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Abstract
Cerebral cavernous malformations (CCMs), one of the most common vascular malformations, are characterized by 
abnormally dilated intracranial microvascular capillaries resulting in increased susceptibility to hemorrhagic stroke. 
As an autosomal dominant disorder with incomplete penetrance, the majority of CCMs gene mutation carriers are 
largely asymptomatic, but, when symptoms occur, the disease has typically reached the stage of focal hemorrhage 
with irreversible brain damage, while the molecular “trigger” initiating the occurrence of CCM pathology remain 
elusive. Currently, the invasive neurosurgery removal of CCM lesions is the only option for the treatment, despite 
the recurrence of worse symptoms frequently occurring after surgery. Therefore, there is a grave need for the 
identification of molecular targets for therapeutic treatment and biomarkers as risk predictors for hemorrhagic 
stroke prevention. Based on the various perturbed angiogenic signaling cascades mediated by the CCM signaling 
complex (CSC) reported, there have been many proposed candidate drugs, targeting potentially angiogenic-
relevant signaling pathways dysregulated by loss of function of one of the CCM proteins, which might not be 
enough to correct the pathological phenotype, hemorrhagic CCMs. In this review, we describe a new paradigm for 
the mechanism of hemorrhagic CCM lesions and propose a new concept for the assurance of CSC stability to 
prevent the devastating outcome of hemorrhagic CCMs.
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INTRODUCTION
Cerebral cavernous malformations (CCMs) are characterized by abnormally dilated intracranial 
microvascular capillaries that result in increased susceptibility to stroke[1-5]. Familial CCMs are an autosomal 
dominant condition[1,6]. Three genes have been identified as culprits of most familial CCM cases[7-16]: CCM1 
at 7q11-22[11], CCM2 at 7p15-23[12], and CCM3 at 3q25.2-27[12]. These genes encode CCM proteins, including 
KRIT1 as CCM1[13,16-19], MGC4607 as CCM2[20], and PDCD10 as CCM3[21,22], that have been shown to interact 
with each other and form a core CCM triplex. In this triplex, CCM1 and CCM3 compete to bind to PTB 
domains of CCM2[23]. This core CCM triplex, in turn, interacts with other proteins[22,24-27] to form a complex 
referred to as the CCM signaling complex (CSC)[28,29]. Although the majority of CCMs gene mutation 
carriers are largely asymptomatic due to the incomplete penetrance of CCMs, when symptoms do occur, the 
disease has typically reached a serious stage of focal hemorrhage with irreversible brain damage. Currently, 
the invasive neurosurgical removal of CCM lesions is the only option for treatment, despite the recurrence 
of hemorrhagic events after surgery. Therefore, there is a grave need to understand the angiogenic functions 
of CSC in maintaining neurovascular integrity. Uncovering the mechanistic underpinnings of this 
signalosome may provide novel avenues for developing stroke prevention and vascular therapy techniques. 
Based on the various perturbed angiogenic signaling cascades reported, there have been many proposed 
candidate drugs, potentially targeting angiogenic-relevant signaling pathways dysregulated by loss of 
function of one of the CCM proteins, which might not be enough to correct the pathological phenotype, 
hemorrhagic CCMs. In this article, we propose a new concept for the assurance of CSC stability to prevent 
the devastating outcome of hemorrhagic CCMs.

FEMALE SEX STEROID HORMONES AND STROKE
The overall lifetime risk of stroke is similar between women and men[30]; however, postmenopausal women 
are at a much greater stroke risk, compared to premenopausal women. Women generally bear a notable 
lower risk of stroke during earlier life, until reaching their middle age, doubling the risk of stroke in women 
10 years post-menopause[31-33]. This drastically increased stroke risk in women is caused by declining levels 
of circulating sex steroid hormones in the blood, especially estrogen[31,34]. Estrogen has been widely 
recognized as a beneficial factor for the integrity of vasculature[35-42] due to its actions on nuclear/membrane 
estrogen receptors (nERs/mERs)[37,43-45] in vascular smooth muscle cells[46,47] and endothelial cells[38,48-50]. 
Furthermore, sex steroids, estrogen, androgen, and glucocorticoid, have been evaluated, but no significant 
perturbation of CSC was found involving any of these sterols[51]. Increased stroke risk associated with altered 
levels of circulating female sex hormones has been well defined for several major female physiological 
events, including post-menopause, pregnancy, oral contraceptive regimens, and hormone replacement 
therapy[52]. It needs to be mentioned that the physiological changes during pregnancy, caused by the altered 
levels/composition of circulating female sex hormones, is a major risk factor for stroke in women[53-60]. 
Epidemiologic data in the United States indicate that approximately 87% of strokes are ischemic, and the 
remaining 13% are hemorrhagic strokes[61-63]. Interestingly, hemorrhagic stroke is the most dominant type 
(up to 74%) of strokes during pregnancy, much higher than that in the general population[64-71], suggesting 
an important correlation between altered progesterone (PRG) levels [Table 1] and elevated hemorrhagic 
stroke risk[72].

Although women and men have measurable amounts of PRG in the bloodstream, the levels and patterns of 
change of circulating PRG differ. Circulating PRG is approximately 0.5 ng/mL for males, while PRG levels 
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Table 1. Expected normal-range PRG values from serum/plasma samples in various age groups of both women and men

Physiological stages (women) Values for ELISA kit detection

Follicular phase 0.2-1.4 ng/mL

Luteal phase 4.0-25 ng/mL

Menopause 0.1-1.0 ng/mL

Normal men 0.1-1.0 ng/mL

The dynamic range of PRG assay with human serum/plasma samples is 0-40 ng/mL. PRG: Progesterone.

vastly fluctuate between 4.0 and 25 ng/mL for premenopausal women during the luteal phase of their 
menstrual cycle [Table 1][72]. Only 2% of total blood PRG is in its free, active form, which has a very short 
half-life (5-10 min)[73]. Over 98% of PRG in the blood is believed to be physiologically inactive and passively 
transported by blood proteins[74], mainly by two major PRG-binding proteins: serpin A6 (binds ~18% of 
PRG) and albumin (binds ~80% of PRG)[75-77].

CSC COUPLES BOTH CLASSIC AND NON-CLASSIC PRG RECEPTOR SIGNALING
As a sex steroid hormone, PRG elicits its cellular responses through two major signaling pathways. PRG 
binds to either nuclear progesterone receptors (nPRs) to enact classic PRG effects[78] or to membrane 
progesterone receptors (mPRs/PAQRs)[79,80] and PRG receptor membrane components[81,82] to enact non-
classic PRG effects. Currently, the intricate balance and switch mechanisms between these two signaling 
cascades remain unknown. Recently, we found that CSC can modulate PRG receptor-mediated signaling, 
coupling both classic and non-classic signaling by establishing crosstalk between them in nPR positive (+) 
breast cancer T47D cells. Based on our findings, under PRG actions, CSC stability is regulated by two major 
signaling cascades: (1) by the negative effects of PRG or its antagonist (nPRs only), mifepristone, via both 
classes of PRG receptors; and (2) by the positive effects of nPRs signaling[51]. This discovery reveals that the 
balance between classic and non-classic PRG signaling impacts CSC function and identifies CSC as an 
important mediator of nPR and mPR crosstalk in nPR(+) cells. Our observation is further supported by a 
previous finding that PRG can act simultaneously on both nPRs and mPRs, and the activation of mPR 
signaling can potentiate the hormone-activated nPR-2 isoform[78]. The intricate feedback regulation among 
the PRG-activated CSC-mPRs-PRG-nPRs (CmPn) signaling network in nPR(+) T47D cells can be 
summarized as a common mechanism that exists among the CmPn signaling network under steroid 
actions[51]. In this CmPn signaling network, PRG and its nPR-specific antagonist, MIF, work independently 
or synergistically to disrupt CSC through their common targets, mPRs, in a backward fashion (CSC←mPRs
←PRG) [Figure 1][51].

A COMMON REGULATORY MECHANISM UNDERLYING THE PROMOTIVE EFFECTS OF 
CSC ON MPRS IN BREAST CANCER CELLS
PRG can activate downstream signaling in both nPR(+) and nPR(-) cells by binding to mPRs[51,83-85]. Distinct 
from nPRs, mPRs represent a unique class of membrane steroid receptors that mediate non-classic PRG 
actions in nPR(+) and nPR(-) cells[78,86]. Numerous studies have implicated mPRs in breast cancer[87-95], 
especially nPR(-) breast cancers[84,88,93]. After defining the CmPn signaling network in nPR(+) breast cancer 
T47D cells[51], we shifted our focus to two nPR(-) breast cancer cells (MDA-MB231 and MDA-MB468), both 
of which are triple-negative breast cancer (TNBC) cells. Using these two nPR(-) cell models, we confirmed 
the presence of the CSC-mPRs-PRG (CmP) signaling network in nPR(-) breast cancer cells[96]. We also 
demonstrated that a common core mechanism exists among nPR(-) breast cancer cells, termed the CmP 
signaling network. In the CmP signaling network, CSC can stabilize mPRs under steroid actions in a 
forward fashion (CSC→mPRs), which overlaps with the CmPn signaling network in nPR(+) breast cancer 
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Figure 1. Schematic representation of the relationship among the CmPn network and potential candidate drug targets. The relationship 
among CSC, PRG, and two types of PRG receptors (nPRs and mPRs) is illustrated based on our current data. Candidate drug targeting 
points are presented with blue arrows, where candidate drugs are highlighted with blue letters within the box. Green arrow-lines indicate 
effects of PRG on PRG receptors, black arrow-lines indicate effects of PRG and its receptors on CSC, and red arrow-lines indicate effects 
of the CSC on biogenesis of PRG and its receptors. +PRG indicates under steroid actions. The + symbol indicates observed enhancement, 
while the - symbol demonstrates an inhibitory effect. CCM: Cerebral cavernous malformation; CSC: CCM signaling complex; PRG: 
progesterone; nPRs: nuclear progesterone receptors; mPRs: membrane receptors.

cells under steroid actions, regardless of nPR(+/-) cell type. This implicates a more essential role of CSC on 
the stability of mPRs in nPR(-) cells under steroid actions[96]. Our data support the previous findings that 
multiple mPRs can be co-expressed in various mammalian cell types[78,83,93,97,98] to perform multifaceted non-
classic PRG signaling cascades among different nPR(+/-) mammalian cells[93].

ANGIOGENIC RESPONSES TO SEX STEROID ACTIONS THROUGH MPRS SIGNALING IN 
NPR(-) VASCULAR ENDOTHELIAL CELLS
CCMs are more common in women and become symptomatic during their reproductive period (in their 
30s and 40s)[99,100]. Although no conclusive results have been found[101], hormonal changes during pregnancy 
have long been suspected as significant factors for increased bleeding[102-104], and female gender is a key risk 
factor for bleeding in CCM patients[102,105]. Increases in the size of CCM lesions[106-109] and the elevated 
frequency of hemorrhagic CCMs during pregnancy have been well documented[103,110-115], suggesting that 
pregnancy is associated with an increased risk of hemorrhagic CCMs. It has long been speculated that the 
flux of hormones during pregnancy may predispose CCMs to hemorrhage[102,111-114], and, furthermore, 
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increased PRG levels during early pregnancy[116,117] have been indicated to enhance the progression of 
lesions[118], possibly through the induction of structural changes within vessels[119]. Increased risk for acute 
CCM bleedings[101,103,104,113,115,120] or formation of a de novo CCM lesion[113,120,121] have also been reported during 
pregnancy. Collectively, these findings reinforce the idea that there is gender- and sex hormone-associated 
differences in hemorrhagic stroke pathophysiology and suggest that PRG-mediated signaling should be 
further investigated. Interestingly, nPR(+) endothelial cells (ECs) can only be found in the veins and 
lymphatics of the uterus and ovaries, where human umbilical vein endothelial cells (HUVECs) are 
derived[122]. Additionally, the MEKK3-KLF-ADAMTS signaling pathway has been implicated in CSC-
mediated angiogenic activities[123]. KLFs are largely expressed in reproductive tissues and have been 
implicated as co-regulators and integrators of progesterone/progesterone receptor transactivity[124]. There 
are some associations between progesterone and ADAMTS-1 demonstrating ADAMTS as a transcriptional 
target of progesterone actions mainly in the ovaries of nPR-KO mice[125]. Additionally, in Xenopus laevis eggs 
and embryos, it was demonstrated that progesterone can stimulate JNK activation through both MEK/p42 
MAPK-dependent and -independent pathways, and the addition of progesterone induced synthesis of 
MAPKKK c-Mos, leading to the activation of the MEK1-ERK-RSK cascade[126]. However, there is currently 
no available literature systemically demonstrating the effects of progesterone on the MEKK3-KLF-
ADAMTS signaling pathway. The vast majority of vascular ECs derived from other tissues are nPR(-) and 
mPRs(+), where only non-classic actions of PRG have been reported[82]. When we used combined steroids 
(PRG + MIF) to treat four nPRs(-) microvascular ECs and nPRs(+) HUVECs, again, our data support a 
common regulatory mechanism underlying the inhibitory effects of PRG/MIF on CSC, independent of 
nPRs. In addition, the sex hormone inhibition of CCM1/3 protein expression in ECs is more dramatic than 
in non-endothelial-derived cell lines[51,127], reaffirming that steroid hormones have much stronger actions on 
the stability of CSC through mPRs in ECs.

PRG ACTIONS INCREASED PERMEABILITY OF EC MONOLAYER AND COMPROMISED 
BBB INTEGRITY
The haploinsufficiency of CCM proteins in microvascular ECs is an essential step in the pathogenesis of 
CCM lesions, as demonstrated by in vivo studies with zebrafish[128,129] and Ccms mice models[130-132], but it is 
insufficient to form hemorrhagic CCMs. Although the “two-hit” model, which creates a null condition in 
the lesion, can be used to explain familial CCM cases, it fails to account for sporadic forms of CCM, which 
make up 80% of all CCM cases[133]. Additional studies have demonstrated that haploinsufficiency condition 
of CCMs are insufficient in initiating hemorrhagic events of CCM lesions[134]. Since the “two-hit” model 
alone cannot explain CCM ruptures, there must be a molecular “trigger” that initiates the hemorrhagic 
events of CCM lesions. Therefore, we performed both in vivo and in vitro permeability assays 
demonstrating significantly increased blood-brain barrier (BBB) permeability among all Ccms (1, 2, 3) 
mutants only in the hormone treatment groups, compared to WT and/or untreated Ccms (1, 2, 3) mutants 
mice, which was further supported by in vitro permeability assays showing increased permeability of 
different EC lines under steroid actions, compared to vehicle controls[51,127]. This concordant BBB leakage 
among all Ccms mutant mice was not seen in other treatment groups, nor that of other tested organs, 
indicating that chronic steroid actions specifically increase BBB permeability, and it is the primary 
mechanism underlying CCM lesion formation. Therefore, we concluded that BBB integrity among 
individuals with CCMs deficiency is particularly susceptible to chronic and elevated sex steroid actions[51].

PARADIGM SHIFT FOR HEMORRHAGIC EVENTS IN CCMS OPENS UP NEW AVENUES OF 
RESEARCH
Hemorrhage is often rooted in defective endothelial cell junctions, and microvessel rupture is a result of 
compromised BBB integrity[135]. Currently, two major theories for the induction of hemorrhagic CCMs are 
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the anticoagulant vascular domain theory and the gut microbiota theory. In the anticoagulant vascular 
domain theory, local increases in the endothelial cofactors that generate anticoagulant activated protein C 
contribute to recurrent bleeding in CCM lesions[136]. In the gut microbiota theory, Gram-negative bacterial 
signaling through the lipopolysaccharide-activated innate immune receptor, Toll-like receptor 4, promotes 
hemorrhagic bleeding in both Ccm1/2 mutant mice, indicating the important roles for the gut microbiome 
and innate immune signaling in the pathogenesis of CCMs[134]. The gut microbiota theory focuses on the 
importance of gut microbiota in influencing the interaction direction by inducing an inflammatory gut 
milieu, which leads to systemic inflammation that exacerbates the inflammatory response in the brain and 
promotes detrimental effects on the BBB[137]. However, lipopolysaccharide-induced Ccms hemorrhagic mice 
demonstrate massive bleeding, leading to lethality at the early stages of life, uncharacteristic of human 
CCMs. Nonetheless, neither of the previous theories addresses a key issue of gender discrepancies in CCM 
pathogenesis, demanding further evaluation for the underlying mechanisms of hemorrhagic stroke. 
Although it is still under debate[4,112,138], female dominance in CCM patients has long been 
suggested[3,113,139,140], and consensus has been reached on more severe bleeding with worse neurological 
outcomes in females[102,139]. This aggressive course of hemorrhagic lesions in females has been proposed to be 
a consequence of endocrine influences[3,113,139,140]. Our data demonstrate that enhanced PRG-mPRs signaling, 
due to perturbed homeostasis of PRG, leads to BBB disruption, in addition to evidence that long exposure 
to hormonal contraceptives increases the risk of cerebral venous sinus thrombosis[141], which is incongruent 
with the anticoagulant vascular domain theory[136]. Our findings that immunosuppression, caused by sex 
steroid actions in Ccms deficient mice, is associated with CCM bleeding also disagree with the gut 
microbiota theory[134]. Therefore, we propose a new paradigm for the mechanisms of initiating hemorrhagic 
CCMs. In nPR(-) ECs, the feedback loops among CSC-mPRs-PRG actions appear to be sensitive, and 
perturbation of this intricate balance [Figure 1][127], such as hormone therapy or hormonal contraception 
regimens, could result in an increased risk for BBB disruption, especially for human CCMs mutant carriers. 
Our new paradigm provides a theory that is in line with clinically observed CCM conditions and 
demonstrates the important functions of CSC and non-classic PRG actions in angiogenesis and vascular 
health.

CURRENT PHARMACOLOGICAL CANDIDATES TARGETING HEMORRHAGIC CCMS 
LINKED TO PRG HOMEOSTASIS
Since the molecular and cellular mechanism of the CmP network in microvascular ECs remains largely 
unknown, we recently investigated the CmP signaling network in nPR(-) ECs[127]. Our data indicate that 
nPR(-) ECs are different from nPR(-) TNBC cells (TNBC cells have extremely low CCM expression). 
Although nPR(-) ECs share a common core mechanism between the newly defined CmP network and the 
CmPn network in breast cancer cells, nPR(-) ECs also showed that steroids can disrupt CSC through their 
common targets, mPRs, in a backward fashion (CSC←mPRs←PRG), identical to nPR(+) breast cancer 
cells[51], indicating the significant impact of steroid actions on the stability of CSC.

Many candidate drugs have been identified and tested in animal models and even small clinical trials[142,143]. 
Ironically, the current pool of very diverse candidate drugs were collectively gathered as certain specific 
blockers for signaling pathways identified from different experiments using various in vitro and/or in vivo 
models[144-157]. Among them, statins and propranolol advanced into clinical trials[142,143,158], due to some 
promising data. Propranolol, one of the most commonly used β-adrenoceptor blockers (beta-blockers), was 
first used to successfully treat another common vascular condition, infantile hemangioma in 2008[159], and 
additionally with major success in three later cases of giant infantile cerebral cavernomas[160-162]. Utilizing in 
vitro, histological, and clinical findings, it was demonstrated that 20-60 mg/day of propranolol not only was 
effective in reducing previous hemorrhagic lesions, but it also prevented new hemorrhage in familial CCM 
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patients and reduced lesion size and edema in occipital CCM patients[144]. Additionally, it was also observed 
that propranolol therapy was effective in immediately stabilizing progressing lesions and preventing future 
bleeds in sporadic CCM patients[163]. Currently, there are two clinical trials actively recruiting patients to 
assess lesion burden and clinical events in both familial and symptomatic cerebral cavernous malformation 
patients[142]. Statin use has been shown to reduce both nonfatal and fatal strokes, improve functional 
outcomes after ischemic strokes, and reduce coronary death rate and primary and secondary cardiovascular 
events[164-167]. A randomized controlled trial involving the use of high-dose statin therapy demonstrated a 
16% decrease in total stroke as well as a five-year absolute risk reduction in fatal and nonfatal strokes[167]. 
Despite the promising results seen with statin therapy, a post hoc analysis demonstrated a significant 
increase in intracerebral hemorrhage, suggesting that high-dose statin therapy may have contradictory 
results[167,168]. These results demonstrate a potential therapeutic use of statins for stroke prevention, but it 
should be tailored on an individual patient basis to ensure benefits are maximized while risks are 
minimized.

Intriguingly, by examining these candidate drugs, we found an interesting association of these candidates 
with the circulating levels of PRG, especially the ones with promising data in animal models. While tempol 
can alleviate increased PRG levels induced by dehydroepiandrosterone (DHEA, not statistically 
significant)[169], vitamin D, as a close physiological partner with PRG[170], is a strong inhibitor of PRG 
production[171], suggesting the inhibitory effect of vitamin D/tempol on PRG production. As an inhibitor for 
TGFβ/β-catenin signaling, sulindac inhibits the expression level of classic PRG receptors (nPRs)[172], while 
other TGFβ signaling inhibitors, such as K02288 (TGFβ/BMP6)[173], DMH1 (BMP6)[174], and SB431542 
(BMP6)[173], have no effect on PRG levels, suggesting that TGFβ inhibitors might not be a good choice for 
PRG inhibition. Intriguingly, the two most promising candidates, which have been put in clinical trials, 
show strong inhibitory effects on PRG levels. While PRG can abolish the beneficial effects of atorvastatin on 
vascular EC functions[175], statins (atorvastatin, simvastatin, lovastatin, and mevastatin) can directly inhibit 
PRG levels[176,177]. Although the molecular mechanisms of its therapeutic action are still unknown, its known 
effect of vasoconstriction may be involved[178,179]. Propranolol has been reported to have an inhibitory effect 
on PRG levels, from both direct[180,181] and indirect[182,183] evidence, indicating the possibility of decreased PRG 
levels in this therapeutic process. Finally, although these two candidate drugs (statins and propranolol) 
show great potential for PRG inhibition[176,177,180-183], they might not be suitable drugs for the treatment and/or 
prevention of hemorrhagic CCMs. As common drugs for vascular conditions, both are highly effective and 
safe for most people, but they have been shown to have some side effects due to their wide spectrum of 
targets. Extensive clinical trials are needed to determine their real benefit and efficacy for hemorrhagic 
CCMs.

CONCLUSION
As mentioned above, the haploinsufficiency of CCM genes in microvascular ECs is an essential step in the 
pathogenesis of CCM lesions, as demonstrated by in vivo studies with zebrafish[128,129] and Ccms mice 
models[130-132], but it is insufficient to form hemorrhagic CCMs, mimicking the incomplete penetrance seen 
in human CCMs. However, when symptoms occur, the disease has typically reached the stage of focal 
hemorrhage (likely close to CCM-null condition at the genomic level and/or loss of function at the 
proteomic level) with irreversible brain damage. Following this rationale, we believe it could be strategic to 
suppress PRG actions on capillary ECs in order to prevent haploinsufficiency of CCM genes reaching 
similar levels observed in CCM loss-of-function for the initiation of a hemorrhagic event. Furthermore, it is 
not surprising to observe the widespread perturbation of almost all known signaling cascades involved in 
angiogenesis due to deficiency of CCMs, since CSC is an essential regulator of microvascular angiogenesis 
and perturbation of CSC will lead to disrupted angiogenesis in the most fundamental way[29,128,129,184,185]. For 



Page 8 of Zhang et al. Vessel Plus 2021;5:48 https://dx.doi.org/10.20517/2574-1209.2021.6414

this reason, efforts to try to correct any specific dysregulated angiogenic signaling, rooted from deficiency in 
any CCMs, to alleviate CCM lesion burden or even prevent hemorrhagic CCMs might eventually prove to 
be too little too late [Figure 1].
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