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Abstract
Aim: In this study, our goal was to study the inhibition of nicotine metabolism by P450 2A6, as a means for 
reduction in tobacco use and consequently the prevention of smoking-related cancers. Nicotine, a phytochemical, 
is an addictive stimulant, responsible for the tobacco-dependence in smokers. Many of the other phytochemicals in 
tobacco, including polycyclic aromatic hydrocarbons, N-nitrosamines, and aromatic amines, are potent systemic 
carcinogens. Tobacco smoking causes about one of every five deaths in the United States annually. Nicotine 
plasma concentration is maintained by the smokers’ smoking behavior within a small range. Nicotine is 
metabolized by cytochrome P450s 2A6 and 2A13 to cotinine. This metabolism causes a decrease in nicotine 
plasma levels, which in turn leads to increased tobacco smoking, and increased exposure to the tobacco 
carcinogens.

Methods: Using the phytochemical nicotine as a lead structure, and taking its interactions with the P450 2A6 
binding pocket into consideration, new pyridine derivatives were designed and synthesized as potential selective 
mechanism-based inhibitors for this enzyme.
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Results: The design and synthesis of two series of novel pyridine-based compounds, with varying substituents and 
substitution locations on the pyridine ring, as well as their inhibitory activities on cytochrome P450 2A6 and their 
interactions with its active site are discussed here. Substitutions at position 3 of the pyridine ring with an imidazole 
or propargyl ether containing group showed the most optimal interactions with the P4502A6 active site.

Conclusion: The pyridine compounds with an imidazole or propargyl ether containing substituent on position 3 
were found to be promising lead compounds for further development. Hydrogen-bonding interactions were 
determined to be crucial for effective binding of these molecules within the P450 2A6 active site.

Keywords: Phytochemicals, cytochrome P450 enzymes, tobacco smoking, nicotine

INTRODUCTION
Phytochemicals are plant-produced natural products, and are commonly found in human and animal diets 
as well as in plant-based medications and natural remedies[1-3]. While most of these chemicals have basic 
nutritional value, some have preventive, therapeutic or toxic effects. Phytochemicals can play a preventive 
role in carcinogenesis in multiple ways; as primary preventive agents that can be used to prevent the advent 
of cancer; as secondary agents that can prevent progression of cancer as in the case of premalignant lesions; 
and as tertiary agents that can prevent the recurrence of cancer[4,5]. Some examples of such phytochemicals 
are capsaicin from chili pepper[6,7], polyphenols from green tea, fruits, and vegetables[8,9], carotenoids such as 
lycopene found in fruits[10,11], cucurbitacin B from Chinese medicinal plants[12-14], isoflavones from 
legumes[15,16], etc. Phytochemicals have also been shown to modulate multiple mechanisms in cancer, 
resulting in their anti-cancer activities[5,17-21]. Phytochemicals are known to have similar preventive and/or 
therapeutic effects on many other diseases[10,11,16,19,22].

Phytochemicals are often toxins produced by plants as a defense mechanism against disease-causing 
organisms or herbivorous animals. Certain herbs and plants routinely used by humans, contain phytotoxins 
with carcinogenic, teratogenic and/or endocrine influencing activities[1]. While some of these 
phytochemicals are direct-acting toxins, others, such as procarcinogenic agents, need metabolic activation. 
Certain procarcinogenic alkenylbenzenes, pyrrolizidine alkaloids, ptaquiloside, aristolochic acids, and 
furanocoumarins are known DNA-alkylating agents[3,22-25]. Metabolic activation of phytochemical 
procarcinogens into their ultimate carcinogenic forms by phase I and phase II enzymes has been well 
established[26,27]. Cytochrome P450 enzymes, a superfamily of Phase I enzymes, metabolize endogenous and 
xenobiotic compounds including phytochemicals, through monooxygenation reactions[26-29].

Nicotine, a phytotoxin present in many plants and vegetables, including tobacco, and in much smaller 
concentrations in potatoes, tomatoes, eggplants, and green peppers, is primarily metabolized by human liver 
P450 2A6, and to a smaller extent by human lung P450 2A13. The metabolism of nicotine to cotinine takes 
place in two steps - initial oxidation to the intermediate nicotine-△1’(5’)-iminium ion by either of the two 
P450 enzymes[29-31], and further oxidation to cotinine by cytosolic aldehyde oxidase[29,32]. Nicotine plays a 
critical role in tobacco-dependence, and is the main cause of lung cancer deaths in men and women. It is 
estimated that more than 16 million Americans are affected by cigarette smoking, and more than 480,000 
deaths per year are attributed to tobacco use[33]. Several strategies have been developed and implemented for 
cessation of cigarette smoking, such as nicotine replacement therapies alone or in combination with 
varenicline, a nicotinic acetylcholine receptor partial agonist[34]. However, only about 6% of smokers are able 
to overcome the addiction to nicotine[35]. The addiction to nicotine in smokers modulating their smoking 
behaviors has a direct correlation to the levels of nicotine in the blood and brain[36-38]. Drop of the levels of 
nicotine in the blood and brain due to the P450 2A6 metabolism, causes the smokers to adjust their tobacco 
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use to maintain these levels. The impact of P450 2A6 activity on tobacco addiction is evidenced in 
individuals who are slow metabolizers due to P450 2A6 polymorphism, and thus smoke less[37,39,40]. 
Inhibition of P450 2A6, which is known to be well tolerated by humans[41], is emerging as the most 
promising strategy for smoking cessation and treatment of tobacco-dependence. Development of P450 2A6-
specific inhibitors is currently pursued by many research groups[42-47]. Recent developments in this field 
include the use of bioelectrochemical platforms that use the “molecular lego” approach[48,49]. In the study 
reported by Castrignanò et al[50], genetically-fused P450 2A6 with Desulfovibrio vulgaris flavodoxin (FLD) 
module is used for investigating the inhibitory effects of coumarins and nicotine. Such an approach could 
improve and hasten the process of P450 enzyme inhibitor development. The development of mimicking 
agents with structural similarities to nicotine through the modification of its pyridine ring substituents, by 
our research group and the Cashman and Lazarus Research Groups[51-54], has led to potent (with low 
micromolar IC50 values) inhibitors of P450 2A6[42,51,54]. For this study, we have identified two series of such 
pyridine-based P450 2A6 inhibitors.

METHODS
Synthesis of 3-((prop-2-yn-1-yloxy)methyl)pyridine (6): 3-Hydroxymethylpyridine (1.0 eq) in 
tetrahydrofuran (THF) was added dropwise to a cooled (0 oC) suspension of sodium hydride (NaH, 95%, 2.1 
eq) in dry THF. After 20 min, propargyl bromide (80% solution in toluene, 2.0 eq) was added slowly. The 
reaction mixture was heated at 50 oC overnight. It was then allowed to cool to room temperature before 
careful quenching by the addition of water. The crude was extracted with ethyl acetate. The organic layer 
was washed with brine and dried over anhydrous sodium sulfate (Na2SO4). The solvent was removed under 
vacuum. The residue was then purified by silica gel column chromatography using hexane: ethyl acetate 
(1:3) as eluent to afford the desired product.

Compound 6: (96% yield; brown liquid) GC-MS showed > 99% purity. m/z: 146, 108, 92, 80, 65, 51. 1HNMR 
(CDCl3, 300 MHz) δ = 2.45 (t, J = 2.4 Hz, 1H), 3.42 (s, 2H), 4.51 (s, 2H), 7.32 (m, 1H), 7.62 (m, 1H), and 8.55 
(m, 1H). 13C NMR (CDCl3, 75 MHz) δ = 57.7, 69.1, 75.3, 79.3, 123.5, 133.0, 135.8, 149.5, and 149.6.

Syntheses of 4-(prop-2-yn-1-yloxy)pyridine (2), 2-(prop-2-yn-1-yloxy)pyridine (3) and 4-(3-(prop-2-yn-
1-yloxy)propyl)pyridine (5) were achieved using the same procedure.

Compound 2: (82% yield; white solid) GC-MS showed > 98% purity, m/z: 133.1, 104.1, 78.0, 52.0. 1HNMR 
(CDCl3, 300 MHz) δ = 2.63 (t, J = 2.56 Hz, 1H), 4.50 (d, J = 2.6 Hz, 2H), 6.35 (d, J = 7.3 Hz, 2H), and 7.42 (d, 
J = 7.6 Hz, 2H). 13C NMR (CDCl3, 75 MHz) δ = 45.5, 75.7, 77.3, 118.8, 139.6, and 179.1.

Compound 3: (76% yield; white solid) GC-MS showed > 99% purity, m/z: 133.1, 104.1, 78.0, 52.0. 1HNMR 
(CDCl3, 300 MHz) δ = 2.48 (t, J = 2.4 Hz, 1H), 4.72 (d, J = 2.3 Hz, 2H), 6.22 (t, J = 6.1 Hz, 1H), 6.54 (d, J = 5.2 
Hz, 1H), 7.36 (d, J = 2.8 Hz, 1H), and 7.63 (d, J = 4.6 Hz, 1H). 13C NMR (CDCl3, 75 MHz) δ = 37.5, 75.3, 77.3, 
106.2, 120.1, 136.5, 139.9, and 161.6.

Compound 5: (67% yield; yellow liquid) GC-MS showed > 98% purity. m/z: 174, 158, 145, 118, 110, 93. 1

HNMR (CDCl3, 300 MHz) δ = 2.0 (m, 2H), 2.42(t, J = 2.6 Hz, 1H), 2.89 (t, J = 7.4 Hz, 2H), 3.56 (t, J = 6.3 Hz, 
2H), 4.14 (d, J = 2.3 Hz, 2H), 7.15 (m, 2H), 7.60 (m, 1H), and 8.52 (m, 1H). 13C NMR (CDCl3, 75 MHz) δ = 
30.1, 31.6, 58.2, 68.8, 74.6, 77.1, 124.1, 149.8, and 150.8.
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Synthesis of 3-((1H-imidazol-1-yl)methyl)pyridine (4): The solution of 3-chloromethylpyridine 
hydrochloride salt (1.0 eq) and imidazole (10.0 eq) in dimethylformamide (DMF) (10 mL) was heated at 100 
oC until all the salt starting material was consumed (~3 h). The light brown solution was cooled down to 
room temperature, and the DMF was removed under vacuum. The residue was dissolved in 
dichloromethane (DCM), and washed with water. The DCM layer was dried over anhydrous Na2SO4. The 
solvent was evaporated under vacuum to afford the desired product.

Compound 4: (14% yield; brown solid) GC-MS showed > 99% purity. m/z: 159, 132, 92. 65. 1HNMR 
(CDCl3, 300 MHz) δ = 5.10 (s, 2H), 6.88 (s, 1H), 7.00 (s, 1H), 7.31 (m, 2H), 7.65 (s, 1H), 8.46 (m, 1H), and 
8.56 (m, 1H). 13C NMR (CDCl3, 75 MHz) δ = 48.3, 119.3, 123.9, 130.0, 135.0, 137.3, 148.7, and 149.7.

Syntheses of 3-(3-(2-methyl-1H-imidazol-1-yl))propyl]pyridine (1) and 3-[(2-methyl-1H-imidazol-1-
yl)methyl] pyridine (7) were achieved using the same procedure.

Compound 1: (86% yield; yellow oil) GC-MS showed > 99% purity. m/z: 201, 186, 118, 96, 55. 1HNMR 
(CDCl3, 300 MHz) δ = 2.05 (m, 2H), 2.32 (s, 3H), 2.62 (t, J = 7.7 Hz, 2H), 3.85 (t, J = 7.4 Hz, 2H), 6.80 (d, J = 
1.0 Hz, 1H), 6.90 (d, J = 1.1 Hz, 1H), 7.22 (m, 1H), 7.45 (m, 1H), and 8.45 (m, 2H). 13C NMR (CDCl3, 75 
MHz) δ = 12.6, 29.3, 31.3, 44.7, 118.7, 120.9, 123.1, 126.6, 135.3, 135.6, 143.8, 147.3, and 149.3.

Compound 7: (15% yield; brown oil) GC-MS showed > 98% purity. m/z: 173, 146, 92, 65. 1HNMR (CDCl3, 
300 MHz) δ = 2.35 (s, 3H), 5.0 (s, 2H), 6.84 (s, 1H), 6.97 (s, 1H), 7.31 (m, 2H), 8.46 (m, 1H), and 8.56 (m, 
1H). 13C NMR (CDCl3, 75 MHz) δ = 13.1, 47.4, 119.8, 123.9, 127.8, 132.1, 132.4, 144.8, 148.4, and 149.6.

P450 2A6 inhibition assay
Cytochrome P450 2A6 (Cyp2A6) activity was determined using the Vivid CYP450 Screening Kit (Life 
Technologies, catalog #PV6140) according to the manufacturer’s instructions. Briefly, a master pre-mix 
containing baculosomes and regeneration system was prepared using 0.5× Vivid reaction buffer II. The test 
compounds were dissolved in dimethyl sulfoxide (DMSO) at a concentration of 100 mM. From the stock 
solutions, each compound was serially diluted in 0.5× Vivid reaction buffer II to make working stocks of 100 
µM, 50 µM, 25 µM and so on up to 10 dilutions. It is essential to dilute the DMSO at least 1000-fold when 
making the working dilutions to prevent its interference with the enzyme activity. An initial high-
throughput screening was performed at 10 µM concentration for each compound. For the dose-response 
curve determination, in a 96-well plate, 40 µL of the diluted solutions of each test compound were added to 
each well, followed by 50 µl of the master pre-mix, before incubation for 10 min at room temperature. A 10× 
mixture of Vivid substrate (reconstituted with acetonitrile) and NADP+ was then prepared. At the end of the 
incubation period, 10 µL of this solution was added to each well to start the reaction. After 2 hours of 
incubation in the dark at room temperature, the plate was read at 415 nm on a plate reader (Synergy H1, 
Biotek). For a positive inhibition control, tranylcypromine (Sigma-Aldrich, cat. #P8511) was used at a final 
concentration of 100 µM. For a negative (no inhibitor) control, a 1:1000 dilution of pure DMSO in 0.5× 
Vivid reaction buffer was used. Each concentration in the dose-response curve was set up in triplicates, and 
each data point was the average of triplicate wells. The % inhibition was calculated using the following 
equation.
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where X is the fluorescence observed in presence of the test compound; A is the fluorescence observed in 
the absence of an inhibitor (no inhibitor control); and B is the fluorescence observed for the positive 
control. For graphing purposes, percent inhibition vs. anti-log[drug concentration] was plotted. A logistic 
sigmoidal model was used to fit the data and obtain IC50 values using Graphpad Prism software.

Docking studies
Docking studies were performed using methods previously published[55-57]. The coordinates of the reported 
X-ray crystal structure of P450 2A6 bound to nicotine[58] (4EJJ.pdb) were downloaded from the Protein Data 
Bank website (http://www.rcsb.org/), and used for the docking studies. Heme was considered as part of the 
receptor for docking purposes. Standard force fields were used for the compounds. MOE energy 
minimization method was used using the MOE software platform from the ChemComp group.

RESULTS
Nicotine, the main addictive ingredient of tobacco products, is mainly (70%-80%) metabolized to cotinine 
by P450 2A6 enzyme in the liver. Cotinine has a longer half-life but is much less active in inducing 
dopamine release in smokers than nicotine[30]. As nicotine is metabolized, maintenance of its blood plasma 
levels compels the smokers to modify their smoking frequency to compensate. Tobacco usage has been 
linked to several debilitating diseases, with lung cancer being the most common disease among smokers. 
Inhibition of P450 2A6 can prove to be one of the most effective strategies for smoking cessation. Our 
research group has been exploring several classes of compounds as possible P450 2A6 inhibitors. The use of 
the pyridine molecule as a scaffold for P450 2A6 inhibitors has been explored by our research group and the 
Cashman and Lazarus Research Groups[51-54]. The incorporation of 5-membered heterocyclic rings has been 
pursued by both research groups. One of the distinctive features of the P450 2A6 inhibitors developed by 
the Cashman and Lazarus Research Groups has been the use of a primary amino group as the main 
functional group that binds to the heme-Fe of the enzyme. In contrast, our research group is focused on (1) 
the incorporation of a triple bond that can lead to mechanism-based inhibition of the enzyme; and (2) the 
incorporation of an imidazole ring that can mimic the pyrrolidine ring of nicotine, in which the -CH of the 
5-membered ring faces the heme-Fe of the enzyme.

The syntheses of compounds 1 to 7 [Figure 1] were accomplished using the synthetic Schemes 1 and 2. The 
binding mode of nicotine to the P450 enzyme in the X-ray crystal structure (4EJJ.pdb) indicates that 
substituents at position 3 of the pyridine ring would be ideal. Nicotine-mimicking compounds containing 
imidazole or methyl substituted imidazole side chains with varied sizes of 1-3 carbon alkyl spacers at 
position 3 of the pyridine ring were synthesized using Scheme 1 (compounds 1, 4 and 7). Based on our 
previous findings that acetylenic substituents can interact with the P450 active site amino acids and lead to 
mechanism-based inhibition, triple bond in the form of propargyl ether was incorporated in a second series 
of compounds at positions 2, 3 or 4 of the pyridine ring as an ether linkage (compounds 3, 6 and 2, 
respectively). Positions 2 and 4 were used to investigate whether substituted compounds at those positions 
would show a difference in their inhibition activities compared to the 3-position substituted compound. A 
longer spacer in between the propargyl ether and the 4-position of the pyridine ring was introduced to 
investigate whether a greater flexibility in the positioning of the key functional groups (pyridine ring and 
the alkyne moiety) in the binding site would be achieved. The Vivid CYP450 Screening Kit (Life 
Technologies, catalog #PV6140) was used for the P450 2A6 inhibition assays. An initial high-throughput 
screening was performed at a 10 µM concentration followed by a dose-response curve determination. 
Compounds 1, 4 and 6, all three containing a substituent on position 3 of the pyridine ring, were found to 
have single digit micromolar IC50 values [Figure 2, Table 1]. Compounds 5 and 7 were found to have 
moderate inhibition activity, with compound 7, a 3-position substituted compound, showing better 

http://www.rcsb.org/),
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Table 1. IC50 values of P450 2A6 inhibition by compounds 1 to 7

Compound IC50 (µM)

1 9.034

2 193.8

3 0

4 5.024

5 66.91

6 1.003

7 42.51

Figure 1. Structures of Compounds 1 to 7.

Figure 2. Dose-response curves for the inhibition of P450 2A6 by compounds 1 to 7. The concentrations of the compounds are 
represented on the X-axis as an antilog scale. The highest compound concentrations used for dose-response curves is 40 µM.

inhibition than the 4-substituted compound 5. Compound 2, a 4-position propargyl ether substituted 
compound, exhibited much lower inhibition, while compound 3, a 2-postion propargyl ether substituted 
compound, did not inhibit P450 2A6 enzyme activity.
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Scheme 1. Synthesis of compounds 2, 3, 5 and 6 were accomplished using the following scheme.

Scheme 2. Synthesis of compounds 1, 4 and 7 were accomplished using the following scheme.

Docking studies of compounds 1 through 7 with the reported X-ray crystal structure of P450 2A6 with 
nicotine in its active site (4EJJ.pdb) were conducted using the MOE software platform from the ChemComp 
group. The nicotine molecule makes two H-bonds with Thr305 and Asn297 [Figure 3A and E], and the -
CH2 group of the pyrrolidine ring is in close proximity to the heme-Fe atom. The binding poses of the 
imidazole substituted compounds 1, 4 and 7 showed that all three molecules made H-bonds with the active 
site residues. Similar to the substitution pattern of nicotine, the imidazole substituents of these compounds 
are connected with varying alkyl chain lengths (1 or 3 carbons) at position 3 of the pyridine ring. 
Compound 1 made two H-bonds with Thr305 and Asn297, and had the -CH of the imidazole ring in close 
proximity to the heme-Fe atom [Figure 3B and F]. Compound 4 made one H-bond with Thr305, and 
aromatic π-H interaction with Phe107 [Figure 3C and G]. The -CH group at position 2 of the imidazole ring 
was facing the heme-Fe atom. Compound 7 made one H-bond with Asn297, and the sp2 nitrogen atom of 
the imidazole ring was in close proximity to the heme-Fe atom [Figure 3D and H]. The presence of the 
methyl substituent at the 2-position of the imidazole ring in this compound caused a change in the 
orientation of the methyl group, away from the heme-Fe atom, causing a flip in the positioning of this ring 
in the active site. The propargyl ether pyridine compounds 2, 3, 5 and 6 showed variations in binding poses, 
based on the position of the substituent [Figure 4]. Compounds 2 and 5 had substituents at position 4 of the 
pyridine ring. Compound 2 did not have a linker alkyl chain connecting the propargyl ether group to the 
pyridine ring [Figure 4A]. Compound 2 did not make any H-bond interactions with the active site residues, 
and the alkyne carbons were in close proximity to the heme-Fe atom. Compound 5 with a 3-carbon alkyl 
chain linker between the propargyl ether group and the pyridine ring depicted a flipped binding pose with 
the pyridine ring oriented towards the heme-Fe [Figure 4C]. Compound 3 with the propargyl ether group at 
position 2 of the pyridine ring depicted a binding pose identical to that of compound 2, with the alkyne 
carbons facing the heme-Fe atom [Figure 4B]. Compound 6 with the propargyl ether group connected by a 
methylene linker to position 2 of the pyridine ring had a binding pose similar to that of compound 5, with 
the pyridine ring facing the heme-Fe atom [Figure 4D and E]. Compound 6 was the only propargyl ether 
derivative to make a H-bond with the active site residue Thr305. The P450 2A6 inhibition studies clearly 
confirmed these observations and indicated that substitution at position 3 of the pyridine ring was the most 
ideal. The docking studies showed that the close proximity of the heterocyclic rings to the heme-Fe atom 
was most favored, and increases in H-bond interactions with the active site residues increased the inhibition 
potency.
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Figure 3. Docking studies on compounds (Cpd) that have pyridine with imidazole substituents (Cpd1, Cpd4 and Cpd7). Figures (A), (B), 
(C) and (D) show the binding modes and figures (E), (F), (G) and (H) show the ligand interactions with the active site residues for 
nicotine and compounds 1, 4 and 7, respectively in the active site of P450 2A6 enzyme.

Figure 4. Docking studies on compounds (Cpd) that have pyridine with propargyl ether substituents (Cpd2, Cpd3, Cpd5 and Cpd6). 
Figures (A), (B), (C) and (D) show the binding modes of compounds 2, 3, 5 and 6, respectively with the active site of P450 2A6. Figure E 
depicts the ligand interactions of compound 6 with the active site residues.

The inhibition studies on our compounds were performed using a Vivid CYP2A6 Kit (Life Technologies, 
catalog #PV6140). This kit uses microsomes from insect cells stably expressing human CYP2A6 enzyme. As 
such all the enzyme from these microsomes is essentially CYP2A6, eliminating the possibility of the 
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presence of other polymorphic variants of CYP2A6 that could be naturally found in liver microsomes. 
Therefore, the Vivid CYP2A6 Kit used in this study does not account for any polymorphism of CYP2A6. 
However, it is very important to understand the inhibitory effect of new compounds on CYP2A6 
polymorphism as people with other allelic variants of CYP2A6 exhibit varied metabolic response. Our 
future studies would aim to study this phenomenon, either by developing the cell systems expressing 
various CYP2A6 allelic variants using baculovirus and insect cell lines by genetic engineering tools[59-61], or 
by deploying the “molecular lego” approach developed by Castrignano et al.[50], using a chimeric CYP2A6-
flavodoxin/CYP2A6 and determining the kinetic parameters of coumarin electrocatalysis by electrochemical 
detection.

DISCUSSION
Based on the pyridine scaffold of nicotine, two series of compounds were designed and synthesized for this 
study. The compounds containing an imidazole or propargyl ether substituents at position 3 of the pyridine 
ring were found to be promising lead compounds for further development. Our studies clearly illustrated 
that H-bonding interactions were very important for effective binding of these molecules within the P450 
2A6 active site. Many of the pyridine derivatives developed by the Cashman and Lazarus Research Groups 
have a primary or secondary amine functional group that interacts with the heme iron[51-54]. The compounds 
developed by our group do not contain any amine functional groups, resulting in the aromatic heterocyclic 
rings facing the heme-Fe and also showing low P450 2A6 inhibition IC50 values (micromolar). Using these 
lead compounds, additional potential inhibitors with increased number of interactions with the amino acid 
residues of the P450 2A6 active site will be designed and synthesized.
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