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INTRODUCTION

Neovascularization or angiogenesis is important for 
wound healing as it involves the growth of new capillaries 
to form granulation tissue.[1‑4] Three to five days after 
tissue injury, new capillaries become visible in the wound 
bed as granulation tissue, which acts as a matrix for 
proliferating blood vessels, migrating fibroblasts and new 
collagen.[5] Impaired granulation is a hallmark of chronic 
wounds encountered with diabetes and venous or arterial 
insufficiency.

In 1960s, research began in the field of angiogenesis 
to determine how new blood vessels enhance solid 
tumor growth.[6] Physiologists later discovered that 
neovascularization occurs during tissue regeneration.[7] 
Proliferating capillaries bring oxygen and micronutrients 
to growing tissues and remove catabolic waste products. 
These vessels are present in the endothelium that secretes 
paracrine factors to promote survival of adjacent cells by 
preventing apoptosis or programmed cell death.[8] Because 
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angiogenesis is required for wound healing, its induction 
is beneficial in many clinical situations for achieving 
wound closure.

PHYSIOLOGICAL CONTROL OF  
ANGIOGENESIS

Angiogenesis plays a critical role in wound healing. By 
developing capillary sprouts, which digest endothelial 
cells and invade the extracellular matrix  (ECM) stroma 
after penetrating through the underlying vascular 
basement membrane  (VBM), and form tube‑like structures 
that continue to extend, branch, and form networks. 
During angiogenesis capillary advancement in ECM occurs 
by endothelial cell proliferation and direction of growth 
is guided by chemotaxis from the target region. The 
interaction among endothelial cells, angiogenesis factors 
and surrounding ECM proteins is temporally and spatially 
synchronized.[9,10]

Angiogenesis can be induced in response to injury via 
pro‑  and anti‑angiogenic factors present throughout the 
body. Pro‑angiogenic factors consist of thrombin, fibrinogen 
fragments, thymosin‑β4 and growth factors. Angiogenic 
growth factors are stored in platelets and inflammatory 
cells that circulate in the bloodstream, and are sequestered 
within the ECM. The production of these factors is 
regulated by genes expressed in response to hypoxia and 
inflammation, such as hypoxia‑inducible factors (HIF) and 
cyclooxygenase‑2 (COX‑2).[11‑13] In contrast, angiogenesis 
inhibitor factors suppress blood vessel growth.[14,15] Some 
inhibitors circulate in the blood stream at low physiological 
levels while others are stored in the ECM surrounding 
blood vessels. Vascular growth is suppressed when 
there is a physiological balance between angiogenesis 
stimulators and inhibitors.[15] Immediately following injury, 
however, angiogenic stimuli are released into the wound 
bed, and a shift occurs in regulators favoring vascular 
growth [Figure 1].

THE ANGIOGENESIS CASCADE

Angiogenesis occurs as an orderly cascade of molecular 
and cellular events in the wound bed:
1.	 Endothelial cell surface has receptors to which angiogenic 

growth factors bind in preexisting venules (parent vessels);
2.	 Growth factor‑receptor binding activates signaling 

pathways within endothelial cells;

3.	 Proteolytic enzymes released by activated endothelial cells 
dissolve the basement membrane of surrounding parent 
vessels;

4.	 Endothelial cells proliferate and sprout outward through 
the basement membrane;

5.	 Endothelial cells migrate into the wound bed using 
integrins (αvβ3, αvβ5 and αvβ1) which are cell surface 
adhesion molecules;

6.	 Matrix metalloproteinases (MMPs) dissolve the surrounding 
tissue matrix in the path of sprouting vessels;

7.	 Vascular sprouts form tubular channels that connect to 
form vascular loops;

8.	 Vascular loops differentiate into afferent  (arterial) and 
efferent (venous) limbs;

9.	 New blood vessels mature by recruiting mural cells 
(smooth muscle cells and pericytes) to stabilize the 
vascular architecture;

10.	 Blood flow begins in the mature stable vessel.

These complex growth factor‑receptor, cell‑cell and cell‑matrix 
interactions characterize the angiogenesis process, regardless 
of the stimuli or its location in the body.

THE ANGIOGENESIS MODEL OF 
WOUND HEALING

Wound healing occurs in four major overlapping stages: 
(1) hemostatic, (2) inflammatory stage, (3) proliferative 
stage, and (4) remodeling stage. Although granulation 
is assigned to the proliferative stage, angiogenesis is 
initiated immediately after tissue injury and is mediated 
throughout the wound healing process.

Step 1: Angiogenesis initiation
Basic fibroblast growth factor (bFGF) stored within intact cells 
and the ECM is released from damaged tissue.[16] Bleeding and 
hemostasis in a wound also initiate angiogenesis. Cellular 
receptors for vascular endothelial growth factor (VEGF) are 
upregulated by thrombin in the wound.[17] Endothelial cells 
exposed to thrombin also release gelatinase A (MMP‑2), which 
promotes the local dissolution of basement membrane, a 
necessary early step of angiogenesis.[18] Platelets release 
multiple growth factors, including platelet‑derived 
growth factor (PDGF), VEGF, transforming growth 
factor (TGF‑α, TGF‑β), bFGF, platelet‑derived endothelial 
cell growth factor and angiopoietin‑1 (Ang‑1). These factors 
stimulate endothelial proliferation, migration and tube 
formation.[19‑22]

Step 2: Angiogenesis amplification
Macrophages and monocytes release numerous angiogenic 
factors, including PDGF, VEGF, Ang‑1, TGF‑α, bFGF, 
interleukin‑8 (IL-8) and tumor necrosis factor alpha into 
the wound bed during the inflammatory phase amplifying 
angiogenesis further.[23,24] Several growth factors (PDGF, VEGF 
and bFGF) synergize in their ability to vascularize tissues.[25] 
Proteases that break down damaged tissue matrix further 
release matrix‑bound angiogenic stimulators. Enzymatic 
cleavage of fibrin yields fibrin fragment E, which 
stimulates angiogenesis directly and also enhances the 

Figure 1: Angiogenesis is a balance between stimulators (growth factors) 
and inhibitors as shown in this model
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effects of VEGF and bFGF.[26] Expression of the inducible 
COX‑2 enzyme during the inflammatory stage of healing 
also leads to VEGF production and other promoters of 
angiogenesis.[27]

Step 3: Vascular proliferation
Hypoxia is an important driving force for wound 
angiogenesis. Expression of gene HIF‑1α, due to hypoxic 
gradient between injured and healthy tissue triggers 
VEGF production.[24,28] VEGF is present in both wound 
tissue and exudate.[28,29] VEGF is also known as vascular 
permeability factor since it increases permeability of 
capillaries.[30] Hypoxia also leads to endothelial cell 
production of nitric oxide (NO). NO promotes vasodilation 
and angiogenesis to improve local blood flow.[31]

Step 4: Vascular stabilization
Vascular stabilization is governed by Ang‑1, tyrosine kinase 
with immunoglobulin‑like and EGF‑like domains 2  (Tie‑2), 
smooth muscle cells and pericytes. Production of PDGF 
and recruitment of smooth muscle cells and pericytes to 
the newly forming vasculature are regulated by binding 
of Ang‑1 to its receptor Tie‑2 on activated endothelial 
cells.[32‑34] A PDGF deficiency leads to poorly‑formed 
immature blood vessels.[35]

Step 5: Angiogenesis suppression
Angiogenesis is suppressed at the terminal stages of 
healing.[36] As tissue hypoxia is restored, and inflammation 
subsides, the level of growth factors decline in the wound. 
Pericytes which stabilize endothelial cells secrete an 
inhibitory form of activated TGF‑β that impedes vascular 
proliferation.[34,37,38] A cleavage product of collagen XVIII, 
endostatin, is present surrounding the VBM, and it inhibits 
wound vascularity.[39,40]

WOUND ANGIOGENIC STIMULATORS 
AND INHIBITORS

A number of angiogenic stimulators have been identified 
in wound sand others are likely to exist that play an 
important role in the repair [Table 1]. The stimulators 
in wound fluids are growth factors known to increase 
endothelial cell migration and proliferation in vitro.[41]

The FGF comprises of 23 homologous structures that 
are small polypeptides with a central core containing 

140 amino acids. Acidic FGF and bFGF are the first few 
to be discovered and are now designated as FGF‑1 and 
FGF‑2, respectively.[42] Both are preferentially involved 
in the process of angiogenesis.[43,44] These compounds 
are polypeptides of about 18  kDa, single chained and 
nonglycosylated. They transmit their signals through 
FGF receptor‑4 (FGFR‑4) high‑affinity, protein family of 
transmembrane tyrosine kinases  (FGFR‑1 to FGFR‑4), that 
bind to different FGFs with different affinities. The strong 
interactions of FGF-1 and FGF-2 with glycosaminoglycans, 
such as heparin sulfate present in the ECM,[45] makes the 
FGFs stable against thermal, proteolytic denaturation and 
limits its diffusibility. Thus, the ECM acts as a reservoir for 
pro‑angiogenic factors. Most members of the FGF family 
act as a broad spectrum mitogen that stimulates the 
proliferation of mesenchymal cells of mesodermal origin, 
as well as ectodermal and endodermal cells.

FGF-1 and FGF-2 are synthesized by a variety of cell types 
including inflammatory cells and dermal fibroblasts that 
are involved in angiogenesis and wound healing. When 
liberated from ECM, they act on the endothelial cells 
in a paracrine manner, or when released by endothelial 
cell they act in an autocrine manner promoting cell 
proliferation and differentiation. During the formation of 
granulation tissue, FGF-2 promotes cell migration through 
surface receptors for integrins, which mediate the binding 
of endothelial cells to ECM.[44]

Vascular endothelial growth factor increase vaso‑permeability 
by increasing the fenestration and hydraulic conductivity. 
This allows leakage of fibrinogen and fibronectin, 
which are essential for the formation of the provisional 
ECM.[46‑48] The ECM is produced in large quantities by 
the epidermis during wound healing.[49] Low oxygen 
tension that occurs in tissue hypoxia is a major inducer 
of VEGF[50] and its receptors.[51] Thus, cell disruption and 
hypoxia appear to be strong initial inducers of potent 
angiogenesis factors at the wound site. VEGF family 
currently includes VEGF‑A, VEGF‑B, VEGF‑C, VEGF‑D, 
VEGF‑E and placental growth factor.[52] VEGF‑A is a 
homodimer glycoprotein whose subunits are linked by 
2 disulfide bonds. VEGF‑A is synthesized from internal 
rearrangements (“alternative splicing”) of mRNA. Thus, 
there is the production of 7 isoforms with 121 to 206 
amino acids.[53‑55] Among these, the VEGF121, VEGF165, 
VEGF189 and VEGF206 are the predominant isoforms.[56] 
These isoforms show similar biological activities, but differ 
in their binding properties to heparin and ECM.[57]

Vascular endothelial growth factor is a potent vascular 
endothelial cell‑specific mitogen that stimulates endothelial 
cell proliferation, microvascular permeability and regulates 
of several endothelial integrin receptors during sprouting 
of new blood vessels.[58] Furthermore, VEGF also acts 
as a survival factor for endothelial cells by inducing the 
expression of an anti‑apoptotic protein B‑cell lymphoma 2.[59]

TGF‑β stimulates the formation of granulation tissue by 
acting as a chemoattractant for neutrophils, macrophages 
and fibroblasts. Hence, TGF‑β is an important modulator 
of angiogenesis during wound healing by regulating cell 

Table 1: Angiogenic stimulators and inhibitors
Stimulators Inhibitors
aFGF (FGF‑1) Thrombospondin‑1
bFGF (FGF‑2) Tissue inhibitors of matrix metalloproteinases
TGF‑α Interferon alpha/beta/gamma
TGF‑β Angiostatin
PGE2 Endostatin
TNF‑α
VEGF
EGF

FGF: Fibroblast growth factor, aFGF: Acidic fibroblast growth factor, 
bFGF: Basic fibroblast growth factor, TGF‑α: Transforming growth factor‑alpha, 
TGF‑β: Transforming growth factor‑beta, VEGF: Vascular endothelial growth 
factor, EGF: Endothelial growth factor, PGE2: Prostaglandin E2
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proliferation, migration, capillary tube formation and 
deposition of ECM.[60,61]

The angiopoietins are members of the VEGF family, which 
is largely specific for vascular endothelium. They include a 
naturally occurring agonist, Ang‑1, and antagonist, Ang‑2, 
both of which act by means of the Tie‑2 receptor. Two 
new angiopoietins, Ang‑3 in mice and Ang‑4 in humans, 
have been identified, but their function in angiogenesis is 
unknown.[62]

Mast cell tryptase, stored in granules of activated mast cells, 
is an additional angiogenesis factor that directly degrades 
the ECM components or release matrix‑bound growth 
factors by its proteolytic activity,[63,64] and acts indirectly 
by activating latent matrix metalloproteases. The addition 
of tryptase to microvascular endothelial cells cultured on 
a basement membrane matrix  (matrigel) caused a marked 
increase in capillary growth. Furthermore, tryptase can 
induce endothelial cell proliferation in a dose‑dependent 
manner, whereas specific tryptase inhibitors suppress the 
capillary growth.[65]

IMPAIRED ANGIOGENESIS IN CHRONIC 
WOUNDS

Angiogenesis is impaired in all chronic wounds leading 
to further tissue damage results from chronic hypoxia 
and impaired micronutrient delivery. Specific defects have 
been identified in diabetic ulcers, venous insufficiency 
ulcers and ischemic ulcers.

Diabetic ulcers
Patients with diabetes show abnormal angiogenesis in 
various organs. Vasculopathies associated with diabetes 
include abnormal blood vessel formation  (e.g.  retinopathy, 
nephropathy) and accelerated atherosclerosis leading 
to coronary artery disease, peripheral vascular disease, 
and cerebrovascular disease.[65] However, in diabetics, 
angiogenesis is decreased[66] resulting in poor formation 
of new blood vessels and thus decreased entry of 
inflammatory cells and their growth factors. Growth factors 
such as FGF‑2 and PDGF, essential for wound healing 
have been found to be reduced in experimental diabetic 
wounds models.[67‑70] Furthermore, in rat models, topical 
administration of high glucose to wounds was shown to 
inhibit the normal angiogenic process,[71] suggesting a direct 
role for high glucose levels in diminished angiogenesis.

Vascular endothelial growth factor plays an important 
role in vascular growth and has been shown to be 
deficient in diabetic wounds in experimental and clinical 
models.[72] Studies have shown that modulation of 
oxidative damage[73] or inhibition of the receptors for 
advanced glycation end products[74] improve wound healing 
and were associated with the up‑regulation of endogenous 
VEGF. Moreover, VEGF administration improves wound 
healing in nondiabetic ischemic wounds[75] and blocking 
VEGF with neutralizing antibodies impedes tissue repair.[76] 
These studies support the notion that VEGF is critical for 
repair in impaired healing states and that the addition 
of VEGF could have a potential clinical use.[77] In fact, 

Galiano et al.[78] found that topical VEGF accelerates wound 
healing in a diabetic mouse model.

Weinheimer‑Haus et al.[79] found that low intensity 
vibration (LIV) applied vertically at 45 Hz with peak 
acceleration of 0.4 g for 30 min a day for 5 days a week 
starting on the day of injury in diabetic mice increases 
expression of pro‑healing growth factors and chemokines 
(insulin‑like growth factor‑1, VEGF and monocyte 
chemotactic protein‑1) in wound environment. Though 
there was no evidence of a change in the phenotype 
of CD11b+  macrophages, however, LIV resulted in 
trend toward a less inflammatory phenotype in the 
CD11b2  cells which comprised of fibroblasts, endothelial 
cells and/or keratinocytes. These findings indicate that 
LIV may exert beneficial effects on wound healing by 
enhancing angiogenesis and granulation tissue formation, 
and these changes are associated with an increase in 
pro‑angiogenic growth factors.[79]

Venous insufficiency ulcers
Venous insufficiency ulcers or venous stasis ulcers result 
from incompetent valves in lower extremity veins, leading 
to venous stasis and hypertension that makes the skin 
susceptible to ulceration. Pathological findings associated 
with venous stasis ulcers include microangiopathy, 
fibrin “cuffing” and trapping of leukocytes within the 
microvasculature.[80,81]

Chronic venous stasis ulcer patients have elevated levels 
of VEGF in their circulation.[82] This may explain the 
vascular permeability and increased transudation of serum 
fluid in their wounds. Biopsies of these ulcers reveal 
microvessels that are surrounded by fibrin cuffs composed 
of fibrin and plasma proteins, such as α‑macroglobulin, 
thought to compromise gas exchange.[83‑85] Clinical studies 
have shown that transcutaneous oxygen tension may be 
up to 85% lower in venous stasis ulcers compared with 
normal skin regions.[86] VEGF expression is up‑regulated by 
hypoxia, which further exacerbates vascular permeability, 
formation of pericapillary fibrin cuffs and compromised 
gas exchange, which ultimately reduces growth factor 
availability in the wound.[87,88] VEGF promotes the 
formation tortuous, aberrant glomeruloid‑like vascular 
structures found in granulation tissue.[89] Laboratory 
animals treated with VEGF form these glomeruloid 
vascular structures within 3  days and are characterized 
by poor perfusion.[90] In venous ulcers, the persistence of 
glomeruloid vessels may interfere with oxygen delivery 
and delay healing. In chronic venous stasis ulcers, 
high levels of proteases such as neutrophil elastase, 
MMPs and urokinase‑type plasminogen activator are 
present.[91] Concomitantly, there are decreased levels 
of protease inhibitors, such as plasminogen activator 
inhibitor‑2. Excessive protease activity may degrade the 
growth factors and destroy granulation tissue.

Ischemic ulcers
Peripheral arterial disease  (PAD) may result in severe 
ischemia.[92] Reduce tissue perfusion due to ischemia 
results in progressive tissue hypoxia, ischemia, necrosis 
and skin breakdown. In theory, tissue hypoxia should 
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initiate angiogenesis via inducing an HIF‑1α and 
angiogenic growth factors. In patients with PAD, serum 
levels of hepatocyte growth factor are elevated than in 
normal subjects.[93] The tissue compromise caused by 
severe macrovascular disease, however, may over dominate 
the angiogenic response. Inter‑individual differences in the 
ability to mount angiogenesis under hypoxic conditions 
also exist among patients with atherosclerosis. Such 
variations may explain that patients with PAD are unable 
to generate adequate collateral circulation and unable to 
heal arterial ulcers despite surgical bypass. Therapeutic 
growth factors or other methods designed to stimulate 
angiogenesis might benefit patients with a defective 
angiogenic capacity. VEGF gene transfer[94] or autologous 
transplantation of bone marrow‑derived endothelial 
progenitor stem cells[95] improved healing of arterial ulcers 
in patients.

ANGIOMODULATORY STRATEGIES

Wound angiogenesis represents a realistic model to study 
molecular mechanisms involved in the formation and 
remodeling of vascular structures. In particular, the repair 
of skin defect offers an ideal model to analyze angiogenesis 
as it is easy to control and manipulate this process.[96] 
Vessel growth is controlled by the local actions of chemical 
mediators, the ECM, metabolic gradients and physical 
forces. Manipulation of some of these factors is being tried 
to improve healing in experimental wounds.[97] Scientists 
are working on mathematical models which describe 
the role of angiogenesis as observed during  (soft tissue) 
wound healing. Through this model manipulation of the 
capillary tip, macrophage‑derived chemical attractant profile, 
extracellular matrix and fibroblast diffusion coefficient may 
be analyzed to enhance wound healing.[98]

CONCLUSION

Angiogenesis is a physiological process that is vital for 
normal wound healing. A  number of factors regulate 
wound angiogenesis, including hypoxia, inflammation 
and growth factors. The molecular and cellular events in 
angiogenesis have been elucidated, and defects in this 
process are present in chronic wounds. Based on this 
knowledge, new wound healing strategies are emerging 
to deliver growth factors to the wound bed. Surgeons 
and other wound‑care specialists can use this knowledge 
to identify defects and select interventions that may 
promote improved wound granulation and healing.
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