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Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignancy among men, and the progression of this 
disease results in fewer treatment options available to clinical patients. It highlights the vital necessity for 
discovering novel therapeutic approaches and expanding the current understanding of molecular mechanisms. 
Epigenetic alternations such as DNA methylation models and histone modifications have been associated as key 
drivers in the development and advancement of PCa. Several studies have been conducted and demonstrated that 
targeting these epigenetic enzymes or regulatory proteins has been strongly associated with the regulation of 
cancer cell growth. Due to the success rate of these therapeutic routes in pre-clinical settings, many drugs have 
now advanced to clinical testing, where efficacy will be measured. This review will discuss the role of epigenetic 
modifications in PCa development and its function in the progression of the disease to resistant forms and 
introduce therapeutic strategies that have demonstrated successful results as PCa treatment.
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INTRODUCTION
Prostate cancer (PCa) continues to be the most common cancer[1] and ranks as the second leading cause of 
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cancer-related death in United States of America males[1]. Numerous studies have documented that 
androgen receptor (AR) signaling continues to participate as a vital component to the development and 
progression of PCa. AR is a nuclear hormone receptor that becomes activated upon the binding of androgen 
ligands and dissociates from cytoplasmic chaperone protein HSP90, where it then can self-dimerize and 
translocate to the nucleus[2]. AR has the ability to bind to androgen response elements (ARE), which results 
in the transcription of target genes and contribution to prostate development and maintenance[2]. In early 
diagnosed stages of the disease, there are successful treatment options to prolong patient survival, such as 
medical or surgical castration that distribute AR binding, including radical prostatectomy, radiotherapy, or 
androgen deprivation therapy (ADT). However, PCa can reoccur after these interventions, which is 
referenced as castration-resistant PCa (CRPC).

CRPC is defined as cancer that continues to proliferate in the absence or depletion of testosterone, 
compared to early stages that require higher levels of testosterone for survival and formation, but AR 
signaling remains an essential contributor to PCa progression. This led to the synthesis of Androgen-
Signaling Inhibitors (ASI), such as Abiraterone and Enzalutamide (ENZ), which targets androgen synthesis 
and AR, respectively. Though ASI treatment options have shown impressive results in reducing PCa, 
enviably, within several months, the disease will progress into terminal ASI-resistant PCa. Currently, there 
are several various areas of study arising to address the issue of overcoming ASI resistance. Abiraterone 
acetate is a hormonal treatment for metastatic CRPC (mCRPC) both before and after chemotherapy and 
significantly reduces androgen production by blocking the enzyme, which illustrates its efficacy[2]. ENZ is a 
second-generation nonsteroidal antiandrogen utilized in the treatment of mCRPC patients and has shown 
efficacy to provide patients with a reasonable quality of life[3]. Though there has been significant success 
associated with the administration of these treatments, resistance does occur with both Abiraterone and 
ENZ, possibly from the development of splice variants[3]. Wnt signaling has been extensively documented in 
its involvement in ENZ resistance. The inhibition of both canonical and non-canonical Wnt signaling has 
demonstrated positive results in re-establishing sensitivity to ENZ treatment in resistant cell lines and 
tumor models[3-5].

Additionally, we have established that 3-hydroxy-3-methyl-glutaryl-CoA reductase, a crucial enzyme in the 
mevalonate pathway, is elevated in ENZ-resistant PCa cells, and combination therapy of simvastatin and 
ENZ could result in significant inhibition of ENZ-resistant cancer cell proliferation in both in vivo and in 
vitro models[6]. Even in terms of AR splice variants, which play a critical role in the development and 
progression of CRPC[7]. Wang et al.[8] demonstrated that treatment with Malat1 small interfering RNA 
inhibits ARV7 expression in cell lines and significantly reduces tumor growth in ENZ-resistant xenografts. 
Additionally, Yamamoto et al.[9] demonstrated that using antisense oligonucleotides to target both the full-
length AR and its splice variants resulted in a suppression of ENZ-resistant cell lines and xenografts 
proliferation. Due to the increase in understanding the molecular mechanisms that drive PCa, there has 
been a rising interest in epigenetics related to new therapeutic approaches.

Epigenetics is the study of heritable changes in gene expression, subsequently controlling fate, without 
affecting actual DNA sequences[10]. An abundance of exploration has been accomplished in epigenetics since 
it was first introduced and defined in the 1950s by Conrad Waddington. These recent discoveries have led 
to the emergence of operational mechanisms that are composed of three processing steps. These steps can 
be defined as epigenator, which is a signal that originates from the cellular environment and initiates 
downstream signaling pathways[11]. The epigenetic initiator, which triggers the epigenetic modification at a 
specific chromatin structure and the epigenetic maintainers that are epigenetic code responsible for 
ensuring several events such as chemical modifications on DNA or histones molecules, interacts between 
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DNA, RNA, non-coding RNAs, protein, and other chromatin remodeling events[11]. Regarding the study of 
PCa, these aberrant alternations have reinforced the establishment of a context-specific translational profile 
that favors self-renewal, survival, and invasion and has demonstrated that the accumulation of epigenetic 
aberrations eventually causes genetic or genomic instability [Figure 1]. Additionally, AR is demonstrated to 
function in conjunction with various chromatin remodelers and epigenetic players that regulate prostate 
development and its progression to a malignant phenotype. This review will discuss the essential epigenetic 
alternations that are critical in comprehending PCa etiology and developments that highlight new 
biomarkers and therapeutic approaches to PCa.

EPIGENETIC REGULATORS OF PCA
Epigenetic writers
Epigenetic codes have commonly been documented to be regulated by writers, readers, and erasers. Writers 
hold the responsibility to transcribe the epigenetic modifications of DNA and histone proteins[11]. These 
modifications transpire from the addition of various chemical groups utilizing numerous enzymes. An 
invariable number of modifications have the potential to materialize, but for this review, we will focus on 
the reactions of methylation and acetylation. DNA and histone proteins are highly prone to methylation, 
which is the addition of a methyl group to a DNA molecule that may result in a change in the activity of the 
DNA segment, but will not modify the sequence. Routinely, acetylation is a process in which an acetyl 
functional group is transferred from molecule to an adjacent molecule and functions by removing the 
positive charge, thus reducing the N-termini interaction that contains negatively charged phosphates of 
DNA, exclusively in histones. In this area, we will focus on the addition of these modifications and how they 
affect the progression and severity of PCa. We will also explore therapeutic methodologies that have been 
established to address these alterations in function.

DNMT and DNA methylation
DNA methylation often plays a role in suppressing gene transcription when located in a gene promoter. 
DNA methyltransferases (DNMTs) are responsible for transferring methyl groups from the methyl donor S-
adenosyl-L-methionine to the 5-position of cytosine residues in DNA, which is critical for mammalian 
development. The DNMT family has five members, including DNMT1, DNMT2, DNMT3a, DNMT3b, and 
DNMT3l[12]. DNMTs play an important role in genome integrity as their disruption may lead to 
chromosomal instability and tumor progression[12,13]. The main function of DNMT1 is to maintain the 
methylation status of DNA. As an RNA methyltransferase, DNMT2 usually methylates multiple tRNAs[14]. 
DNMT3a and DNMT3b are reported to contribute the de novo DNA methylation.

DNMT3l improves the catalytic activities of DNMT3a and DNMT3b, resulting in the promotion of DNA de 
novo methylation by interacting with DNMT3a and DNMT3b[15]. DNA methylation has been shown to play 
a role in PCa, and DNA methylation marks have been studied for their diagnostic and prognostic values. 
One of the most recognized DNA methylation events in prostate carcinogenesis is the hypermethylation of 
the regulatory region of GSTP1, leading to a decrease in gene expression. This hypermethylation event has 
been found in more than 90% of prostate adenocarcinoma samples and studied for its potential diagnostic 
and prognostic value[16]. Other studies have shown that various genes such as APC, RASSF1a, PTGS2, 
MDR1, GSTM2, and PENK are hypermethylated in primary and metastatic PCa cells compared to normal 
prostatic tissues, suggesting that DNA methylation becomes deregulated and may play a role in the prostate 
carcinogenesis process[16]. Both DNA hypermethylation and DNA hypomethylation correlate with prostate 
carcinogenesis and progression. In a study of 10 normal prostates and 45 prostate tumors, 61 genes were 
found to be hypermethylated in more than 20% of tumors. A cluster of tumors with hypermethylation of 
ETV1 and ZNF215 was correlated with ADT resistance in these patients, suggesting a potential use for 
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Figure 1. Epigenetics in PCa. Diagram illustrating how epigenetic changes related to prostate cancer and which inhibitors are in current 
studies. ASF1A: Anti-silencing function 1A hisotne chaperone; CAF-1: chromatin assembly factor 1; SAFB1: scaffold attachment factor B; 
DNMT: DNA methyltransferase; EZH2: enhancer of zeste 2 polycomb repressive complex 2 subunit; CBP: CREB-binding protein; BRD4: 
bromodomain containing 4; BET: bromodomain and extra terminal domain; HDAC: histone deacetylases; KDM1A: lysine demethylase 
1A; CM-272: 6-methoxy-2-(5-methylfuran-2-yl)-N-(1-methylpiperidin-4-yl)-7-(3-(pyrrolidin-1-yl)propoxy)quinolin-4-amine; UNC-
06358: 2-cyclohexyl-6-methoxy-N-(1-propan-2-ylpiperidin-4-yl)-7-(3-pyrrolidin-1-ylpropoxy)quinazolin-4-amine; JQ1: (S)-tert-butyl 2-
(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetate; TCP: tranylcypromine; ORY-
1 0 0 1 :  i d a d e m s t a t ;  I M G - 7 2 8 9 :  b o m e d e m s t a t  H C L ;  I N C B 0 5 9 8 7 2 :  1 - ( ( 4 - ( m e t h o x y m e t h y l ) - 4 - ( ( ( ( 1 R , 2 S ) - 2 -
phenylcyclopropyl)amino)methyl)piperidin-1-yl)methyl)cyclobutane-1-carboxylic acid compound with 4-methylbenzenesulfonic acid 
(1:2); CC-90011: besylate; ORY-2001: vafidemstat.

hypermethylation cluster for prognostic purposes[17]. In another study analyzing 84 prostatic tumor tissues 
with low and intermediate grade PCa, DNA hypermethylation was associated with poorer prognosis and 
prostate-specific antigen (PSA) recurrence following prostatectomy[18]. Comparing DNA methylation in 
PCa tissues to benign prostatic hyperplasia tissues revealed a higher occurrence of hypermethylation in a 
group of genes, suggesting a role for these signatures in the diagnostic and prognostic setting of PCa[18]. The 
hypomethylation of MYC’s exon3 is not associated with changes in its expression; however, it was 
associated with a more aggressive phenotype in the examined cohort[19]. In another study and contrary to 
the established consensus, a group of hypermethylated genes in PCa tumors was associated with increased 
gene expression[20]. In an Iranian study, 35 prostate tumor samples were examined before and after hormone 
therapy treatment. Treatment with bicalutamide-based drugs for three months induced a significant 
decrease in the expression of DNMT3A and significant increases in the expression of DNMT3B and two 
well-established methylated genes, GSTP1 and RASSF1[21]. Gravina et al.[22] showed that treatment with 
bicalutamide induced an increase in DNMT activity in PCa that correlated with an increased expression of 
DNMT3A and DNMT3B. These observations warrant further investigation to understand better the 
regulation of DNA methylation patterns in PCa, their effects on disease progression, and treatment 
decisions moving forward.
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G9a and histone Methylation
G9a, a histone methyltransferase, has the capacity to di-methylate histone 3 at lysine position 9. This 
epigenetic modification generally represses gene expression[23]. However, several studies have demonstrated 
that G9a also functions as a coactivator of nuclear receptors, such as AR[24,25]. Despite the epigenetic function 
of G9a, the first example of G9A operating as a non-histone lysine methyltransferase, reported that G9A 
could auto-methylate at the end of its N-terminal[26]. Following this trend, CDYL1, WIZ, and ACINUS were 
discovered as G9A substrates via peptide arrays[27], suggesting that G9A mediated lysine methylation is 
critical for both histone and non-histone proteins. It has been observed that G9a is overexpressed in a 
number of cancers[28,29], and elevated G9A protein and its enzymatic activities have been determined under 
hypoxia stress. For example, Reptin and Pontin, two chromatin remodeling factors, can be methylated by 
G9A through hypoxia-dependent manners[30,31]. Furthermore, methylated Retin contributes to tumor growth 
and invasive activities via negative regulation of HIF1. Additionally, hypoxia-induced Pontin methylation 
enhances the ability of proliferation and invasion in breast cancer cells. An alternative study showed that 
hypoxia-mediated G9A also suppressed RUNX, a tumor suppressor, through histone modification. In 
addition, hypoxia-mediated G9A amplification decreases apoptosis and increases immature stem-like 
cancer cells[32]. In contrast, hypoxia-mediated G9A represses cell adhesion molecules and contributes to 
breast tumor motility[33]. Additionally, G9A can also promote breast cancer cell survival through driving 
hypoxia-mediated gene expression. These impacts on cell malignant behavior potentially are caused by FIH-
mediated G9A/GLP hydroxylation[34]. In addition, G9a also has been found to contribute to the aberrant 
metabolism of cancer cells. Increased G9a can epigenetically activate the serine biosynthesis, which in turn 
promotes cancer cell proliferation and survival[35]. Also, Fructose-1,6-bisphosphatase (FBP1), a rate-limiting 
enzyme, can catalyze F-1,6-BP into fructose 6-phosphate in gluconeogenesis. This process can be repressed 
by G9A mediated epigenetic modification in breast cancer cell lines. Repressed FBP1 contributes to 
epithelial-mesenchymal transition transformation, promoting cancer cell metastasis[36]. Loss of G9A initiates 
HEPH expression that converts Fe2+ into Fe3+. Excessive Fe3+ will initiate cell cycle arrest machinery[37]. 
Though, there is a lack of evidence that suggests that dysregulation of G9a affects PCa. The interaction 
between G9a and NKX3.1 contributes to prostate differentiation[38]. In addition, G9a plays as a coactivator 
for PSA induction[23]. It suggests that misregulation of G9a may possibly contribute to the generation and 
progression of PCa. In conclusion, inhibition of G9a may enhance cancer treatment, making it a promising 
target. The inhibition of G9a has been studied in various cancer types. CM-272, an inhibitor for both G9a 
and DNMTs, activates immune-related pathway and increase the efficacy of anti-PD-1 immunotherapy 
[Table 1][39]. Inhibition of G9a with UNC-0638 re-sensitizes pancreatic ductal adenocarcinoma tumors to 
MEK inhibition and reduces drug-tolerant cells in several cancer cell lines [Table 1][40].

EZH2 and histone methylation
Enhancer of zeste homolog 2 (EZH2) is the essential subunit of the polycomb repressor complex2 (PRC2) 
and acts as a histone methyltransferase to catalyze tri-methylation of Lys27 on histone H3 (H3K27me3). 
EZH2 is commonly known to promote the progression of diverse human cancers by H3K27me3-mediated 
silencing of tumor suppressors[41,42]. However, EZH2 can also methylate target genes directly, such as 
STAT3, GATA4, and Jarid2, to modulate their expression and contribute to cancer development[43-45]. In 
addition to the catalytic function of EZH2 in epigenetic modification, a novel PRC2-independent role of 
EZH2 as a transcriptional activator was identified by several studies, including NOTCH1, NF-κB, and Wnt 
signaling[46-48]. In the development of PCa, specifically CRPC, EZH2 has been identified to function as a 
transcriptional coactivator interacting with AR. This functional transfer from a transcriptional suppressor to 
an activator is driven by the AKT-dependent phosphorylation of EZH2 at Serine-21[49]. Recently, it was 
documented that EZH2 can activate AR signaling via direct binding at the AR promoter region[50]. 
According to these established molecular mechanisms contributing to ADT-resistance acquisition, our lab 
has questioned whether EZH2 contributes to the resistance of ENZ in CRPC. Our lab determined that 
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Table 1. Inhibitors for epigenetic changes

Inhibitor Target Clinical trial phase

CM-272 G9a Not in clinical trial 

UNC-0638 G9a Not in clinical trial

TCP KDM1A Phase 1/2

ORY-1001 KDM1A Phase 1 

GSK-2879552 KDM1A Phase 1/2

IMG-7289 KDM1A Phase 2

INCB059872 KDM1A Phase 1/2

CC-90011 KDM1A Phase 1

ORY-2001 KDM1A Phase 2

BET (JQ1) BRD4 Phase 1

CM-272: 6-methoxy-2-(5-methylfuran-2-yl)-N-(1-methylpiperidin-4-yl)-7-(3-(pyrrolidin-1-yl)propoxy)quinolin-4-amine; UNC-06358: 2-
cyclohexyl-6-methoxy-N-(1-propan-2-ylpiperidin-4-yl)-7-(3-pyrrolidin-1-ylpropoxy)quinazolin-4-amine; BET: bromodomain and extra terminal 
domain; JQ1: (S)-tert-butyl 2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetate; TCP: 
tranylcypromine; ORY-1001: idademstat; IMG-7289: bomedemstat HCL; INCB059872: 1-((4-(methoxymethyl)-4-((((1R,2S)-2-
phenylcyclopropyl)amino)methyl)piperidin-1-yl)methyl)cyclobutane-1-carboxylic acid compound with 4-methylbenzenesulfonic acid (1:2); CC-
90011: besylate; ORY-2001: vafidemstat.

EZH2 can bind to the promoter of PSA, resulting in the suppression of its transcription, concluding that 
pharmaceutical inhibition of EZH2 can overcome ENZ-resistance in CRPC[51]. Our findings suggest that the 
inhibition of EZH2 via existing FDA-approved EZH2 inhibitors can increase the efficacy of ENZ treatment, 
providing terminal CRPC patients with a novel therapeutic strategy. In addition, we also illustrated EZH2 
inhibition could enhance the anti-neoplastic activity of metformin in PCa by reducing the binding of AR to 
the miR-26a-5p promoter[52]. Collectively, these findings suggest that EZH2 could be an effective therapeutic 
target for PCa, particularly for AR-positive CRPC.

p300/CBP and histone acetylation
Histone acetyltransferase p300 and its highly homologous CREB-binding protein (CBP) attach acetyl 
groups to proteins, including histones, in which DNA is wrapped[53,54]. Histone acetylation is a critical 
method that governs chromatin. When histones are acetylated, chromatin structures in that region will gain 
a loose conformation, and gene transcription will be promoted[54]. It has been reported that p300 and CBP 
were implicated in the progression of PCa and that deletion of p300 in mice limited PCa progression and 
extended mice survival[55]. The oncogenic roles of p300/CBP in the progression of PCa are usually related to 
the regulation of AR, the key driver of PCa. p300 can directly acetylate AR, or bind with AR, to enhance its 
transcriptional activity, consequently inducing oncogenes expression and promoting tumor growth[55-57]. In 
addition to enhancing AR transcriptional activity, p300 can also regulate AR protein level by preventing its 
degradation[55]. These findings highlight p300 as a compelling target for PCa treatment. Indeed, studies have 
shown that targeting p300/CBP inhibited both androgen-sensitive and CRPC cell growth[53,57,58]. In addition, 
our lab has recently reported a novel mechanism underlying p300 involvement in PCa progression by 
upregulating PD-L1 expression, thus creating an immune cell-free microenvironment for tumor 
progression. We found that p300 was recruited to the promoter of CD274 (encoding PD-L1) by 
transcription factor IRF-1 and resulted in acetylation of histone H3 at the CD274 promoter, and 
subsequently CD274 transcription. The p300/CBP inhibitor blocked the transcription of CD274 and 
hindered exosomal PD-L1 secretion. Cutting off PD-L1 secretion at transcription by inhibiting p300/CBP in 
combination with anti-PD-L1 antibodies demonstrated increased efficacy in a syngeneic mouse model of 
PCa[59]. Our discovery suggests that p300 is not only a modifier but also a co-driver for PCa progression, 
confirming that p300 could be a compelling target for PCa treatment.
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Epigenetic readers
The framework of modifications constructed by epigenetic writers requires other cellular proteins to both 
recognize and mediate their effects. Epigenetic readers are protein domains that can bind to these 
modifications that may be present on DNA and histones. This section will focus on the domains that can be 
both and recognize methylation and acetylation and therapeutic approaches in PCa.

Readers of DNA methylation
DNA methylation is a major epigenetic process that regulates chromatin structure which causes 
transcriptional activation or repression of genes. The process of DNA methylation is the addition of methyl 
groups to the correct bases located on the genome by “writer” molecules, known as DNA 
methyltransferases[17]. DNA methylation can provide two different functions. The first function is that DNA 
methylation directly inhibits transcription factor binding at the gene regulatory region, resulting in 
transcriptional repression. An alternative operational route is to recruit reader molecules, commonly 
referred to as methyl-binding proteins (MBP), at the methylated site, which can then attract various 
members of the chromatin remodeling complex, which will result in transcriptional activation or repression 
with a dependence on the cellular content. DNA methylation has long been suspected of playing a role in 
tumorigenesis and cancer progression in various tissue types. Due to this linkage, several drugs have been 
approved by the FDA, such as Vidaza and Dacogen, which act as DNA methylation inhibitors and are 
utilized as cancer therapies. These inhibitors operate by reversing the hypermethylated state at the promoter 
regions of tumor suppressor genes and induce activation of premetastatic genes. In prostate cancer, it has 
been reported that the knockdown of methyl-binding protein 1 (MBP-1), which functions as a general 
transcriptional repressor in human PCa cells, results in a delay of cell cycle progression via the inhibition of 
cyclin A and cyclin B1 expression[60]. Additionally, it has been shown that the carboxyl-terminal repressor 
domain of MBP-1 (MBP-CR) is sufficient for regression of prostate tumor growth in nude mice and 
suggests that MBP-CR expression has an anti-proliferative effect in human prostate cancer cells compared 
to the full-length MBP-1 in preventing tumor growth[60].

BRD4
The bromodomain-containing family proteins recognize and bind to acetylated lysine residue modifications 
of histones or proteins, an important class of acetylation readers. The bromodomain was first reported as an 
evolutionarily conserved domain in proteins of humans, flies, and yeast in 1992[61]. It has approximately 110 
amino acids and consists of four α helices forming a hydrophobic cavity that identifies acetyl-lysine. There 
are 42 bromodomain-containing proteins with 61 unique bromodomains In humans, in which differences 
of the amino acid residues at the acetyl-lysine binding site determine the specificity of binding[62]. The BET 
(bromodomain and extra terminal domain) subfamily proteins have two conserved amino-terminal 
bromodomains (BD1 and BD2) that are pivotal for recognizing acetylated lysine residues of histones and 
other non-histone proteins, playing an important role in regulating transcription by recruiting RNA 
polymerase II (POL II)[63]. BRD4 is one of the well-studied BET family proteins that recognize either histone 
tail or non-histone acetylated modifications at lysine residues. BRD4 was first described as a MED1-
interacting protein and occupies thousands of enhancers and promoters related to gene activation[64]. BRD4 
also works as a critical regulator of the positive transcriptional elongation factor b (P-TEFb) complex via 
recruiting it to the chromatin and mediates the activation of P-TEFb, consequently phosphorylating and 
activating RNAPOL II. It is reported that the interaction of BRD4/P-TEFb is crucial for rapid 
transcriptional reinitiating after mitosis[65,66]. Besides recognizing histone acetylation, BRD4 also identifies 
and binds to the acetylated lysine residues of non-histone. Shi et al.[67,68] discovered that BRD4 identifies 
Tip60-diacetylated of Twist and thereby constructing an activated Twist/BRD4/P-TEFb/RNA-Pol II 
complex at the WNT5A promoter and enhancer in breast cancer. BRD4 also functions as an atypical kinase 
to directly phosphorylate Serine 2 of the CTD of RNA POL II, implicating BRD4 as a regulator of 
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transcription[69]. Recently, BRD4 also phosphorylates c-MYC at Thr58, resulting in MYC ubiquitination and 
degradation, suggesting BRD4 negatively regulates MYC level[70]. Overall, BRD4 possesses a pivotal role in 
the regulation of transcription and protein stabilization.

BRD4 plays an oncogenic role and is a potential target of therapy in various cancers. In CRPC, 
Pawar et al.[71] unrevealed that BRD4 physically interacts with AR, and the inhibition of BRD4 disrupts AR 
recruitment to target gene loci and abrogates AR-mediated gene transcription, including induction of the 
TMPRSS2-ERG gene fusion and its oncogenic activity. The study provides a novel epigenetic approach for 
the concerted blockade of oncogenic drivers in advanced PCa. In addition, in ER+ breast cancer, 
Nagarajan et al.[72] discovered that BRD4 occupies distal EREs enriched for the histone H3 lysine 27acetyl 
(H3K27ac) mark and regulates enhancer RNA synthesis by affecting RNAPII recruitment and elongation. 
Consistently, BRD4 activity is required for the proliferation of ER+ breast and endometrial cancer cells and 
uterine growth in mice. In conclusion, several studies are focusing on BRD4 as a target for therapy. To 
inhibit the function of BRD4, a number of selective small-molecules have been developed, which function 
by blocking the binding of BRD4 to targeted genes via competing for the acetyl-binding pockets[73,74]. One of 
the most popular inhibitors is JQ1, a thieno diazepine-based small molecule, which shows excellent 
inhibition against the BET subfamily in the low nanomolar range, and is especially effective against 
BRD4[74]. Currently, at least 10 BET inhibitors (BETis) have participated in clinical trials [Table 1][75-80]. It is 
well reported that PCa-associated SPOP mutations cause resistance to BETis via BRD4 accumulation[77]. In 
this regard, besides small-molecule inhibitors, a serial of proteolysis targeting chimera (PROTAC) has 
recently been developed to target BET proteins for degradation[78,79]. Pawar et al.[71] found that PROTAC-
BETd (ZBC260) effectively induces BRD4 degradation and results in BETi-resistant cells revers into 
sensitive cells to BETis. It suggests that the utilization of both small molecule inhibitors and PROTACs 
makes targeted therapy of BRD4 an effective therapy in various cancer models.

Currently, there is a lack of BETis, including JQ1 approved by the FDA for clinic application due to dose-
limiting toxicity. Given that combination treatment is a classic strategy to reduce the monotherapy dosage, 
Mao et al.[80] proposed that the PLK1 inhibitor GSK461364A could synergistically combine with BRD4 
inhibitor JQ1 in the treatment of CRPC. The co-inhibition of BRD4 and PLK1 resulted in delayed cell 
growth, substantial cell apoptosis, and catastrophic cell cycle arrest in aggressive human CRPC cells. The 
significant improvement of efficacy in combining a PLK1 inhibitor and BRD4 inhibitor suggests a novel 
therapy for clinical trials.

Epigenetic erasers
Though epigenetic markers in post-translational modifications on histones are covalently linked to DNA, 
they are not permanently bound to the structure. Epigenetic erasers are a group of enzymes that maintain 
the ability to oppose the activity of writers and catalyze the removal of epigenetic alternations. This removal 
relieves its effect on transcription, resulting in the modulation of gene expression[17]. In the section, we 
emphasize the enzyme responsible for removing methyl and acetyl groups while discussing its role in the 
prostate and introducing therapeutic tactics.

HDAC
In contrast to histone acetyltransferase transferring acetyl group to histones, histone deacetylases (HDACs) 
remove acetyl groups from histones, resulting in a more condensed form of chromatin and gene silencing. 
To date, four HDAC classes have been identified in humans[81-83]. Class I HDACs, consisting of HDACs 1, 2, 
3, and 8, are mainly localized in the nucleus and expressed in most tissues. Class II, consists of HDACs 4, 5, 
6, 7, 9, and 10, are localized both in the nucleus and the cytoplasm. Class III HDACs are homologs of yeast 



Page 349Jones et al. J Transl Genet Genom 2021;5:341-56 https://dx.doi.org/10.20517/jtgg.2021.19

silent information regulator 2 and consist of SIRT 1-7. Class IV HDAC consists of HDAC 11. Class I, II, and 
IV HDACs have a zinc coordinated active site, whereas Class III HDACs are dependent on coenzyme 
nicotinamide adenine dinucleotide for deacetylase activity.

HDAC role in PCa and therapeutic approaches
In cancer cells, high expression of HDACs results in the deacetylation of histone proteins, which causes 
DNA to be wrapped tightly by histones, thereby inhibiting gene expression. If the affected genes are tumor 
suppressors, the neoplastic proliferation of cells and cancer may result[83]. It has been reported that Class I 
HDACs (HDAC 1, 2, and 3) are highly expressed in PCa, specifically in CRPC[84,85]. Additionally, evidence 
has shown HDACs play a positive role in regulating the AR protein level and its transcriptional activity[86-88]. 
Therefore, it seems that HDACs could exhibit opposing pro- and anti-tumorigenic roles in PCa cells. In 
addition, HDAC inhibition could induce cell cycle arrest, apoptosis, autophagy, and reactive oxygen species 
generation[82,89]. The support from these discoveries has led to the initiation of several clinical trials of 
HDACs inhibitors in PCa treatment, including vorinostat, pracinostat, panobinostat, and romidepsin. 
However, none were recommended to continue phase III trials due to either toxicity or disease 
progression[82]. In summary, the function of HDAC in PCa and whether HDAC could be an effective target 
in the treatment of PCa is still ambiguous and requires further investigation to reach a conclusion.

Demethylase of histones
Histone lysine demethylases (KDMs) are a class of enzymes that can remove methyl groups from nucleic 
acids, proteins, and specifically histones. The first human KDM was reported in 2004[90].To date, several 
lysine-specific demethylase isoforms were discovered and characterized. Since their discovery, KDMs have 
been found to be deregulated in various cancers, such as non-small cell lung, breast, colorectal, pancreatic, 
etc.[87,91]. In PCa, KDMs may act as either tumor suppressors or oncogenes, which is dependent on the genes 
regulated by the KDMs.

Recently, Gao et al.[92] found that KDM1A is demethylation of FOXA1 at K270, and methylation of this 
residue decreases FOXA1 stability and activity. Inhibition of KDM1A, therefore, induces FOXA1 instability 
and results in FOXA1 chromatin dissociation, thus leading to loss of AR transcriptional activity. Consistent 
with this finding are several previously completed studies[93-95], which have demonstrated that KDM1A is 
required for the AR transcriptional activity regulation, both AR and AR variants, confirming its 
involvement in the progression of PCa. Interestingly, a recent study[96] showed that KDM1A could promote 
the survival of PCa cells independently of its demethylase function. This effect is explained by the activation 
of a lethal PCa gene network in collaboration with KDM1A’s binding protein, ZNF217. Numerous KDM1A 
inhibitors, such as TCP, ORY-1001, GSK-2879552, IMG-7289, INCB059872, CC-90011, and ORY-2001, 
have been reported and are presently being investigated in clinical trials for cancer treatment [Table 1][97]. 
Several have exhibited significantly improved potency and selectivity. In addition to KDM1A, KDM3A[94], 
KDM4A/4B[98-101], and KDM6A/6B[102] were also identified as coactivators of AR and play critical roles in PCa 
progression, thus characterizing them as potential therapeutic targets. These findings highlight the roles of 
KDMs in PCa initiation and progression, suggesting that targeting KDMs’ activity may provide a new 
strategy for PCa treatment.

Chromatin remodelers
Due to the budding advancements in high-throughput epigenomic approaches, visualizing chromatin 
structures and how their alternations result in disease development and progression has become an 
increased area of study[103]. Chromatin remodeling can be defined as the rearrangement of chromatin from a 
condensed state to a transcriptionally accessible state[104]. This rearrangement allows for transcription factors 
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or DNA binding proteins to access DNA and control gene expression. This section will focus on chromatin 
remodeling as a compelling target for PCa therapeutic approaches.

ASF1A
Anti-silencing function 1A histone chaperone (ASF1A) is a major isoform of ASF1, a small histone 
chaperone of the H3/H4 family and conserved from yeast and human cells[105]. As the major isoform of 
ASF1 in human cells, ASF1A is ubiquitously expressed in all tissues and throughout the cell cycle[106]. The 
elevated expression of ASF1A positively correlates with the level of H3K56Ac[107], which is a mark of newly 
replicated chromatin as well as replication-independent histone replacement. ASF1A contributes to the 
resistance of DNA damage tolerance because of its ability to promote double-strand break (DSB) repair by 
non-homologous end joining. ASF1A deficiency and loss will render cells more sensitive to DSBs. For 
example, knockout ASF1A leads to the introduction of DSBs, which sensitizes cancer cells to radiotherapy, 
chemotherapy, and immunotherapy[108,109]. ASF1A has emerged as an oncogenic driver. Regarding several 
cancer cases, ASF1A accumulation is a general characteristic that occurs in tumorigenesis[110]. ASF1A is 
highly expressed in prostate cancer cells, and its overexpression is associated with poor prognosis in cancer 
patients[104,111-113]. Some reports have shown that blocking the expression of ASF1A by RNA 
interference[108,111], small inhibitors, and chemotherapy drugs[110] can effectively inhibit the proliferation and 
growth of tumors and improve the sensitivity to anti-cancer drugs and immunotherapy[108,109].

CAF-1
Histone chaperone chromatin assembly factor-1 (CAF-1) is composed of p150 large unit (CHAF1A), p60 
middle unit (CHAF1B), and p48 small unit (RbAp48) and is involved in the deposition of (H3-H4)2 
tetramer onto DNA[114]. During replication, CAF-1 receives (H3-H4)2 tetramer from another histone 
chaperone ASF1A and then deposits the histone onto the newly synthesized daughter DNA strands[114,115]. It 
has been reported that the dysregulation of histone assembly is closely associated with certain human 
diseases such as cancer[116]. Indeed, CAF-1 has been shown to be a marker of proliferating cells[117], and 
depletion of CAF-1 induces cell death, possibly due to the activation of DNA damage response pathway[118]. 
Specifically, in PCa, the middle unit of CAF-1 is a prognostic marker of adverse outcomes for patients[111], 
and inhibition of ASF1A suppresses the growth of PCa[119]. These interesting results raise the possibility that 
targeting chromatin assembly in PCa is a potential treatment for PCa patients.

SAFB1
SAFB1 (scaffold attachment factor B1) is a nonenzymatic architectural component of the chromatin that 
was first identified to bind adenine- and thymine-rich scaffold/matrix attachment (S/MAR) regions[120] to 
divide the genome into 5-200 kb topological domains. SAFB1 was previously assumed to mediate chromatin 
looping to modulate long-range chromatin interactions and higher-order chromatin structure[119]. SAFB1 is 
a component of the DNA damage response and cooperates with histone acetylation to allow for efficient 
gH2AX spreading and genotoxic stress signaling. SAFB1 undergoes a highly dynamic exchange at damaged 
chromatin in a poly (ADP-ribose)-polymerase 1- and poly (ADP-ribose)-dependent manner and is required 
for unperturbed cell cycle checkpoint activation and guarding cells against replicative stress[121]. Meanwhile, 
SAFB1 regulates RNA polymerase II-dependent transcription of targeted genes[119]. There is a potent 
transcriptional repression domain at the C-terminal region of SAFB1, which mediates the transcriptional 
repression activity. Particularly, SAFB1 binds to nuclear receptors[122,123] and suppresses immune regulators 
and apoptotic genes[124]. SAFB1 attenuates ERα transcriptional activity via its interaction with the ERα DNA-
binding domain in a ligand-independent manner[125]. Low levels of SAFB1 were found to correlate with 
worse outcomes in breast cancer patients[126]. In addition, SAFB1 is also reduced with disease progression in 
a cohort of human PCa, including metastatic tumors. SAFB1 binds to AR and is phosphorylated by the 
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MST1 (Hippo homolog) serine-threonine kinase, an AR repressor, and MST1 localization to AR-dependent 
promoters is inhibited by depletion of SAFB1. Meanwhile, SAFB1 interacts with Enhancer of Zeste 2 
Polycomb Repressive Complex 2 (EZH2) at ARE of chromatin. Knockdown of SAFB1 in androgen-
dependent LNCaP cells results in upregulation of AR and PSA levels, stimulating the growth of cultured 
cells and subcutaneous xenografts and promoting a more aggressive phenotype, which is consistent with a 
negative AR regulatory function[127]. Collectively, SAFB1 functions as a tumor suppressor in both breast 
cancer and PCa.

Epigenetics and genetic instability 
Epigenetics and genetics have been described as separate entities, participating in carcinogenesis via 
independent mechanisms[128]. However, recent publications have unveiled crosstalk that occurs between 
genome and epigenome factors that could produce novel therapeutic strategies in PCa[127].

Microsatellites are highly polymorphic, short-tandem repeat sequences dispersed throughout the 
genome[128]. The instability of these repeats at multiple loci can result in mismatch repair errors and other 
genetic issues. Loss of heterozygosity (LOH) has been reported to strongly correlate with increasing 
malignancy in prostate carcinoma[129]. Recently it has been documented that chromosomal instability, 
including MSI/LOH, has been categorized as a distinct type of genetic instability characteristic in regards to 
prostate cancer[130]. Epigenetic processes such as hypermethylation of tumor suppressors, histone 
modification, and hypomethylation of oncogenes have been documented to eventually create genetic 
instability in the forms of MSI, LOH, allelic loss, single nucleotide polymorphisms (SNPs), and 
chromosomal aberrations. DNA methylation alterations could induce loss of heterozygosity and lead to a 
progression in prostate cancer[129]. It has been reported ten-eleven translocase 2 (TET2), enzyme-mediated 
DNA demethylation, exhibits high mutation rates (10%-20%) and extensive loss of heterozygosity (~60%) in 
metastatic prostate tumors. Genome-wide association studies have also shown increased PCa risk linked to 
an intergenic TET2-proximal SNP (rs7679673)[131]. Additionally, Baylin and Jones have reported that cancers 
with hypermethylated MGMT are susceptible to genetic mutations in critical genes such as p53 or KRAS. 
MLH1, a mismatch repair gene, plays an important role in genomic instability. It has been reported that 
promoter hypermethylation results in loss of function of this gene and causes MSI in several cancers[132].

Regarding histone modification, deregulated Polycomb Repressor Complex 2 mediated epigenetic 
modifications have been shown to cause genetic instability, malignancy, and cancer development through 
abnormal tumor suppressor gene expression, DNA damage response, and DNA replication[133]. BRD4 
acetylates histone H3 at the K122 residue, and this thereby perturbs a salt bridge, leading to nucleosome 
instability[134]. It has been recently documented that targeting genetic instability with possible PARP could be 
utilized as a novel therapeutic approach in prostate cancer treatment. Epigenetic changes, such as DNA 
hyper- and hypomethylation, can cause genetic instability, such as LOH/MSI, in various cancer types. 
Multiple genetic and epigenetic abnormalities in PCa suggest that co-targeting both epigenetic changes and 
genetic instability could become a novel therapeutic strategy in PCa treatment.

CONCLUSION
AR has been a critical target for the treatment of PCa, and while ADT has been effective in preventing 
cancer cell proliferation, progression to a more aggressive phenotype is inevitable. In this review, we 
discussed the various epigenetic changes which contribute to the further advancement and progression of 
PCa via the activation of various oncogenic pathways. We also explored novel therapeutic approaches 
established by our lab and drug treatment strategies that have demonstrated impactful success. Due to 
recent discoveries in the understanding of the mechanisms of maintained AR signaling in castration-
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resistance PCa, targeting these epigenetic changes that facilitate AR target gene activation has a highly 
possible and promising potential in developing novel therapeutic approaches. Though whether targeting 
these factors’ stability will produce toxic or ineffective effects is obscure, pre-clinical trial data gathered and 
documented by our lab indicates that clinical trial participation could result in highly efficient and optional 
treatment methods.
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