies for the disease. This review summarizes attempts to 
develop targeted therapies in DPM, focusing on the following targets being clinically explored in recent and 
ongoing clinical trials: vascular endothelial growth factor, mesothelin, BRCA1-associated protein 1, Wilms tumor 1 
protein, NF2/YAP/TAZ, CDKN2, methylthioadenosine phosphorylase, v-domain Ig suppressor T-cell activation, 
and argininosuccinate synthetase 1. Although preclinical data for these targets are promising, few have 
efficaciously translated to benefit our patients. Future efforts should seek to expand the availability of preclinical 
models that faithfully recapitulate DPM biology, develop clinically relevant biomarkers, and refine patient selection 
criteria for clinical trials.
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INTRODUCTION
Diffuse pleural mesothelioma (DPM) is an aggressive malignancy of the mesothelial lining of the pleural 
cavity with unacceptably poor outcomes, with less than 10% of patients surviving past 5 years[1]. 
Approximately 3,300 patients are diagnosed annually with DPM in the United States, and globally, the 
incidence continues to rise in association with asbestos exposure[2-5]. Despite recent advances, DPM remains 
a recalcitrant disease, with even patients with early-stage disease having a high rate of recurrence despite 
aggressive multimodality therapy[6,7].

DPM has been the subject of extensive genomic analyses making it a rich field for the pursuit of targeted 
therapy. Whole exome sequencing of malignant mesotheliomas identifies significant mutational burdens in 
BAP1, NF2, TP53, and SETD2, amongst many others[8]. In addition to this extensive genomic profiling, 
immunohistochemistry (IHC) has confirmed protein targets for investigation, such as WT1[9,10], 
mesothelin[11,12], BAP1[13-15], and VISTA[16,17] and histologic subtype has shown both prognostic and possibly 
predictive implications[18]. As we gain further insights into the molecular landscape of mesothelioma, there 
is hope that targeted therapeutic strategies akin to those seen in non-small cell lung cancers over the past 
two decades will soon follow[19].

However, despite the myriad of efforts to drug these promising targets, in 2022, there exists not a single 
FDA-approved targeted therapy for patients with DPM. Unresectable/metastatic DPM is traditionally 
treated with systemic therapies. There are currently only two approved options for patients with DPM, both 
of which are in the first-line (1L) setting: platinum doublet chemotherapy[20] and combination immune 
checkpoint inhibitor (ICI) therapy with ipilimumab and nivolumab[18]. Both regimens are biomarker 
agnostic, with the latter showing preferential benefit in non-epithelioid histology (biphasic and 
sarcomatoid) but remaining an option for all histologic subtypes. There are currently no approved 
treatment options for patients after progression on 1L therapy.

With our growing understanding of the genomic landscape of mesotheliomas[8,16,21,22], the field is focused on 
integrating these findings into the care of our patients. Efforts to comprehensively integrate next-generation 
sequencing (NGS) findings as a prognosticator for patients with mesothelioma are ongoing, typified by the 
recently published Oncocast-MPM, an open-source, web-accessible, machine-learning risk-prediction 
model incorporating genomic profiling from patients with DPM which was validated to provide more 
comprehensive prognostication[22]. At present, there are no approved nor recommended, genomically 
defined targeted therapies for patients with DPM. Targeted strategies are, at times, used off-label in the 
proper clinical settings, including in those rare mesotheliomas harboring ALK rearrangements[23-25], NTRK 
fusions[26], and BRAF V600E[27] mutations. These approaches have not been systematically evaluated as 
therapeutic drug targets in mesothelioma, and the use of targeted medications for these indications is 
extrapolated from data in other malignancies[28]. Further exploration of predictive markers and their 
actionability is needed.

In this review, we will focus on oncogenic targets under active clinical investigation for patients with DPM 
[Figure 1].

THERAPEUTIC TARGETS OF INTEREST
Vascular endothelial growth factor (VEGF): activation of VEGF and its signaling cascade is critical for 
tumorigenesis and cell survival[29] across solid tumor types. Inhibition of VEGF signaling has been 
extensively studied in DPM and is accomplished using targeted antibodies or VEGF tyrosine kinase 
inhibitors (TKIs). Evidence supporting the use of VEGF inhibitors in DPM has led to their incorporation 
into National Comprehensive Cancer Network (NCCN) guideline recommendations[30].
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Figure 1. Graphical abstract illustrating the targets of interest described. mAB: Monoclonal antibody; TKI: tyrosine kinase inhibitor; 
msln: mesothelin; ADC: antibody-drug conjugate.

VEGF inhibitory (VEGFi) antibodies. The phase 3 MAPS trial randomized 448 patients with DPM to receive 
cisplatin and pemetrexed with or without the anti-VEGF-A antibody bevacizumab[31]. In this study, median 
overall survival (OS) was significantly longer in the bevacizumab combination arm (18.8 vs. 16.1 months, 
HR 0.77, [95%CI: 0.62-0.95], P = 0.02), leading to the inclusion of the triplet therapy regimen in guidelines 
for 1L recommended treatments in advanced DPM[30,32]. The MAPS trial predates the integration of 1L 
ipilimumab and nivolumab as a treatment option for patients with DPM and bevacizumab was not allowed 
in the comparison arm of the CheckMate 743 trial[18]. As such, a direct comparison of platinum/pemetrexed/
bevacizumab to dual checkpoint blockade cannot be made. With the integration of immunotherapy into 
routine practice and the availability of data suggesting an immunomodulatory benefit of VEGFi antibodies 
with ICI[33], the role of VEGFi antibodies in the 1L setting needs to be re-explored. To that end, the MAPS 
regimen is currently under investigation in combination with ICI in the 1L phase 3 BEAT-meso trial 
(NCT03762018) evaluating, in a 1:1 randomization, platinum, pemetrexed, bevacizumab with or without 
atezolizumab.

Given evolving 1L treatment options in DPM, there is a need to evaluate the utility of VEGFi antibodies in 
later lines of treatment. The recent double-blind, multicenter, randomized phase 2 RAMES trial examined 
the inclusion of the anti-VEGFR-2 antibody, ramucirumab, with a standard later-line chemotherapy option, 
gemcitabine. The study randomized 161 patients to receive gemcitabine with either placebo or 
ramucirumab. Median OS was significantly longer in the gemcitabine + ramucirumab arm (13.8 vs. 7.5 
months, HR 0.71 [95%CI: 0.59-0.85], P = 0.03)[34]. A phase 2 trial of atezolizumab and bevacizumab in the 
later-line setting for patients with peritoneal mesothelioma, a clinically[35] and genomically[21,36] distinct 
malignancy of the abdominal cavity, found a promising response rate of 40% with a median duration of 
response of 12.8 months[37]. These trials lend credence to the argument that VEGF inhibitors are effective 
treatment options for patients with mesotheliomas. With the movement of ICI into the 1L setting for some 
patients, it is difficult to know where to incorporate these agents, and in what combinations, without further 
prospective studies.
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VEGF TKIs. In contrast to VEGFi antibodies, VEGF TKIs have failed to demonstrate improved efficacy 
compared to standard-of-care regimens [Table 1]. The 1L phase 2 SWOG S0905 trial of cediranib (TKI with 
activity against VEGF and PDGFR) with cisplatin and pemetrexed did not show significant clinical efficacy 
over chemotherapy alone[38,39] and the phase 2 trial of cediranib monotherapy in patients with ≤ 1 prior line 
of treatment showed modest clinical benefit but at an intolerable dose level[40]. The 1L phase 3 LUME-Meso 
trial of cisplatin/pemetrexed with nintedanib (a multi-kinase TKI with activity against PDFG, FGF2, TGFβ, 
and VEGF) failed to show significant clinical benefit compared to chemotherapy[41], and the phase 2 trial of 
nintedanib in previously treated patients with DPM did not meet its prespecified progression-free survival 
(PFS) endpoint[42]. To date, there are no approved nor recommended VEGF TKIs for patients with DPM.

Mesothelin: Mesothelin (MSLN) is a membrane-anchored cell surface glycoprotein that is highly expressed 
in several solid tumors including DPM[11,43]. In preclinical models, MSLN overexpression promotes 
tumorigenesis and tumor invasion[12,44]. Over the last several decades, there have been several attempts to 
therapeutically exploit the overexpression of MSLN in DPM using multiple novel constructs, including 
antibody-drug conjugates (ADCs), immunotoxins, and adoptive cellular therapies[45].

Mesothelin Antibodies. Trials of MSLN targeting antibodies have produced mixed results. The chimeric, 
humanized IgG1 monoclonal antibody amatuximab was evaluated in a phase 2, single-arm trial in DPM, 
where it was combined with cisplatin and pemetrexed for six cycles, followed by maintenance amatuximab 
until disease progression. While the combination was found to be tolerable, the primary endpoint of PFS 
was not improved in the treatment arm compared to chemotherapy alone, and the construct has not 
progressed to a phase 3 investigation[46].

SS1P is a mesothelin-targeting antibody attached to a truncated fragment of Pseudomonas exotoxin A. With 
preclinical data suggesting pseudomonas exotoxin A induces immunogenic cell death in DPM[47], there was 
a rationale to test whether SS1P could lead to a tolerable therapeutic index and efficacy signal in DPM. The 
drug was evaluated in a phase 1 trial in combination with cisplatin and pemetrexed for 1L treatment of 
DPM[48]. In 20 evaluable patients, there was an initial efficacy signal with an overall response rate of 60%; 
however, neutralizing antidrug antibody formation within the first cycle limited its initial clinical 
development in DPM. Lymphodepleting regimens (pentostatin/cyclophosphamide) to delay antidrug 
antibody formation showed some early promise[49] but, at present, are not being actively investigated in 
larger prospective trials for DPM.

A second-generation immunotoxin, LMB-100, was subsequently designed to be less immunogenic than 
SS1P[50] to avoid the development of neutralizing antibodies, which were thought to limit single-agent 
activity. A phase I trial of LMB-100 in advanced MSLN-expressing cancers found that the drug was indeed 
less immunogenic. However, most patients developed antidrug antibodies after two cycles of the drug, 
prompting the researchers to conclude that this formulation would have similarly limited single-agent 
activity as SS1P[51]. While a planned phase II study examining LMB-100 in combination with 
pembrolizumab (NCT03644550) in the later-line setting was withdrawn due to the evolving 1L landscape 
after the integration of CheckMate743, a study evaluating the role of normothermic intrapleural LMB-100 
after cytoreductive surgery (NCT0537825) is soon to open.

Under the current investigation is the novel MSLN-directed protein construct HPN536. HPN536 is a T-cell-
activating protein-based construct targeting MSLN-expressing tumor cells and engaging CD3ε on T cells via 
an albumin linker. HPN536 tethers T cells and MSLN-expressing target cells together, enabling the 
formation of a cytolytic synapse resulting in T cell-dependent cellular cytotoxicity (TDCC) with preclinical 
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Table 1. VEGF TKIs in mesothelioma

NCT ID Phase Product Target patient population Outcomes Reference

NCT01064648 2 Cisplatin/pemetrexed 
+/- cediranib

92 patients with treatment naïve 
unresectable DPM

Combination vs. chemotherapy alone: 
PFS: 6.9 vs. 5.6 months (HR 0.77, 95%CI: 
0.59-1.02); OS: 10.0 vs. 8.5 months (HR 
0.88, 95%CI: 0.65-1.17)

[38,39]

NCT00309946 2 Cediranib 51 patients with DPM and ≤ 1 prior line 
of therapy

PFS: 1.8 months, OS: 4.4 months. 45 mg 
dose level improved response rate but 
intolerable toxicity

[40]

NCT01907100 3 Cisplatin/pemetrexed 
+/- nintedanib

458 treatment naïve patients with 
DPM randomized 1:1 to chemotherapy 
alone and combination

Combination vs. chemotherapy alone: 
PFS: 6.8 vs. 7.0 months (HR 1.01, 95%CI: 
0.79-1.30)

[41]

NCT02568449 2 Nintedanib 20 patients with DPM who previously 
received chemotherapy

PFS: 1.8 months; OS: 4.2 months [42]

DPM: Diffuse pleural mesothelioma; PFS: progression-free survival; OS: overall survival; HR: hazards ratio; CI: confidence interval.

models demonstrating increased cell death and tumor growth inhibition[52]. A phase I trial investigating the 
safety and recommended phase 2 dose (RP2D) of this drug in MSLN-expressing advanced tumors, 
including DPM, is open but closed to recruitment (NCT03872206).

Mesothelin Antibody-Drug Conjugate (ADC). Anetumab ravtansine is an ADC comprised of an IgG1 anti-
MSLN antibody conjugated to the maytansine derivative tubulin inhibitor DM4 via a reducible disulfide 
linker. The payload induces cell cycle arrest and apoptosis and has significant antitumor activity in 
preclinical xenograft mesothelioma models[53]. The initial phase 1 trial noted a promising preliminary partial 
response rate of 31%[54], prompting the randomized phase II ARCS-M trial examining anetumab ravtansine 
for the treatment of mesothelin-positive DPM. The trial randomly assigned 248 patients whose disease had 
progressed on prior platinum/pemetrexed with or without bevacizumab to receive anetumab ravtansine or 
vinorelbine. Unfortunately, the primary endpoint of PFS was no better with anetumab ravtansine than 
vinorelbine and there was no significant difference in OS between the groups [Table 2][55]. This large 
negative prospective trial highlights the importance of further refining biomarker development and 
mesothelin-ADCs in DPM to better characterize those most likely to benefit[57]. Another phase I/2a 
mesothelin-ADC clinical trial, BMS-986148, was recently published, showing an acceptable safety profile 
and a modest signal of clinical benefit in patients with DPM, particularly when used in combination with 
nivolumab (NCT02341625; Table 2)[56]. Ongoing preclinical investigations seeking to refine mesothelin-
ADCs are underway[58,59].

Mesothelin Chimeric Antigen Receptor (CAR) T Cells: CAR-T cells are engineered to identify cancer-specific 
cell surface antigens and promote cell lysis via activation of an intracellular domain of the T cell receptor-
CD3 complex and, in some cases, additional intracellular co-stimulatory molecules[60]. CAR-T cell products 
are now available for patients with several different types of refractory hematologic malignancies[61-64], and 
there is keen interest in exploring their applicability in solid tumors[65]. Given the overexpression of MSLN 
in DPM, anti-MSLN CAR-T cell constructs are in active development[65-68], with several approaches 
examining these agents either as single agents or in combination under investigation.

While CAR-T therapy can lead to a durable response in hematologic malignancies, several qualities of solid 
tumors have proven problematic, including heterogeneous antigen presentation, an inhospitable tumor 
microenvironment, and T-cell infiltration into a solid tumor[65,66,69].  In DPM, there have been multiple 
studies evaluating different MSLN-targeting CAR-T cell constructs and administration techniques (systemic 
vs. intrapleural; Table 3). Evaluations to date have mostly been in phase I clinical trials focused on safety and 
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Table 2. Mesothelin-ADCs in mesothelioma

NCT ID Phase Product Target patient population Outcomes Reference

NCT02610140 2 Anetumab 
ravtansine

248 patients with DPM randomized 2:1 to 
anetumab ravtansine versus vinorelbine

Anetumab ravtansine vs. vinorelbine: 
PFS: 4.3 vs. 4.5 months (HR 1.22, 95%CI: 
0.85-1.74); OS: 11.6 vs. 9.5 months (HR 
1.07, 95%CI 0.76-1.51)

[55]

NCT02341625 1/2a BMS-986148 
+/- nivolumab

96 patients received BMS-986148 
monotherapy (n = 44 with DPM) and 30 
received combination (n = 16 with DPM)

Monotherapy: DCR: 56% (n = 14) and 
ORR: 4% (n = 1) in DPM patients 
Combination: DCR: 85% (n = 11) and 
ORR: 23% (n = 3) in DPM patients 

[56]

DPM: Diffuse pleural mesothelioma; PFS: progression-free survival; OS: overall survival; HR: hazards ratio; CI: confidence interval; DCR: disease 
control rate (stable disease + partial response).

tolerability, limiting our ability to speak to definitive efficacy. Furthermore, exploration of the combination 
of a CD28-costimulated mesothelin CAR-T with the iCaspase-9 safety gene and pembrolizumab has shown 
preliminary promise with a median OS of 23.9 months, 8 patients achieving stability for 6 months or more, 
and 2 patients with a complete response[75]. Larger prospective studies of novel CAR-T constructs and 
combinations are needed to better determine the safety, efficacy, and proper patient population to deploy 
this exciting treatment strategy.

BRCA1-associated protein 1 (BAP1): BAP1 is a ubiquitin c-terminus hydrolase[14] which functions as a key 
tumor suppressor based on its role in both epigenetic modulation and DNA damage response[77]. Somatic 
and germline mutations in BAP1 are associated with multiple solid malignancies, including a significant 
proportion of mesotheliomas[16,78-80], melanomas (uveal and cutaneous), clear cell renal cell carcinomas, and 
lung adenocarcinomas[14,81]. BAP1 inactivation increases the expression of enhancer of zeste homolog 2 
(EZH2; also known as histone-lysine N-methyltransferase), which has itself been implicated as an oncogenic 
driver in DPMs[82]. Thus, BAP1 loss may sensitize such tumors to EZH2 inhibition. With nearly two-thirds 
of DPM tumors having inactivation of BAP1,[16,82] it is a key biomarker under clinical development [Table 4].

The EZH2 inhibitor tazemetostat is approved for later-line treatment of constitutively EZH2-activated 
tumors including epithelioid sarcomas with INI1/SMARCB1 loss[89] and follicular lymphomas harboring 
EZH2 mutations[90]. Given the enrichment of BAP1 inactivation in DPM, tazemetostat was explored in 
BAP1-inactivated DPM in a single-arm open-label phase 2 trial in 74 patients who were previously treated 
with platinum-based chemotherapy[83]. While the response rate was low (ORR 3% [n = 2]), the disease 
control rate (DCR) was 54% at 12 weeks. This trial highlights a rationally designed targeted therapeutic 
approach for patients with DPM. Studies are ongoing to refine the population most likely to benefit from 
tazemetostat, as well as investigations into novel combinations.

Other efforts have focused on leveraging the role BAP1 plays in DNA repair and attempted to create 
conditions of synthetic lethality by employing poly ADP-ribose polymerase (PARP) inhibitors. PARP 
inhibitors have known efficacy across several solid tumors including approval in patients with ovarian[91,92] 
or breast cancers[93] harboring a germline BRCA mutation. The non-comparative multi-arm phase 2 
Mesothelioma-Stratified Therapy 1 (MiST 1) trial was a novel clinical research platform study designed to 
stratify patients with DPM to targeted therapies after progression on first-line chemotherapy. Arm 1 of this 
trial enrolled 26 patients with cytoplasmic-BAP1-deficient or BRCA1-deficient mesotheliomas after 
platinum-based chemotherapy[85]. Patients received oral rucaparib twice daily for 24 weeks. DCR was 58% at 
12 weeks and 23% at 24 weeks; partial responses were observed in three patients (12%). Furthermore, a 
similar single-arm phase II trial enrolled 23 patients with refractory mesothelioma to receive the PARP 
inhibitor olaparib[86]. Patients in this trial were not selected by BAP1 alterations/loss (although 14 [61%] 
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Table 3. Anti mesothelin CAR-T cell US clinical trials in mesothelioma

NCT ID Phase Product Target patient population Outcomes Reference

CAR-T +/- chemotherapy conditioning

NCT01355965 1 Autologous mesothelin re-directed T cells 18 patients with DPM. 4 Patients treated with anaphylaxis, off-target 
toxicity 

[70,71]

NCT02159716 1 Lentiviral transduced CART-mesothelioma cells 15 patients with DPM, ovarian ca, pancreatic ductal ca. Cells well tolerated, expanded in blood, limited 
clinical activity

[72]

NCT03054298 1 Lentiviral transduced fully human CART-mesothelioma cells Up to 15 patients with mesothelin-expressing refractory 
DPM, lung cancer, and ovarian ca.

Study Ongoing

NCT04577326 1 M28z1XXPD1DNR: CAR T-cell with cell-intrinsic PD-1 blockade 7 patients with DPM. Study Ongoing [73]

NCT01583686 1 Anti-mesothelin CAR transduced peripheral blood lymphocytes + 
aldesleukin (IL-2) 

15 patients with mesothelin expressing metastatic 
disease.

Study Terminated for poor accrual

NCT03608618 1 MCY-M11: mesothelin targeting CAR-T- Intraperitoneal 14 patients with ovarian Ca, primary peritoneal or 
fallopian tube ca, and peritoneal mesothelioma.

Following the treatment of 11 patients with initial 
feasibility and safety reported, study terminated- 
sponsor priority. 

[74]

NCT05568680 1 SynKIR-110: 
T-cell transduced with mesothelin KIR-CAR

42 patients with ovarian Ca, primary peritoneal Ca, 
ovarian or fallopian tube Ca, mesotheliomas, 
cholangiocarcinoma

Study Ongoing

NCT05451849 1/2 TC-510 
T cell expressing both a mesothelin-CD3ε subunit and PD-1:CD28 
switch receptor

115 patients with advanced mesothelin-expressing 
tumors including DPM

Study Ongoing

CAR-T + Immune Checkpoint Inhibition

NCT02414269 1/2 CD28-costimulated mesothelin CAR with the Icaspase-9 safety 
gene (IcasM28z) + pembrolizumab (mesothelioma cohort only)

113 patients with mesothelin expressing malignant 
pleural disease.

19 DPM patients: 2 complete metabolic response 
on PET, 5 partial response, 4 stable disease. 
Study Ongoing.

[75]

NCT03907852 1/2 Gavocabtagene autoleucel (autologous anti-mesothelin TCR 
fusion construct [TRuC]) with and without nivolumab or 
ipilimumab/nivolumab

175 patients with advanced mesothelin-expressing 
cancers

Tumor regression in first 5 patients treated. 
 
Study ongoing. 

[76]

CA: Cancer; CAR: chimeric antigen receptor; DPM: diffuse pleural mesothelioma.

patients in the trial had BAP1 alterations). In this unselected population, olaparib had limited activity, with one (4%) partial response. In this small sample, 
germline BAP1 mutations were associated with decreased OS compared to wild type (4.6 vs. 9.6 months, respectively, P = 0.004).

Base excision repair (BER) is a coordinated cellular process by which damaged DNA base pairs can be excised and repaired[94]; inhibition of this pathway in a 
tumor with DNA damage repair deficiencies, such as BAP1 loss, could lead to synthetic lethality. A recent phase 1 trial examined the safety and activity of 
TCR102, a BER pathway inhibitor, in combination with chemotherapy for the treatment of multiple advanced solid tumors[87]. In the DPM cohort, 14 patients 
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Table 4. BAP1 targeted therapy in mesothelioma

NCT ID Phase Product Target patient population Outcomes Reference

NCT02860286 2 Tazemetostat; EZH2 
inhibitor

74 patients with previously treated 
BAP1 inactivated DPM 

PFS: 18 weeks; OS: 36 weeks; ORR 3%; 
DCR: 54% at 12 weeks

[83]

NCT04104776 1/2 CPI-0209; EZH2 
inhibitor

213 patients with advanced solid 
tumors and lymphomas including a 
cohort for BAP1 loss mesotheliomas

Study Ongoing [84]

NCT03654833 2 Rucaparib; PARP 
inhibitor 

26 patients with previously treated 
BAP1-deficient or BRCA1-deficient 
mesotheliomas

DCR at 12 weeks: 58%; manageable 
toxicity 

[85]

NCT03531840 2 Olaparib; PARP 
inhibitor

23 patients with previously treated 
mesotheliomas, regardless of BAP1 
status

All comers: PFS: 3.6 months and OS: 8.7 
months 
Germline BAP1 mutation (n = 4) vs. 
wildtype: PFS: 2.3 vs. 4.1 months (P = 
0.02); OS: 4.6 vs. 9.6 months (P = 
0.004) 

[86]

NCT05455424 2 Niraparib; PARP 
inhibitor

84 patients with previously treated 
DPM randomized to niraparib vs. active 
symptom control

Study Ongoing

NCT04515836 2 Olaparib; PARP 
inhibitor

56 patients with previously treated 
DPM harboring mutations in 
homologous recombination repair

Study Ongoing

NCT02535312 1/2 Pemetrexed + 
TCR102; BER pathway 
inhibitor

16 patients with previously treated 
DPM

PFS: 4.3 months; 2 patients with partial 
responses

[87]

NCT04940637 2 niraparib + 
dostarlimab

70 patients with PD-L1 +, HRd + MPM 
or NSCLC 

Study Ongoing [88]

DPM: Diffuse pleural mesothelioma; PFS: progression-free survival; OS: overall survival; DCR: disease control rate (stable disease + partial 
response); ORR: overall response rate.

were treated with TCR102 in combination with pemetrexed resulting in two (14%) partial responses and 
acceptable toxicity at the RP2D, meeting the prespecified criteria to warrant further exploration. A phase 2 
continuation of this trial is ongoing (NCT02535312).

Wilms Tumor 1 Protein (WT1): WT1 is a human self-antigen presented on the surface of cells, which plays 
a role in regulating cell proliferation and tumorigenesis. WT1 is limited to low-level expression in normal 
adult tissues, but the expression is enriched in several tumors, including 72%-93% of DPM[9,10,95-98], making it 
a provocative target for therapeutic exploitation.

A randomized phase 2 trial sought to evaluate the efficacy of a WT1 targeting peptide vaccine, 
Galinpepimut-S, in the adjuvant treatment of DPM. The study randomized 41 patients who had completed 
multimodality therapy for resectable DPM to either standard-of-care adjuvant chemotherapy and 
granulocyte-macrophage colony-stimulating factor (GM-CSF) with or without Galinpepimut-S. The study 
found the vaccine to be tolerable and a signal of improved OS (22.8 vs. 18.3 months) and PFS (10.1 vs. 7.4 
months) compared to standard adjuvant chemotherapy alone; however, due to the control arm closing early 
for futility and the trial not being designed for a direct comparison of the two arms, a definitive efficacy 
signal could not be ascertained[99].  Further exploration of the WT1 vaccine is underway in a phase 1 study 
investigating the potential synergistic effects of Galinpepimut-S in combination with the anti-PD-L1 agent 
nivolumab for the treatment of patients with relapsed/refractory DPM (NCT04040231).

NF2/YAP/TAZ: Genetic alterations in neurofibromatosis type 2 (NF2) are found in approximately 40% of 
DPM specimens[100-102].The NF2 gene encodes moesin-ezrin-radixin-like (Merlin) tumor suppressor, and its 
inactivation is associated with the loss of Merlin protein expression in mesothelioma cells[103-105]. Merlin 
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regulates the HIPPO pathway by negatively regulating transcriptional co-activators YAP and TAZ through 
the E3 ubiquitin ligase CRL4DCAF1; YAP and TAZ disinhibition results in an oncogenic cascade predisposing 
to the development of DPM[106-109]. Due to the genomic enrichment of NF2 alterations in DPM 
(19%-25%)[8,22], several trials evaluating this pathway in patients with NF2-altered DPM have been conducted 
or are underway [Table 5].

The oral small-molecule focal adhesion kinase (FAK) TKI defactinib has been investigated in multiple solid 
tumor types, including ovarian, colorectal, pancreatic, and lung cancers[112]. Defactinib selectively kills 
Merlin-expressing cells through a FAK-Merlin synthetic lethal pathway. In a large, global, randomized 
phase II trial, 344 patients with DPM and with disease control after 4 cycles of first-line platinum/
pemetrexed-based chemotherapy were assigned to receive either defactinib or placebo; Unfortunately, 
neither PFS nor OS was improved with defactinib[110]. Trials evaluating other inhibitors of this pathway are 
underway, including (1) Nedd8-activating enzyme (NAE) inhibitors which result in decreased formation of 
CRL4DCAF1(NCT03319537); and (2) YAP/TEAD inhibitors (NCT04857372).

CDKN2, p16, MTAP: Co-deletion of the CDKN2A and methylthioadenosine phosphorylase (MTAP) genes is 
notably enriched in 28%-49% of DPM[8,16,22,113,114]. The proximity of the CDKN2A gene on chromosome 9p21 
to MTAP predisposes the loss of both genes with the loss of one allele[115,116]. CDKN2A encodes p16INK4a 
and p14AR, important cell cycle modulators which regulate cyclin-dependent kinases (CDKs)[117-119]. 
Enrichment of these alterations poses distinct mechanistic vulnerabilities under investigation: (1) Protein 
arginine methyltransferase 5 (PRMT5); and (2) Cyclin-dependent kinase (CDK) inhibition [Table 6].

In vitro, PRMT5 inhibition has been evaluated as a potential therapy against MTAP-deficient cancers, 
including DPM[121]. Early phase clinical trials of the safety and possible roles of PRMT5 inhibitors in solid 
tumors, including DPM, are currently underway (NCT05245500, NCT05275478, NCT04794699). Direct 
CDK4/6 inhibitors have synthetic lethality in DPM[122,123] and are under active investigation.  In the single-
arm, phase 2, MiST 2 trial, 26 patients with p16INK4A-deficient DPM whose disease had progressed after 
platinum-based chemotherapy received the oral CDK4/6 inhibitor, abemaciclib. The study met its primary 
endpoint, with a DCR of 54% at 12 weeks, tumor volume reductions in 80% of evaluable patients, and four 
patients who achieved a partial response[120]. These results are encouraging evidence of possible antitumor 
effects, but a larger randomized trial and further refinement of possible biomarkers are needed to determine 
any possible place in our current clinical practice[124,125].

V-domain Ig suppressor T cell activation (VISTA): VISTA is a negative immune checkpoint regulator of 
myeloid and T cell function with high levels of expression in DPM (85%)[17]. In vivo studies suggest anti-
VISTA antibodies have promising antitumor activity[16,17,126]. With the integration of 1L immunotherapy into 
the treatment paradigms for DPM[18], exploration of later-line treatment options to improve response and/
or rechallenge to immunotherapy is needed. A phase 1 study of CA-170 (small molecule inhibitor of PD-L1 
and VISTA)[127] in patients with previously treated advanced solid tumors and lymphomas exhibited an 
acceptable toxicity profile[128] and is currently under development. The VISTA inhibitor CI-8993 is currently 
under investigation in a phase I study evaluating the safety and activity of this antibody in patients with 
previously treated advanced solid tumors (NCT04475523).

Argininosuccinate synthetase 1 (ASS1): ASS1 is a key enzyme in the urea cycle required for the formation 
of arginine, and ASS1-deficiency has been implicated in tumorigenesis by supporting cellular proliferation 
and pyrimidine synthesis[129,130]. Certain solid tumors, including nearly two-thirds of DPM, have inherent 
enrichment for ASS1-deficiency[131] and mechanistically lend themselves to therapeutic exploitation with 
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Table 5. NF2/YAP/TAZ targeted therapy in mesothelioma

NCT ID Phase Product Target patient population Outcomes Reference

NCT01870609 2 Platinum pemetrexed +/- 
defactinib maintenance; 
FAK inhibitor

344 patients with previously treated DPM 
randomized 1:1 after 4 cycles of chemotherapy to 
defactinib maintenance or placebo

Maintenance vs. 
placebo: PFS: 4.1 vs. 4.0 
months; 
OS: 12.7 vs. 13.6 months 
(HR 1.0, 95%CI: 0.7-1.4)

[110]

NCT00770120 2 Everolimus; mTOR 
inhibitor

59 patients with DPM treated with ≤ 1 prior 
chemotherapy regimen 

ORR: 0%; PFS 2.9 
months; 
OS 6.3 months

[111]

NCT01024946 2 Everolimus; mTOR 
inhibitor

39 patients with previously treated DPM with NF2 
loss

Closed early, given 
tolerability after 
enrolling 11 patients 
(6 evaluable) 

NCT05228015 1 IK-930; TEAD inhibitor 158 patients with previously treated advanced solid 
tumors

Study ongoing

NCT04857372 1 IAG933; YAP/TEAD 
inhibitor

156 patients with previously treated DPM and 
other solid tumors 

Study ongoing

NCT04665206 1 VT3989; TEAD inhibitor 80 patients with refractory solid tumors, including 
DPM with NF2 loss

Study ongoing

NCT03319537 1/2 Pevonedistat; NEDD8 
inhibitor

Monotherapy: Previously treated patients with NF2 
altered DPM; 
Pevonedistat + platinum/pemetrexed: Treatment 
naïve patients with DPM 

Closed to accrual

DPM: Diffuse pleural mesothelioma; PFS: progression-free survival; OS: overall survival; ORR: overall response rate; HR: hazard ratio; CI: 
confidence interval.

Table 6. CDKN2/p16/MTAP targeted therapy in mesothelioma

NCT ID Phase Product Target Patient Population Outcomes Reference

NCT03654833 2 Abemaciclib; CDK4/6 
inhibitor

27 eligible patients with previously treated DPM with 
IHC noting p16ink4A deficiency 

DCR at 12 weeks: 
54%; 
PFS: 128 days; OS: 
217 days

[120]

NCT05538572 1 PRT3645; CDK4/6 
inhibitor

51 patients with previously treated advanced solid 
tumors

Study ongoing

NCT05245500 1/2 MRTX1719; PRMT5-MTA 
inhibitor

339 patients with previously treated advanced MTAP-
deleted solid tumors 

Study ongoing

NCT05275478 1 TNG908; PRMT5 
inhibitor

170 patients with previously treated MTAP-deleted 
solid tumors

Study ongoing

NCT04794699 1 IDE397; MAT2A Inhibitor 382 patients with previously treated MTAP-deleted 
advanced solid tumors

Study ongoing

DPM: Diffuse pleural mesothelioma; PFS: progression-free survival; OS: overall survival; DCR: disease control rate (stable disease + partial 
response); IHC: immunohistochemistry.

arginine deprivation therapy by pegylated arginine deaminase (ADI-PEG 20). The phase 2 study of ADI-
PEG 20 in combination with cisplatin/pemetrexed in 32 patients with previously untreated ASS1-deficient 
DPM showed promising clinical benefit (DCR: 93.5%, PFS: 5.6 months, OS: 10.1 months)[132]. The trial 
expanded into the randomized phase 3 ATOMIC-MESO trial (NCT02709512) comparing cisplatin/
pemetrexed with or without ADI-PEG 20 with a recent press release indicating it has met the prespecified 
endpoint with a median OS of 9.3 vs. 7.7 months (HR: 0.71; 95%CI: 0.55-0.93) and PFS of 6.1 vs. 5.6 months 
(HR: 0.65; 95%CI: 0.47-0.90); there is a current plan to submit for regulatory consideration[133]. This 
landmark positive trial marks a major step forward in our efforts to integrate targeted agents into the 
treatment of DPM.
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CONCLUSION
With a growing understanding of the molecular underpinnings of DPM, there has been a multitude of 
rationally designed clinical trials looking to exploit potential therapeutic vulnerabilities. Newer generations 
of agents, including CAR-T therapies targeting mesothelin and arginine-deprivation therapies for ASS1 
deficient mesotheliomas, hold particular promise, and aim to overcome the historically poor response rates 
in targeted therapies for mesothelioma.

The preponderance of disappointing trial results described here, however, highlights the struggle to translate 
promising preclinical data into patient care. To propel the field forward, we must continue to collaborate to 
establish preclinical models that faithfully recapitulate DPM biology for in vivo testing[134] and strive to better 
refine biomarkers and patient selection criteria for trials of targeted therapy in DPM. Investigation of several 
promising preclinical targets (e.g., microRNAs) is underway but has not yet been translated into clinical 
investigation[135]; Future trials need to incorporate comprehensive pathologic, genomic, and expression level 
data of enrolled patients to better understand those who benefit from a treatment and refine future trial 
designs[136]. To accomplish this will require building platforms for close iterative collaboration between 
medical and surgical oncologists, pathologists, and laboratory-based genomic and pharmacologic scientists; 
this investment is critical to improving therapeutic options for patients with DPM.
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