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Abstract
Machine learning has emerged as a critical tool for processing the complex and large-scale datasets generated in 
the steel industry. However, a single machine learning model struggles to capture all relevant information owing to 
the variety of steel grades, thereby limiting its extensibility and broader industrial application. Furthermore, most 
machine-learning models are “black boxes” with low interpretability. Therefore, this paper proposes a novel 
strategy for industrial big data analysis. First, a data classification model was developed using unsupervised 
clustering techniques to automatically divide the dataset into four distinct classes. Simultaneously, key physical 
metallurgy (PM) variables were calculated and incorporated as input features to improve property prediction. Next, 
an interpretable knowledge graph was constructed for each class, connecting the relevant features with the PM 
variables. Using these graphs, a graph convolutional network (GCN) model was developed for each class to predict 
the steel properties. The results demonstrate that this approach delivers better predictions than models without 
automatic data classification. Furthermore, compared to traditional deep learning models, GCN models based on 
interpretable knowledge graphs provide superior prediction accuracy and significantly improved interpretability 
and extensibility.
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INTRODUCTION
As the steel industry faces growing pressure to reduce carbon emissions, enhancing production efficiency 
and improving the mechanical properties of steel have become crucial[1]. The accurate prediction of these 
properties is vital because reliable models can optimize the chemical composition and processing 
parameters, resulting in increased efficiency. However, the complexity of steel production processes, which 
are influenced by various factors, generates large high-dimensional datasets, particularly for hot-rolled steel 
strips. Traditional analysis methods struggle to handle this complexity[2-6], underscoring the need for more 
advanced approaches to predict mechanical properties based on chemical composition and processing 
parameters while fully extracting valuable insights from industrial big data.

The rapid advancement in machine learning has provided effective research tools in various fields[7-11]. This 
emerging method excels in processing industrial data, showcasing powerful big data analysis capabilities 
such as high efficiency and precise prediction, thereby accelerating material design and innovation. In the 
field of steel, an increasing number of studies have focused on the use of machine learning algorithms for 
property prediction[12-17]. Li et al. proposed a deep-learning-based model [convolutional network for 
predicting mechanical properties (CNPMP)] to predict the mechanical properties of hot-rolled strip 
steel[18]. By converting one-dimensional data into two-dimensional data, the complex relationships between 
various influencing factors can be better expressed. The prediction accuracy of CNPMP was higher than 
that of various machine learning models. Xie et al. designed a deep neural network (DNN) to predict the 
yield strength, ultimate tensile strength, elongation, and impact energy of industrial steel plates and applied 
it online to actual steelmaking plants based on the process parameters and composition of raw steel[19]. Yang 
et al. established a time series neural network based on long short term memory (LSTM) to predict the yield 
strength, ultimate tensile strength, and elongation of hot-rolled steel plates[20]. This model can fully utilize 
the information contained in the input parameters and has better generalization ability. Cui et al. 
established a machine-learning model and used physical metallurgy (PM) and data-driven strategies to 
reduce the dimensionality of the dataset and predict the yield strength and elongation[21]. Li et al. adopted a 
3-dimensional continuous data sampling method for time-temperature deformation and established the 
gcForest framework to predict the yield strength, tensile strength, and elongation of hot-rolled strip steel[22]. 
In these studies, although property prediction models were developed for various steel grades, the 
differences between different sample types were not considered, resulting in limited extensibility and 
restricting the industrial application of machine learning. To address this issue, some researchers have 
established big data analysis systems that combine data classification with property prediction models by 
introducing PM variables as inputs to guide model training. For example, Li et al. combined data 
classification strategies with multiple regression algorithms to establish a PM-guided multitype steel 
property prediction model[23]. However, the analysis system mentioned above exhibited considerable 
subjectivity in classifying different grades of steel. Therefore, more intelligent and automatic data-
classification methods are required. Although the work of Li et al. has introduced PM parameters to some 
extent, it may not accurately predict the Ac1 and Ac3 temperatures based on empirical formulas, because it 
cannot consider the influence of certain elements. In addition, most machine-learning models are “black 
boxes” with low interpretability, which may lead to unreasonable predictions. Graph neural networks 
(GNNs), such as graph convolutional networks (GCNs), may be an effective strategy and have been widely 
used in the field of materials science in recent years[24-29]. The special structure of a knowledge graph 
considers the logical relationships between variables, which may provide the network with good 
interpretability.

Therefore, this study presents a unique combination of automatic data classification and an interpretable 
knowledge graph-based GCN model for yield strength prediction in steels. Unlike conventional models that 
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apply machine learning without distinguishing material subtypes, an automatic clustering approach 
segments the dataset into distinct clusters, reducing sample complexity and improving prediction accuracy. 
Additionally, by integrating PM parameters into the knowledge graph, domain knowledge is incorporated 
to enhance model interpretability. The data used in this study were sourced from the hot-rolling production 
line of Benxi Iron and Steel Co., Ltd., China. The k-means algorithm was used to classify the dataset 
automatically. The Thermo-Calc software was used to calculate the PM variables for each cluster to guide 
the model. Finally, a property prediction model was constructed by integrating the GCN algorithm with 
knowledge graphs, enabling accurate property prediction.

MATERIALS AND METHODS
Dataset and data preprocessing
In this study, based on a large amount of actual production data of hot-rolled strip steel stored from 2017 to 
2020, the original dataset was obtained, and reasonable data preprocessing was performed to improve the 
quality of the data, providing a high-quality data foundation for establishing a property prediction model in 
the future. First, raw industrial data were extracted and stored in the MongoDB database, and MongoDB 
Compass software was used to visualize the raw industrial data. The MongoDB database contains 54,527 
samples, each representing a real steel strip. The samples were aggregated using steel grade numbers. 
Subsequently, data reduction was performed, and samples containing null or unknown values were 
removed. Then, the input features were selected and the dimensionality was reduced; that is, features with 
low correlation to the mechanical properties were removed based on professional knowledge and feature 
importance analysis. Subsequently, outliers or noise were cleaned up, mainly including samples containing 
temperatures of 0 °C, similar inputs but different outputs, and rolling process parameters of 0. Finally, the 
data features were standardized to reduce the interference caused by differences in the magnitudes of 
different input features[23].

After data preprocessing, the initial dataset was established using 26,165 samples. The dataset contains input 
features, including 12 alloy element features and 22 processing parameters, with yield strength as the output 
feature. The information on each feature is presented in Table 1. The initial dataset is composed of seven 
steel grades; the data amount for each steel grade is shown in Figure 1A. In addition, principal component 
analysis (PCA) is employed to identify the primary directions of change in the dataset samples. Its goal is to 
map high-dimensional data onto a lower-dimensional space while preserving the variance information of 
the samples as much as possible. When reducing the sample dimensionality from 12 to 2 using PCA, the 
two most significant feature vectors are selected based on sample information, corresponding to the two 
largest eigenvalues. These feature vectors serve as the basis vectors for the new two-dimensional space, one 
representing the X-axis and the other the Y-axis. The X-axis indicates the direction of the first principal 
component, which captures the highest variance in the data and shows the greatest dispersion. On the other 
hand, the Y-axis represents the direction of the second principal component, which displays the second-
highest variance orthogonal to the X-axis. X and Y values were used to represent the two coordinates after 
dimensionality reduction, and different colors were used to represent the seven steel grades, as shown in 
Figure 1B. Steel I is a common carbon structural steel, representing the largest portion of the dataset and 
accounting for approximately 37% of the initial dataset. Steels II and III are pipeline steel and carbon 
structural steel, respectively. Steels IV and V are low-alloy high-strength steels. Steel VII is a low-alloy steel. 
Steel VI is a high-quality carbon-structured steel. The compositions of the steels are shown in 
Supplementary Figure 1.

Property prediction framework
The performance of machine-learning models is significantly affected by the complexity and diversity of the 
samples within a dataset. As the diversity and complexity of the samples increase, this can sometimes lead to 
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Table 1. Range of input and output features in the initial dataset

Inputs and output Minimum Maximum Mean Standard deviation

Carbon (wt.%) 0.0170 0.2000 0.1144 0.0482

Manganese (wt.%) 0.1400 1.4400 0.3651 0.2526

Silicon (wt.%) 0.0001 0.3500 0.0781 0.0697

Sulfur (wt.%) 0 0.0250 0.0088 0.0037

Phosphorus (wt.%) 0 0.0400 0.0137 0.0040

Chromium (wt.%) 0 0.3600 0.0035 0.0136

Molybdenum (wt.%) 0 0.0700 0.0002 0.0012

Copper (wt.%) 0 0.2900 0.0009 0.0037

Nickel (wt.%) 0 0.0500 0.0009 0.0026

Titanium (wt.%) 0 0.0720 0.0082 0.0135

Vanadium (wt.%) 0 0.0220 0.0001 0.0005

Niobium (wt.%) 0 0.0400 0.0002 0.0017

fce_xtmpa (°C) 1,122 1,322 1,200 17

rme_tmp_measb (°C) 1,000 1,204 1,074 29

etmp_surf_hd_FCEc (°C) 1,157 1,320 1,279 24

etmp_avg_hd_RMEd (°C) 1,134 1,299 1,249 23

xtmp_avg_hd_RMXe (°C) 976 1,213 1,136 22

FETAIL_tmp_avgf (°C) 887 1,104 999 25

Reduction of pass no. 1 (mm) 7.88 22.20 15.07 1.98

Reduction of pass no. 2 (mm) 5.26 13.70 8.79 1.40

Reduction of pass no. 3 (mm) 2.25 8.42 4.57 0.99

Reduction of pass no. 4 (mm) 1.07 5.32 2.54 0.64

Reduction of pass no. 5 (mm) 0.50 3.65 1.56 0.46

Reduction of pass no. 6 (mm) 0.25 2.18 0.89 0.26

Reduction of pass no. 7 (mm) 0.08 1.35 0.49 0.16

Force of pass no. 1 (kN) 13,997 50,898 28,039 4,641

Force of pass no. 2 (kN) 13,533 44,012 27,130 3,841

Force of pass no. 3 (kN) 11,994 37,877 24,546 3,099

Force of pass no. 4 (kN) 10,838 32,190 21,121 2,664

Force of pass no. 5 (kN) 8,035 26,160 16,639 2,113

Force of pass no. 6 (kN) 6,392 25,046 13,913 1,829

Force of pass no. 7 (kN) 5,011 18,827 11,437 1,610

FDT_mtmp_tailg (°C) 796 923 866 14

Inputs

CT_mtmp_tailh (°C) 357 717 589 37

Output Yield strength (MPa) 130 658 322 61

afce_xtmp denotes the furnace temperature. brme_tmp_meas is the rough rolling inlet temperature. cetmp_surf_hd_FCE is the single-point 
temperature at the head position of the rough rolling surface. detmp_avg_hd_RME is the average temperature at the head position of rough rolling. 
extmp_avg_hd_RMX is the average exit temperature at the head position of rough rolling. fFETAIL_tmp_avg is the average temperature of the FET 
rolling inlet. gFDT_mtmp_tail is the final deformation temperature. hCT_mtmp_tail is the coiling temperature.

a decrease in the predictive accuracy of the model. The initial dataset obtained after preprocessing contained 
various steel grades. In the context of industrial data, clustering serves as a valuable analytical approach. It 
involves dividing an industrial dataset into multiple subdatasets, simplifying the dataset complexity and 
enabling the creation of more accurate prediction models. By developing performance prediction models 
for each subdataset separately, the efficiency and accuracy of performance prediction can be significantly 
improved. To ensure the accuracy of subsequent property predictions, this study proposes a property 
prediction framework that integrates data preprocessing, automatic data classification, and property 
prediction. In this framework, a preprocessed initial dataset is automatically classified into several 
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Figure 1. Number and distribution of each steel grade sample in the dataset. (A) Data amount of each steel grade; (B) Data distribution 
of each steel grade.

subdatasets, with property prediction models established for each subdataset. The property prediction 
framework is illustrated in Figure 2.

In machine learning, various algorithms are available for dataset classification, including clustering 
algorithms in unsupervised learning, and classification algorithms in supervised learning. However, for the 
samples in this study, using a classification algorithm from supervised learning requires manual labeling of 
the samples, which introduces excessive subjectivity. Therefore, clustering algorithms are adopted for 
unsupervised classification learning. Common clustering algorithms include k-means clustering, density-
based spatial clustering of applications with noise (DBSCAN), and spectral clustering. This study chose the 
k-means algorithm, which has stable properties and wide applications, to establish the classification 
model[30,31]. The k-means algorithm aims to partition an initial dataset into k clusters, ensuring that each data 
point belongs to the cluster represented by its nearest centroid. The process begins by randomly selecting k 
data points as the initial centroids. Subsequently, the algorithm calculates the distance between every other 
data point and each of these initial centroids. Each data point is then assigned to the cluster represented by 
the nearest centroid. After this assignment, the centroids of the clusters are recalculated based on the mean 
of the data points assigned to each cluster. This process is repeated iteratively until convergence is achieved. 
During each iteration, the k-means algorithm refines the cluster assignments by updating the positions of 
the centroids, progressively optimizing the clustering results until an optimal partition is obtained. It is 
important to note that the value of k must be predetermined, and selecting the optimal k typically requires 
the application of various evaluation techniques to ensure the best possible classification outcome[32-34]. 
Compared to the K-nearest neighbor (KNN) classification algorithm, the k-means algorithm does not 
require training data and instead automatically clusters samples based on their feature information[31]. The 
automatic data classification model based on the k-means algorithm uses 12 alloy elements as input 
parameters, and its information is shown in the alloy elements in Table 1. When performing dataset 
classification, it is necessary to determine the optimal K value (number of clusters) to obtain reasonable 
classification results. This study used the elbow rule and silhouette coefficient (SC) to evaluate the K values. 
The sum of the squared errors (SSE) of the elbow rule and the SC are respectively given in

(1)
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Figure 2. Property prediction framework of GCN based on k-means clustering. GCN: Graph convolutional network.

where Ci represents clusters, k represents the number of clusters, P represents samples within a cluster, m 
represents the cluster center, a (i) is the average distance between the ith sample and other samples in the 
same cluster, and b (i) is the average distance between the ith sample and all samples in the nearest other 
clusters. The Euclidean distance was used in this study.

After data classification, the initial dataset was divided into four sub-datasets. Before building the machine 
learning models to predict the yield strength, feature engineering in each sub-dataset was performed to 
determine the input features for each cluster, as shown in Supplementary Figure 2. The composition 
features of each sub-dataset are summarized in Supplementary Table 1.

In addition, introducing PM variables into the model not only improves the quality of the dataset and 
enriches it but also effectively enhances the model’s interpretability and generalization ability[28]. The A1 and 
A3 temperatures are closely related to the phase transformation behavior, microstructure formation, and 
final property control of the alloys during rolling, and are crucial for developing rolling processes and 
achieving the desired properties. In this study, the final cooling process parameter was the coiling 
temperature. Therefore, at the coiling temperature, the driving force (DF) for the transformation of 
austenite to ferrite/pearlite and the volume fraction (VF) of ferrite/pearlite play decisive roles in 
determining the final properties. In summary, A1, A3, DF, and VF were incorporated as PM variables in the 
input features to guide the yield strength prediction. The above PM variables were calculated using the 

(2)
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TCFE9 database within the Thermo-Calc® software. Information on the PM variables for each cluster is 
shown in Table 2.

Subsequently, a feature importance analysis was conducted on each sub-dataset by combining the 
composition and process features with PM variables. The importance of these features was assessed by 
calculating the Pearson correlation coefficient and mean decrease accuracy (MDA) values to evaluate the 
relationship between the PM variables and the yield strength, as shown in Supplementary Figure 3.

In this study, the GCN algorithm was used to build a property prediction model using a knowledge graph as 
the input. Unlike traditional neural network models, GCN can capture more comprehensive graph structure 
information, which may be useful for processing high-dimensional and highly coupled feature information 
of the composition, process, and PM parameters. The architecture of the GCN is illustrated in the 
prediction module shown in Figure 2. Initially, the input features were passed through two hidden layers to 
extract feature information, with output dimensions of 256 and 128 for the respective layers. Subsequently, 
the fully connected layer outputted the prediction results. Sigmoid and Adam are used as the activation 
function and optimizer, respectively, for the model training. In the GCN model, the input features first 
underwent feature transformation, converting the feature matrix into a sparse matrix. After symmetric 
normalization, the adjacency matrix was transformed into a sparse matrix. Next, through message passing, 
the feature and adjacency matrices were multiplied to obtain information about adjacent nodes. Finally, the 
graph was mapped to the predicted values using a fully connected layer. In addition, a conventional neural 
network (CNN) model was established for comparison to highlight the key role of knowledge graphs in 
performance prediction. For the CNN model, the input features were reshaped into a matrix of size 6, which 
served as the input. The model then processed this input using a combination of convolutional blocks, 
pooling layers, and fully connected layers to generate the output. In addition, all four sub-datasets used 
stochastic gradient descent (SGD) as the optimizer. The above models were trained using an 8:2 split 
between the training and testing sets, with a random split performed ten times. In this study, the server 
utilized is equipped with an NVIDIA GeForce RTX 2080 Ti GPU, which includes 11 GB of graphics card 
memory, a 100 GB hard drive, and an Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50 GHz. The software 
environment consists of a Pytorch 1.8.1-Horovod system image, Python 3.7, and Pytorch 1.8.1. In addition, 
the mean absolute error (MAE) and effective ratio (ER) were used to evaluate the accuracy and reliability of 
the model, as given by

where n is the number of samples; f (xi) and yi are the predicted and true values of the i-th sample; Ne is the 
amount of data within the specified error range (< 9%); and Nall is the total number of samples.

RESULTS AND DISCUSSION
Automatic data classification and reliability verification
As mentioned previously, an automatic data classification model based on the k-means algorithm was 
established. The effectiveness of k-means clustering largely depends on the selection of the K value. In this 
study, the optimal number of clusters was selected based on the SSE and SC to achieve the optimal 
classification, as shown in Figure 3A. With an increase in the K value, the partition of samples in the dataset 
becomes finer, leading to a gradual decrease in the SSE value. In the line chart of the SSE, if the K value is 
lower than the optimal cluster number, increasing the K value will make the SSE decrease and the decline 

(3)

(4)
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Table 2. The PM variables of each subdataset

A1/K A3/K DF/J VF/%

Cluster1 973.8-996.7 1090.9-1141.6 252.7-1948.8 96.9-98.9

Cluster2 973.4-1000.9 1121.9-1169.1 316.8-2046.7 98.3-99.9

Cluster3 967.9-1000.7 1085.0-1163.6 287.2-2207.5 96.9-99.9

Cluster4 950.9-982.5 1081.1-1143.6 310.4-1662.2 96.9-99.2

PM: Physical metallurgy.

Figure 3. Classification overview based on k-means classification model. (A) Evaluation of optimal cluster number; (B) Data distribution 
for each category in 4-cluster classification.

speed faster; however, when the K value approaches the optimal number of clusters, the return of the 
aggregation degree caused by increasing the K value will decrease rapidly; therefore, the decline rate will 
slow down sharply and then tend to be stable with a further increase in the K value. The K value 
corresponding to this turning point was the true cluster number. According to the SSE curve in Figure 3A, 
the SSE decreases by approximately 900 when K increases from 3 to 4, whereas it only decreases by 
approximately 400 when K grows from 4 to 5. Therefore, when the number of clusters is four or five, the 
decline rate of the SSE changes from fast to slow, indicating that four or five may be the best number of 
clusters. The SC represents the clarity of each category after clustering. Therefore, the larger the SC value, 
the better the clustering effect. From the SC curve in Figure 3A, the value of SC is relatively large when the 
K values are 4 and 5. Based on these evaluations, it is reasonable to cluster the dataset into four or five 
groups. Therefore, the initial dataset was divided into four and five clusters, respectively. The data 
distributions for each steel grade within each cluster after classification are shown in Tables 3 and 4. To 
ensure a balanced data distribution between clusters and a concentrated distribution within each steel grade, 
a four-cluster classification method was adopted. Furthermore, a data classification model based on the 
hierarchical clustering algorithm was established to validate the robustness of the k-means classification 
model. According to the alloy composition characteristics in the initial dataset, it was divided into four 
subdatasets. The classification results of the hierarchical clustering model were then compared with those of 
the k-means model. The results revealed an 85.95% consistency in classification between the two models. 
This indicates that the classification outcomes of the two models are highly similar for the dataset in this 
study, further demonstrating that the k-means model exhibits strong stability and reliability in clustering 
the initial dataset. This, to a significant extent, confirms its robustness and justifies the rationality of the 
proposed method. PCA was used to map the 12-dimensional component feature information of each 
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Table 3. Data distribution of each steel grade under the 4-cluster classification

Cluster1 Cluster2 Cluster3 Cluster4

Steel I 8452 84 966 252

Steel II 562 3124

Steel III 155 3037

Steel IV 1418

Steel V 58 1212 143

Steel VI 5529

Steel VII 1173

All Steel 8665 7348 8339 1813

Table 4. Data distribution of each steel grade under the 5-cluster classification

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5

Steel I 8446 69 967 248 24

Steel II 477 3209

Steel III 183 3005 4

Steel IV 1418

Steel V 58 2 143 1210

Steel VI 5529

Steel VII 1173

All Steel 8687 7248 7183 1809 1238

sample in each cluster to a two-dimensional feature space and observe the data distribution of each cluster. 
The values of X and Y were used to represent the two coordinates after dimensionality reduction, and 
different colors were used to represent the four subdatasets, as shown in Figure 3B. The classification results 
revealed that the k-means algorithm using the component features of the dataset as inputs successfully 
achieved automatic data classification. The samples in the dataset are divided into four clusters with clear 
boundaries to demonstrate effective classification outcomes. Unlike the KNN classification algorithm, there 
is no need to add labels to the samples, thereby ensuring a high degree of objectivity. As for steel grade, 
although all seven steel grades are low-alloy steels, they have different elemental compositions. Additionally, 
there were variations in the elemental composition, even among samples of the same steel grade. 
Consequently, samples of the same steel grade appeared in multiple clusters in the classification results. 
From the perspective of composition, the four clusters displayed distinct features. Clusters 1 and 3 had 
similar elemental contents, and Cluster3 had a higher Ti content. Compared to the other clusters, Cluster2 
had lower C and Si contents, whereas Cluster4 exhibited higher Mn content. In summary, automatic 
classification of datasets was achieved through unsupervised clustering strategies, laying a good foundation 
for the subsequent establishment of prediction models.

To demonstrate the advantages of the proposed framework, which integrates automatic data classification 
with property prediction, the property prediction results of the models with and without data classification 
were compared. Two modeling approaches were employed for this purpose - Non-Classification and 
Classification Approaches. In the first, a dataset was created using all samples from seven steel grades 
without any data classification, and a property prediction model was built directly, referred to as “Non-
Classification”. In the second, a model was built using the method proposed in this study, which combined 
automatic data classification with property prediction, referred to as “Classification”. The k-means 
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algorithm works by iteratively updating the cluster centers and randomly partitioning the dataset into four 
clusters. Its objective is to maximize intra-cluster similarity and minimize inter-cluster similarity until 
convergence is achieved. The same input feature selection method was used for both Non-Classification and 
Classification. In other words, the Pearson correlation coefficients of component features in Non-
Classification were calculated, and dimension reduction was performed on features with low correlation 
with the target performance, such as S, P, and Cu, as shown in Supplementary Figure 4. Subsequently, the 
property prediction models for both approaches were developed using the GCN algorithm.

The property prediction results for both the Non-Classification and Classification approaches are shown in 
Figure 4. First, as shown in Figure 4A, the MAEs for all seven steel grades in the testing set were consistently 
lower when using the classification approach than when using the Non-Classification approach. Second, for 
ER, as shown in Figure 4B, the values for all seven steel grades in the Classification approach were higher 
than those in the Non-Classification approach. This indicates that the property prediction model based on 
automatic data classification demonstrates greater accuracy and reliability.

The data volumes of the seven steel grades in this study varied, with Steels IV, V, and VII having relatively 
small volumes [Figure 1A]. In addition, the data volume of each steel grade in the four sub-datasets also 
varied significantly, as shown in Table 3. However, compared to Non-Classification, Classification 
significantly improved the prediction accuracy for the seven steel grades, indicating that the property 
prediction model based on automatic data classification established in this study ensured the prediction 
effect of steel grades in the dataset.

Property prediction based on GCN
After the initial dataset was divided into four subdatasets, the GCN algorithm was used to establish a 
property prediction model for each subdataset. PM variables were introduced into each sub-dataset to guide 
the modeling process. Because different knowledge graphs represent different logical relationships between 
the input features, selecting an appropriate knowledge graph is particularly important. Therefore, the best 
knowledge graph structure was selected for each sub-dataset. To explore the impact of the knowledge graph 
structure on prediction performance, the GCN was also compared with a traditional CNN algorithm.

The two models were compared by calculating the MAE and ER values of the testing set. The property 
prediction results are shown in Figure 5. Across all four subdatasets, the GCN model consistently 
outperformed the CNN model in terms of both MAE and ER, thus achieving higher accuracy and reliability. 
In addition, both the GCN and CNN showed similar trends in the property prediction results. Compared 
with other clusters, the MAE of Cluster1 and Cluster2 was larger and the ER was smaller, especially in 
Cluster2, whose MAE and ER were the worst among the four clusters. To highlight the significance of PM 
parameters, a GCN model excluding PM parameters was constructed to predict yield strength, and its 
predictive performance was worse than that of the GCN model with PM parameters incorporated, as 
depicted in Supplementary Figure 5. Subsequently, the correlation between PM parameters and yield 
strength was further investigated for samples with higher yield strength in the dataset, with the results 
aligning with physical metallurgical principles[35], as illustrated in Supplementary Figure 6. Moreover, to 
further substantiate the superiority of the GCN model, a performance prediction model based on MLP was 
employed to predict yield strength. As shown in Supplementary Figure 7, the GCN model showed better 
performance than the MLP model in terms of both MAE and ER. In addition, the training times for the 
GCN models of the four subdatasets were approximately 90, 80, 90, and 30 mins, respectively, 
demonstrating the efficiency of the GCN model. Additionally, the GCN model exhibits rapid real-time 
application capabilities, with the trained model requiring only about ten seconds to complete real-time 
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Figure 4. Reliability verification results of classification model. (A) Results of MAE; (B) Results of ER. MAE: Mean absolute error; ER: 
effective ratio.

Figure 5. Comparison of prediction results for different neural network models.

prediction tasks. This further highlights its efficiency and practicality in real-world applications. In addition, 
a comprehensive analysis of the input features was conducted using the SHapley Additive exPlanations 
(SHAP) method to elucidate their respective contributions, as presented in Supplementary Figure 8. 
Moreover, the prediction results were further analyzed using statistical methods (confidence intervals), as 
presented in Supplementary Table 2. The analysis revealed that the GCN model significantly outperformed 
the CNN model in terms of MAE and ER.

The above results show that the strategy of combining automatic classification and the GCN achieves a 
significant improvement in predictive ability. In this section, the predictive ability of this strategy for each 
steel grade in the dataset is further investigated.
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The MAE and ER for each steel grade were then calculated using both the GCN and CNN models, as shown 
in Figure 6. The GCN model demonstrated a reduction in MAE for six of the seven steel grades compared 
with the CNN model, except for Steel V. However, for the ER, the GCN model yielded higher values across 
all seven grades compared with the CNN model. The sample points of Steel V were scattered, as shown in 
Figure 1B. This indicates that there are significant differences among the components of the Steel V 
samples, which may hinder the effective learning of the relationship between nodes in the knowledge graph 
using the GCN model, resulting in a higher MAE of Steel V. In addition, to explore the reasons for the 
relatively low performance prediction results of the GCN model for Steel V, SHAP and MDA were used for 
feature importance analysis, as shown in Supplementary Figure 9. Compared with the SHAP and MDA 
results of Cluster3 [Supplementary Figure 8C and 3F], the SHAP values of A1 and A3 in Steel V are lower, 
while the MDA score of Ti in Cluster3 is higher. This may be due to the fact that the outliers in Steel V have 
led to changes in the contribution degrees of some features.

Similarly, the GCN and CNN show similar trends in predicting the properties of different steel grades. 
Compared with other steel grades, the MAE values of Steels I, V, VI, and VII were higher. However, the ER 
values of Steels VI and VII were lower. From Table 3, we can see that Steel I was mainly distributed in 
Cluster1, Steel V was mainly distributed in Cluster3, and Steels VI and VII were distributed in Cluster2. 
Therefore, Cluster1 and Cluster2 had higher MAE values and Cluster2 has lower ER values. Because the 
proportion of steel V in Cluster3 was small, the prediction result for Cluster3 was still good. This is 
consistent with the predicted results shown in Figure 5.

The above results show that when considering individual steel grades or the entire subdataset, the GCN 
model combined with the knowledge graph outperformed the CNN model in predicting properties and 
offered higher interpretability. Therefore, the knowledge graph structure, which considers the complex 
logical relationships between the composition, processes, and PM variables, plays a significant role in 
property prediction. In particular, regarding the introduction of PM variables into the CNN model, the 
numerical values of the PM variables were introduced into the input features to guide model prediction. For 
the GCN model, PM variables were incorporated in the form of knowledge graphs, which not only included 
the numerical values of PM variables but also the logical relationships between PM variables, composition, 
and process features. This approach makes it easier for the model to recognize the importance of the PM 
variables and better guide the prediction process. Additionally, different knowledge graphs represented 
various ways of introducing PM variables, which helped reveal the inherent relationships between PM 
variables and other input features, thereby improving the interpretability of the model. Overall, compared 
with the traditional CNN model, the GCN model offers better prediction accuracy and interpretability.

In addition, designing the composition and processing parameters based on the trained model is crucial for 
achieving the desired properties. Therefore, a performance prediction model was established using the GCN 
algorithm and high yield strength grade steels to predict the yield strength and study the influence of 
alloying elements on the mechanical properties. This lays a foundation for achieving excellent properties in 
the future, as shown in Supplementary Figure 10.

Different knowledge graphs
The knowledge graph can clearly illustrate the relationships among alloy compositions, processing 
parameters, and PM variables, thereby enhancing the interpretability of the predictions. In addition, the 
advantage of knowledge graphs is not only in introducing the logical relationship between the input features 
and PM variables in the model, but also in enabling the selection of different knowledge graphs as inputs for 
property prediction based on the same dataset. To clarify the importance of knowledge graphs that combine 
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Figure 6. Comparison of property prediction results for different steel grades between CNN and GCN. CNN: Convolutional neural 
network; GCN: graph convolutional network.

accuracy and logical relationships, multiple knowledge graph-trained GCN models were constructed, and 
the property prediction of steel grades under different knowledge graphs was discussed in detail. For this 
purpose, property predictions were made for steel grades in four subdatasets, and different knowledge 
graphs were used for comparison. Four distinct knowledge graphs were constructed for the four subdatasets 
to perform performance prediction, as illustrated in Figure 7. The criteria for selecting edges in the 
knowledge graphs were based on a combination of domain expertise and Pearson correlation coefficients. 
Initially, all alloy composition features involved in the calculation of PM parameters were connected to their 
respective PM parameters, resulting in PM-Graph1. Subsequently, the edges in the knowledge graphs were 
further refined based on Pearson correlation coefficients. Specifically, for each subdataset, the Pearson 
correlation coefficients between alloy composition features and each PM parameter were calculated, as 
shown in Supplementary Figure 11. For Cluster1, the top-three, top-two, and top-one alloy composition 
features most correlated with A1 and VF were selected and connected accordingly. Notably, due to the 
strong correlation between Mn and DF in Cluster1, only Mn was connected to DF. Following these 
selections, PM-Graph2 to PM-Graph4 were constructed, as depicted in Figure 7A. For Clusters 2-4, the 
same approach was used: the top-three, top-two, and top-one alloy composition features most correlated 
with each PM parameter were selected to construct PM-Graph2 to PM-Graph4, as shown in Figure 7B-D. 
Additionally, CT_tmp_tail (CT), the temperature parameter used to calculate DF and VF, was consistently 
connected to both DF and VF in all knowledge graphs across the four subdatasets. Notably, the knowledge 
graph contains three colored edges: green, red, and black. The green edge is associated with the alloy 
element composition characteristics that have the highest absolute Pearson correlation coefficient with the 
PM variable. The red edge is associated with the second - highest correlation, and the black edge is 
associated with the third - highest correlation. DF and VF are calculated under CT conditions and are 
connected to CT through a green edge. This approach was applied to all four sub-datasets. Additionally, the 
composition features that were not connected to the PM variables were treated as individual nodes, whereas 
the process features were connected based on the order of production. A knowledge graph of the process 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202503/jmi4085-SupplementaryMaterials.pdf


Page 14 of Ren et al. J. Mater. Inf. 2025, 5, 20 https://dx.doi.org/10.20517/jmi.2024.8518

Figure 7. Knowledge graph depicting each cluster obtained through professional knowledge and Pearson correlation coefficient analysis. 
(A) GCN-PM-Graph1-4 of Cluster1; (B) GCN-PM-Graph1-4 of Cluster2; (C) GCN-PM-Graph1-4 of Cluster3; (D) GCN-PM-Graph1-4 of 
Cluster4. GCN: Graph convolutional network; PM: physical metallurgy.

features is presented in Supplementary Figure 12. Each knowledge graph was used to train the GCN model 
ten times, with an 8:2 random split between the training and testing sets. The MAE and ER values 
computed for different knowledge graphs are shown in Figure 8.

In Cluster1, as the knowledge graph changed, the property prediction results of Steel I changed slightly, 
whereas those of Steels III and V changed significantly. After a comprehensive analysis of the property 
prediction results of Steels III and V, the optimal knowledge graph for Cluster1 was PM-Graph3, as shown 
in Figure 8A. This indicates that the PM variables in Cluster1 were mainly influenced by C, Mn, and Nb. In 
Cluster2, as the knowledge graph changes, the property prediction results of Steels VI and VII change 
slightly, whereas those of Steels I and II change significantly. After a comprehensive analysis of the property 
prediction results of Steels I and II, the optimal knowledge graph for Cluster2 was PM-Graph1, as shown in 
Figure 8B. This indicates that the reduction in the number of edges in Cluster2 leads to a decrease in the 
model prediction accuracy. In Cluster3, as the knowledge graph changed, the property prediction results of 
Steels II and III changed slightly, whereas those of Steels I and V changed significantly. After a 
comprehensive analysis of the property prediction results for Steels I and V, the optimal knowledge graph 
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Figure 8. Comparison of property prediction results for different knowledge graphs of different steel grades. (A) MAE and ER of 
Cluster1; (B) MAE and ER of Cluster2; (C) MAE and ER of Cluster3; (D) MAE and ER of Cluster4. MAE: Mean absolute error; ER: 
effective ratio.

for Cluster3 was PM-Graph3, as shown in Figure 8C. This indicates that the PM variables in Cluster3 were 
mainly influenced by C, Mn, Si, and Ti, and the increase or decrease in edges reduced the prediction 
accuracy of the model. In Cluster4, as the knowledge graph changed, the property prediction results of Steel 
IV changed slightly, whereas those of Steels I and V changed significantly. After a comprehensive analysis of 
the property prediction results for Steels I and V, the optimal knowledge graph for Cluster4 was PM-
Graph2, as shown in Figure 8D. This indicates that the PM variables in Cluster4 were mainly influenced by 
C, Mn, Si, Ni, Ti, and Nb, and the reduction in edges lowered the prediction accuracy of the model. 
Therefore, the optimal knowledge graphs selected for the four sub-datasets were PM-Graph3, PM-Graph1, 
PM-Graph3, and PM-Graph2.

To further demonstrate the superiority of the optimal knowledge graph selected in each subdataset in this 
study, a unified knowledge graph was constructed for the four subdatasets for performance prediction, as 
shown in Supplementary Figure 13. Common alloy composition features and PM parameters, such as C, 
Mn, Si, Cu, Ni, A1, DF, and VF, were selected as input features for the four subdatasets. These selected 
features were interconnected to establish a unified knowledge graph for the subdatasets, as depicted in 
Supplementary Figure 13A. DF and VF were also linked to CT in the knowledge graph. Performance 
predictions were then conducted using the GCN model and compared with the predictions from the 
optimal knowledge graph selected for each subdataset. The comparison results are displayed in 
Supplementary Figure 13B. The research results indicate that the property prediction results of the optimal 
knowledge graph surpass those of the unified knowledge graph. This underscores the importance of 
constructing suitable knowledge graphs based on the characteristics of each subdataset.

In summary, for the steel grades in the four sub-datasets, incorrect connections between nodes reduced the 
predictive ability of the model. Therefore, it is particularly important to construct an accurate and 
reasonable knowledge graph. A suitable knowledge graph can not only improve the prediction accuracy and 
interpretability of machine learning but can also reverse analyze the logical relationship between features 
and PM variables in the prediction process.

CONCLUSIONS
(1) This study establishes an automatic data classification model based on the k-means algorithm using the 
compositional features of the initial dataset after data preprocessing as input features. The optimal number 
of clusters was determined through evaluation indicators (SSE and SC) and data distribution, thus achieving 
automatic classification of the industrial big dataset and successfully dividing it into four clusters. In 
addition, compared to the unclassified model, the model based on automatic data classification had a higher 
prediction accuracy and reliability.

(2) Compared with the CNN model, the property prediction model based on interpretable knowledge 
graphs and GCN had higher prediction accuracy and interpretability. The PM variables were introduced 
into the model in the form of knowledge graphs, incorporating not only the values of the PM variables but 
also the logical relationships between the PM variables, composition, and process features. This approach 
enhances the model’s ability to recognize the importance of PM variables, thereby better guiding the 
model’s properties.
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(3) A reasonable knowledge graph is crucial for training the model. Incorrect connections between the 
nodes in a knowledge graph can reduce the predictive ability of the model. A suitable knowledge graph can 
not only improve the prediction accuracy and interpretability of machine learning but can also reverse 
analyze the logical relationship between features and PM variables in the prediction process.
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