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Abstract
Polymer materials, especially rubber, play an indispensable role in modern life and manufacturing. However, their 
aging and deterioration pose serious challenges to their stability and service life. Unexpected aging can lead to the 
deterioration of the physical and chemical properties of materials, thereby triggering a series of safety hazards and 
environmental pollution issues. Exploring the correspondence between the microscopic characteristics and 
macroscopic properties of materials during the aging process helps researchers deeply understand and control the 
aging process of materials. Symbolic regression (SR) algorithm, as a machine learning method with strong 
interpretability, plays an important role in exploring the quantitative relationship of data in scientific fields. This 
method has a strong potential for discovering the intrinsic quantitative relationships within the experimental data 
of material aging. In this study, we propose a comprehensive evaluation framework for SR, aiming to identify SR 
algorithms that are truly suitable for aging experimental data. Furthermore, by integrating characterization data of 
aging experiments, we conduct further validation and knowledge discovery with the selected method. The results 
obtained from our experimental data demonstrate a strong consistency with those of the proposed evaluation 
framework. Notably, this research methodology exhibits extensibility and can serve as a guiding light for the 
discovery of knowledge and the elucidation of mechanisms within other realms of polymer materials and diverse 
material systems.

Keywords: Symbolic regression algorithm, microscopic and macroscopic properties, rubber, materials aging, 
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INTRODUCTION
Polymer materials, especially rubber materials, have a significant presence in the Chinese market and are 
widely utilized in diverse fields. However, aging problems are inevitable, with oxygen-participating aging 
being commonly observed. Research on aging mechanisms is carried out through multiple methods, 
including experimental characterization, theoretical models, simulation-based approaches, and data-driven 
methods.

Experimental characterization focuses on detecting various changes during the aging process across four 
main aspects: chemical composition, microstructure, surface morphology, and macroscopic properties. For 
chemical composition and elemental analysis, techniques such as X-ray photoelectron spectroscopy (XPS) 
are used to analyze the elemental composition and chemical structure[1-3], while infrared spectroscopy (IR) 
helps measure the content of specific functional groups[4-6], revealing alterations in the types and amounts of 
chemical elements and compounds. In terms of microstructure analysis, changes in the spatial structure, 
such as the distortion or rearrangement of polymer chains in three-dimensional space, are examined with 
X-ray diffraction (XRD)[7-9]. XRD serves as a valuable technique to assess the crystalline structure and 
analyze the degree of aging by evaluating changes in peak positions, intensities, and crystallinity, offering 
insights into how aging impacts the material’s microstructure. Surface morphology analysis involves 
studying changes such as roughness, cracks, or deformations on the material’s surface. Atomic force 
microscopy (AFM) is commonly used for high-resolution imaging of surface topography, enabling the 
detection of subtle changes in surface features such as roughness and cracking[10-14]. Additionally, 
macroscopic property analysis, including measurements of mechanical strength, flexibility, and color, 
provides essential data for understanding aging mechanisms. For example, dynamic mechanical analysis 
(DMA) can be used to examine changes in the viscoelastic properties of the material[15,16], while tensile 
property measurements offer insights into changes in strength and elasticity[17,18], which help in 
understanding how aging affects the material’s overall performance. These comprehensive analyses allow 
for a deeper understanding of the material’s degradation process, aiding in the prediction of its service life 
under various conditions.

Theoretical models are proposed to better understand and predict the aging behavior of materials[19]. The 
Arrhenius equation is a typical example, which is used to calculate reaction rate constants. By considering 
factors such as temperature and activation energy, it reveals the relationship between reaction rates and 
aging time. This equation helps in predicting how the rate of aging will change under different 
environmental conditions and provides a basis for estimating the lifespan of the material[20].

Simulation calculations are another important type of method to describe the aging process. Molecular 
dynamics (MD) simulations track molecular movement and interaction over time to show how molecular 
changes affect macroscopic properties, such as how polymer chain rearrangement due to stress alters 
material stiffness or elasticity[21]. The diffusion of small gas molecules in rubber materials can affect the aging 
of the materials. MD can simulate the diffusion behavior of small molecules in rubber to obtain the most 
likely aging sites and degrees of rubber materials[22]. It can also be used to simulate the hygrothermal aging 
of fiber materials[23]. Quantum mechanics (QM) methods precisely describe electronic structures to study 
electronic effects in aging, such as how light/heat-induced electron excitation leads to reactions such as free 
radical formation and chain scission[24].

Data-driven approaches combine simulation calculations with experimental data. Image data generated 
during aging can be classified to identify specific material change features. Spectral data, such as infrared or 
nuclear magnetic resonance (NMR) spectra, can be used to construct feature vectors that reflect material 
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property changes. These data are then analyzed using machine learning methods to assess how microscopic 
structural changes influence the overall system’s performance[25,26].

The aging of rubber materials is largely reflected in changes in mechanical properties. Predicting 
macroscopic mechanical properties based on microscopic changes in material composition and structure 
plays a crucial role in understanding aging and predicting service life. However, there is still limited research 
exploring the relationship between microscopic and macroscopic properties of aging materials[27-30], 
particularly in terms of identifying quantitative correlations. In the current research paradigm, expert 
knowledge and theoretical models have their limitations and may not fully capture the complex 
relationships in real-world systems, leading to inaccurate predictions. Simulation calculations are highly 
complex and require substantial computational resources. Data-driven methods often lack interpretability, 
as they do not adequately explain the underlying mechanisms behind the predicted results.

Consequently, symbolic regression (SR) algorithms are introduced for material aging research. SR, a distinct 
machine learning approach, constructs mathematical models from input data without prior assumptions 
about the model form. It explores a mathematical expression space comprising operators, variables, 
constants, and functions. The core strength of SR is its intelligent search within the symbolic combination 
space to identify the optimal model for a dataset, providing highly interpretable analytical solutions. Unlike 
traditional machine learning, SR autonomously discovers hidden patterns and relationships.

Traditional SR methods, such as polynomial interpolation and curve fitting, have limitations. The sparse 
identification of nonlinear dynamics (SINDy) method[31] uses sparse regression with a predefined term 
library, restricting its scope. Hopcroft proposed an expression tree generation method[32]. Genetic 
programming (GP) is sensitive to parameters and unstable. With the advent of deep learning, models such 
as End-to-end SR (E2E)[33], SymbolicGPT[34] and AIFeynman[35] use neural networks for variable analysis and 
expression search. Deep reinforcement learning methods, e.g., deep symbolic regression (DSR)[36], employ 
recursive neural networks to generate expressions and a quantile-based reward strategy to avoid training 
instability. The unified DSR (uDSR)[37] model combines multiple SR-solving strategies, achieving better 
performance in SRBench[38] tasks.

SR algorithms have found extensive applications in the materials field[39]. He et al. compared the SR 
algorithm with common machine learning techniques and demonstrated that the SR algorithm can be used 
to classify materials and describe material stability[40]. Abdusalamov et al. developed a new procedure based 
on the SR algorithm to automatically generate interpretable hyperelastic material models, which are highly 
consistent with experimental data[41]. In materials science, the selection of descriptors is essential for 
material characterization. SR plays a significant role in choosing and defining material descriptors, thereby 
facilitating the prediction of material properties. For instance, it has been employed to predict perovskite 
Landau free energy expressions[39], obtaining function forms consistent with real values. It can also be 
applied to infrared spectral data to forecast properties such as bond energy[42].

However, when it comes to polymer materials, especially in the context of rubber material aging, the 
application of SR remains unexplored. The potential of SR in understanding the aging mechanisms of 
rubber materials has not been tapped. Rubber materials, as polymer materials, inherently possess an 
amorphous characteristic, and the materials themselves have a certain degree of uncertainty, such as the 
molecular weight being a distribution. Therefore, the measurement of polymer materials has a certain 
amount of noise. In addition to the problem of noise, there are also the impacts of data scarcity and 
irrelevant variables. Due to the above conditions, it is difficult to obtain interpretable quantitative 
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relationships through expert knowledge and black-box models. We aim to verify the feasibility of SR 
methods on aging data and apply them to the discovery of quantitative relationships in rubber aging.

Moreover, in terms of evaluating the specific scientific discovery potential of SR, there are also deficiencies. 
Currently, the performance evaluation of SR algorithms is mostly based on artificial datasets, which do not 
conform to the characteristics of experimental data. Although Matsubara et al. proposed a more realistic SR 
evaluation framework, it still did not fully describe the characteristics of real experimental data[43]. This 
mismatch between evaluation datasets and real experimental data restricts a more accurate and 
comprehensive understanding of the capabilities and limitations of SR in the context of material aging 
research. As a result, the full exploration of its role in uncovering the quantitative relationships of rubber 
material aging is hindered, further emphasizing the need for a more suitable evaluation framework and in-
depth investigation in this area.

This study focuses on the evaluation of SR algorithms and their application to experimental data of rubber 
material aging, with the aim of obtaining more robust quantitative relationships between microscopic 
structure characterization and macroscopic properties. The major contributions of this study are as follows:

1. A Comprehensive Evaluation Framework for SR: Unlike existing algorithm evaluations centered on 
benchmark datasets lacking physical meaning, this paper assesses SR across diverse real-world scenarios, 
including data paucity, noise, and extraneous variables, to gauge its practical viability in real-world 
applications. 
2. SR Application in Rubber Aging: This study is the pioneer attempt to utilize SR for unveiling and 
modeling the quantitative relationships of micro-macro aging mechanisms in polymer materials based on 
experimental data. It offers potential revelations of relationships eluding traditional methods. 
3. Quantitative Relationship Discovery: By applying SR to aging experimental data, this research presents 
quantitative connections between the microscopic traits and macroscopic performance of aging materials, 
providing rational explanations that enhance the understanding of aging phenomena in particular polymer 
material systems.

MATERIALS AND METHODS
To address the issues regarding SR evaluation, this paper proposes the SR4Real evaluation framework, a 
more comprehensive SR evaluation framework. It aims to screen out superior SR methods for aging 
experimental data. The overall workflow is illustrated in Figure 1. The following are the components of the 
workflow.

SR4Real benchmark
We follow the dataset partitioning given by Matsubara et al., selecting ten simple formulas, six formulas 
with more operations, and six formulas with large data value ranges[43]. Each formula contains 1,000 data 
points corresponding to the fully fitted equations. Additionally, subsets with fifty data points per formula, 
noise levels of 0.1, and unrelated variables are generated based on ten equations in simple formulas. For 
detailed information on the establishment process of the SR4Real dataset, refer to the “Data construction 
details” section in the Supplementary Materials. This results in six types of datasets, each testing SR under 
various conditions. They are denoted by the following symbols.

• Base: represents basic complexity, containing ten formulas. 
• Noise: includes datasets characterized by the presence of noise. 
• Num: involves datasets with sparse data. 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202503/jmi40103-SupplementaryMaterials.pdf
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Figure 1. The overall workflow of discovering the aging quantitative relationships of polymer materials through SR. (A) Diverse candidate 
SR algorithms, such as those based on reinforcement learning, genetic algorithms and transformer architecture; (B) Evaluation 
framework based on SR4Real dataset considering formulas with six characteristics: Base, Ops, Domain, Num, Noise and Dummy; (C) 
Aging material samples from aging experiments; (D) Aging sample characterization data from characterization experiments. (The 
schematic diagrams are generated by GPT4o); (E) The discovery of the internal relationships in the aging characterization data based on 
the selected SR method. SR: Symbolic regression.

• Domain: features datasets that span a wide range of values and contain six formulas. 
• Ops: consists of datasets with complex ground truth formulas, comprising six formulas. 
• Dummy: includes datasets with irrelevant variables.

The characteristics of the dataset are presented as shown in Table 1. The specific formula form can be 
referred to in Supplementary Tables 1-3.

Rubber aging experimental dataset
The aging experiment dataset comes from the thermal-oxidative aging of polybutadiene rubber dumbbell-
shaped tensile specimens, including experimental characterization data of materials subjected to six 
different aging durations (7, 21, 37, 51, 72, and 91 days), three different temperatures (50, 60, and 70 °C), 
and three different strain conditions (5%, 10%, and 15%). Including one unaged sample, the dataset contains 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202503/jmi40103-SupplementaryMaterials.pdf
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Table 1. The characteristics of the SR4Real dataset

Type Number of equations Number of data Operation range Domain range Perfect fit Dummy variable

Base 10 1,000 (2,5) (2,12) Yes No

Ops 6 1,000 (8,15) (2,6) Yes No

Domain 6 1,000 (4,7) (30,50) Yes No

Num 10 50 (2,5) (2,12) Yes No

Noise 10 1,000 (2,5) (2,12) No No

Dummy 10 1,000 (2,5) (1,4) Yes Yes

a total of 37 samples. The following characterizations are performed on these 37 samples:

1. Use attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) to determine the 
infrared spectrum of the rubber surface and cross-section to observe the changes in chemical structure 
during aging. 
2. Use low-field NMR (LF-NMR) to determine the changes in crosslink density (XLD) of rubber during 
thermal oxidative aging. 
3. Use liquid chromatography to determine the changes in the content of plasticizers and antioxidants in 
rubber. 
4. Use a hardness tester to measure the changes in the surface hardness of the rubber. 
5. Use an electronic universal testing machine to determine the tensile properties of rubber and obtain the 
variation of the fracture elongation (Fe).

Each data point in the dataset includes 11 features: four characteristic peaks on the material surface and four 
on the material cross-section, identified via IR; the XLD of the polymer measured by LF-NMR; and the 
content of plasticizers and antioxidants directly quantified through liquid chromatography.

Additionally, each data point contains two dependent variables, both macroscopic properties related to the 
material’s mechanical performance: elongation at fracture and Shore hardness. These properties provide 
insight into the material’s behavior under stress and its overall hardness. The symbolic definitions of the 
variables are presented in Table 2.

In the context of this study, the materials investigated are polymer-based systems undergoing aging, which 
leads to chemical changes over time. Specifically, the aging process in these materials involves crosslinking 
reactions facilitated by the breaking of carbon-carbon (C=C) double bonds in the presence of oxygen, which 
alters both their molecular structure and mechanical properties.

For IR, different peaks correspond to the vibrational modes of various functional groups. The peaks at 2,914 
and 2,840 cm-1 correspond to the stretching vibrations of C–H bonds, which indicate the presence of carbon 
atoms bonded to two hydrogen atoms. The peak at 1,736 cm-1 is attributed to the stretching vibration of 
C=O bonds, characteristic of compounds such as esters, and provides indirect information about the 
concentration of plasticizers in the system. The peak at 964 cm-1 is associated with the specific vibration of 
C=C double bonds, including the out-of-plane bending vibration of cis-C=C, offering insight into the 
remaining double-bond content, which is an important indicator of the material’s degree of crosslinking 
and oxidation.

“Operation range” represents the number of the operands in a formula, such as add, mul, pow, exp, and log operations. “Domain range” 
represents the magnitude of sampling distributions; the complexity increases when sampling values from wide-range distributions. The domain 
range is defined as: frange(S) = |log10(max S - min S)|.
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Table 2. The symbolic definitions of variables in aging experimental data

Property IR 2,914 
cm-1 (S)

IR 2,840 
cm-1 (S)

IR 964 
cm-1 (S)

IR 1,736 
cm-1 (S)

IR 2,914 
cm-1 (C)

IR 2,840 
cm-1 (C)

IR 964 
cm-1 (C)

IR 1,736 
cm-1 (C)

XLD 
(mol/L)

Antioxidant 
content (mg/g)

Plasticizer 
content (mg/g)

Shore 
hardness 
(HA)

Elongation at 
fracture (%)

Variable 
name

ω1 ω2 ω3 ω4 v1 v2 v3 v4 XLD LCa LCp Hardness Fe

IR: Infrared spectroscopy, S: surface, C: cross-section; XLD: crosslink density.

LF-NMR spectroscopy is used to directly quantify the XLD, a crucial parameter that reflects the degree of polymer crosslinking within the material, influencing 
its mechanical properties.

Liquid chromatography is employed to directly measure the content of antioxidants and plasticizers in the sample. The presence of antioxidants (hindered 
phenol-type compounds) helps to mitigate oxidative degradation, while plasticizers (fatty esters and phthalate esters) are crucial in modifying the flexibility 
and hardness of the polymer.

Regarding mechanical properties, Fe is defined as the ratio of the material’s elongation at the point of fracture to its original length, typically expressed as a 
percentage. Shore hardness is a measure of the material’s surface hardness, determined using a Shore hardness tester. These mechanical properties provide 
valuable insights into the material’s performance under different aging conditions and are key to understanding the relationship between molecular structure 
and macroscopic behavior. The distribution of all aging variables is shown in Supplementary Figure 1.

Baseline regression methods
Multiple linear regression
Multiple linear regression (MLR) posits the existence of a linear relationship between independent variables (features) and a dependent variable (target). 
Typically, it is represented as a linear combination of features plus an intercept term, optimized by minimizing a loss function - such as the sum of squared 
residuals.

Support vector machine regression
Support vector machine regression (SVR) extends the principles of support vector machines to handle continuous target variables. SVR aims to identify a 
function that deviates from the true outputs by no more than a pre-specified tolerance, while minimizing the overall model complexity. The framework relies 
on kernel functions to efficiently capture nonlinear relationships by mapping inputs into a higher-dimensional space.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202503/jmi40103-SupplementaryMaterials.pdf
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Random forest
Random forest (RF) is an ensemble learning method that integrates multiple decision trees for regression or 
classification tasks. Each tree is trained on a bootstrap sample from the original dataset, and at each split, 
only a randomly selected subset of features is considered.

Extreme gradient boosting
Extreme gradient boosting (XGBoost) is a powerful ensemble technique built upon the principles of 
gradient boosting. It incrementally constructs an ensemble of weak learners, usually decision trees, where 
each new tree attempts to correct the residual errors of the previously combined models.

SR algorithm
We select three SR methods as our candidate approaches. These methods cover typical algorithms in SR, 
such as the Transformer model architecture, reinforcement learning, and genetic algorithms, which are 
representative among numerous SR algorithms.

E2E
The E2E algorithm is designed to directly predict the full mathematical expression, including constants. It 
leverages a Transformer-based architecture and directly decodes the hidden formula behind the data 
through the input data. The advantage of this method is that it can pre-train the Transformer model, 
establishing the mapping relationship between the input data and the output formula in advance, and then 
directly predict in downstream tasks. However, it is prone to the problem of poor generalization ability.

Deep symbolic optimization
Deep symbolic optimization (DSO) uses recursive neural networks to generate symbolic expressions, 
optimizing them based on the error between the expression and the data and using a reward strategy to 
stabilize training. The reinforcement learning iterative process in DSO is shown in the Reinforcement 
Learning section of Figure 1A.

uDSR
uDSR combines multiple SR-solving strategies for better performance, including recursive problem 
simplification, neural-guided search, and GP. The uDSR algorithm first breaks down the problem of the 
explosive combination of variables and operators into multiple low-dimensional subproblems, then uses 
reinforcement learning to generate an initial population (Reinforcement Learning section of Figure 1A), 
and finally uses a genetic algorithm for the evolution of the population to obtain more general formulas 
(Genetic Programming section of Figure 1A).

Evaluation metric
SR4Real dataset evaluation metric
We use both the coefficient of determination (R2) score on the test set and the normalized edit distance 
(NED) measure as evaluation metrics for the SR4Real benchmark. Here, R2 reflects how well the predicted 
formula fits the test data, as expressed by

(1)
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Where P denotes the predicted formula, represented as a sequence of tokens (e.g., variables, operators, and 
constants). T is the ground-truth formula, represented as a sequence of tokens. |P| represents the lengths (in 
terms of the number of tokens) of the predicted formula P. ED (P, T) is the edit distance between P and T, 
typically computed as the minimum number of insertions, deletions, or substitutions needed to transform P 
into T.

Aging experimental dataset evaluation metric
Since we do not know the true relationship between the inputs and outputs of the rubber aging 
experimental data, we choose mean absolute error (MAE) and root mean square error (RMSE) as the 
evaluation metrics, as given in

RESULTS AND DISCUSSION
SR method performance on SR4Real dataset
We evaluate the performance of three distinct SR algorithms: E2E, DSO, uDSR, across six diverse datasets: 
base, noise, number, domain, ops, and dummy. The algorithms are assessed using two metrics: R2 and NED. 
The NED measures the structural similarity between two symbolic expressions by calculating the minimum 
number of editing operations - insertions, deletions, and substitutions - required to transform a predicted 
equation into the correct one. The experimental details of SR4Real can be found in the “Experiment details” 
section of the Supplementary Materials. Comprehensive experimental results are presented in Figure 2, 
Tables 3 and 4.

In the base scenario, algorithms such as DSO and uDSR display remarkable performance, with E2E also 
having a moderate showing. Upon entering the few-sample (num) scenario, DSO and uDSR sustain their 
superiority and adapt well to limited data, in contrast to the relatively weaker E2E. In the presence of noisy 

Where yi denotes true (observed) value of the dependent variable for the i-th data point. yi is predicted value 
of the dependent variable for the i-th data point, as given by the learned formula or model. yi represents the 
mean (average) of all the observed values yi in the test set.

NED represents the distance between the predicted and the ground-truth formulas, as given in

(2)

(3)

(4)

Where yi denotes true (observed) value of the dependent variable for the i-th data point. yi is predicted value 
of the dependent variable for the i-th data point, as given by the learned formula or model. We choose MAE 
because it is the best indicator of average performance during cross-validation, while R2 can fluctuate 
significantly depending on how the dataset is divided, and its absolute value does not fully indicate the 
quality of the model’s predictions.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202503/jmi40103-SupplementaryMaterials.pdf
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Table 3. The R2 score of each SR method on SR4Real dataset

SR algorithm E2E DSO uDSR

Base 0.880 1.000 1.000

Ops 0.129 0.617 0.901

Dummy 0.944 0.880 0.999

Noise -0.115 0.647 0.643

Num 0.833 1.000 1.000

Domain 0.476 0.732 0.398

Average 0.525 0.813 0.824

R2: Coefficient of determination; SR: symbolic regression; E2E: end-to-end symbolic regression; DSO: deep symbolic optimization; uDSR: unified 
deep symbolic regression.

Table 4. The NED of each SR method on SR4Real dataset

SR algorithm E2E DSO uDSR

Base 65.500 3.300 10.500

Ops 205.500 15.833 132.333

Dummy 269.400 17.000 26.700

Noise 74.600 16.400 70.700

Num 48.400 4.600 12.000

Domain 132.667 10.167 17.667

Average 132.678 11.217 44.983

NED: Normalized edit distance; SR: symbolic regression; E2E: end-to-end symbolic regression; DSO: deep symbolic optimization; uDSR: unified 
deep symbolic regression.

data (noise), E2E suffers a significant performance decline, whereas DSO and uDSR, though affected, 
maintain a certain degree of efficacy. In the scenario with an irrelevant variable (Dummy), uDSR excels, and 
E2E and DSO remain relatively stable. For the scenario involving a large number of formula operands (ops), 

Figure 2. The performance of three SR methods, namely E2E, DSO, and uDSR, on six datasets. (A) R 2, (B) 1+exp(-Zscore(NED)). For both of 

the indicators, a larger value indicates a superior performance. SR: Symbolic regression; E2E: end-to-end symbolic regression; DSO: deep 
symbolic optimization; uDSR: unified deep symbolic regression; R2: coefficient of determination; NED: normalized edit distance.



Page 11 of Li et al. J. Mater. Inf. 2025, 5, 29 https://dx.doi.org/10.20517/jmi.2024.103 18

uDSR outperforms, while E2E lags behind. In the domain with a wide data threshold range, DSO shows 
greater adaptability, and E2E and uDSR perform moderately. Overall, DSO and uDSR exhibit enhanced 
adaptability and performance across diverse complex scenarios, while E2E is susceptible to performance 
fluctuations and reductions in certain complex settings. We conduct quantitative experiments under the 
Num Noise Dummy conditions, the details and results of which are presented in the “Quantitative 
experiments under the Num, Noise, and Dummy conditions in SR4Real” section of the Supplementary 
Materials and Supplementary Figure 2. Additionally, we evaluate the approximate computational time 
overhead of SR4Real, the results of which are presented in the “Computational time overhead of SR4Real” 
section of the Supplementary Materials and Supplementary Table 6.

In the evaluation of NED, DSO is significantly superior to E2E and uDSR, with the smallest average NED 
value, indicating that when considering a comprehensive range of situations, DSO has the lowest average 
deviation from the true formula. In the ops scenario with a large number of formula operands, DSO 
performs excellently. In contrast, E2E has a relatively large NED value. DSO can more effectively handle 
complex formula structures to approach the true formula. In the noise scenario where the data contains 
noise, DSO demonstrates outstanding noise resistance. Its NED value is much lower than that of E2E and 
uDSR, which strongly proves that DSO can still maintain a relatively close distance to the true formula 
under noise interference, with its stability and accuracy being well manifested. Our discussion of the 
phenomenon that DSO is slightly less accurate than uDSR but NED significantly outperforms uDSR is 
discussed in the “Discussion of Performance Difference Between Different Symbolic Regression Methods” 
section of the Supplementary Materials.

Therefore, we believe that DSO has a better average performance in scenarios with various data 
characteristics, including fitting accuracy and the authenticity of the regression formula, and thus has the 
potential for application in experimental datasets.

SR method performance on aging experimental dataset
Due to the subpar performance of the E2E method on the SR4Real dataset, we select the top two SR 
methods, DSO and uDSR, to conduct verification on the experimental data of material aging. To evaluate 
the advantages of SR, we compare it with four methods: linear regression based on variable screening, SVR, 
RF, and XGBoost. The selection of linear regression based on variable screening is because we aim to 
compare the performance differences between the linear regression with variable screening involving expert 
knowledge and SR. Hence, we perform a SHapley Additive exPlanations (SHAP) analysis on the 
experimental data of rubber aging, and the results are shown in Figure 3. Furthermore, RF, SVR, and 
XGBoost are included because, despite SR’s advantages in producing interpretable expressions, this study 
seeks to assess the accuracy differences between SR and machine learning regression methods that are 
suitable for small-sample datasets. We add more experimental results of regression models in the 
“Additional Regression Method Details and Results” section of the Supplementary Materialss and 
Supplementary Tables 7 and 8.

A total of eleven variables are subjected to SHAP analysis, resulting in two sets of results. Horizontally, 
samples numbered from 0 to 36 are presented. Each feature of every sample will have a SHAP value, and 
finally, the importance of each feature is obtained by averaging the Shapley values of each sample.

It can be seen from Figure 3 that the feature importance of XLD, antioxidant content and plasticizer content 
is significant. This phenomenon is also consistent with the order of the correlation magnitudes between 
these three features and Shore hardness in the correlation analysis. This will be elaborated on in the final 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202503/jmi40103-SupplementaryMaterials.pdf
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https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202503/jmi40103-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202503/jmi40103-SupplementaryMaterials.pdf
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Figure 3. The feature importance screening results obtained through SHAP analysis with (A) Shore hardness and (B) fracture elongation 
as the dependent variables, respectively. SHAP: SHapley Additive exPlanations.

discussion section.

We selected the top four features with the largest SHAP values to conduct MLR on the aging experimental 
data. Meanwhile, we also carried out verification of the SVR, RF, XGboost, DSO, and uDSR methods on the 
aging data. We employed Shore hardness and Fe as dependent variables. The obtained results are shown in 
Tables 5 and 6. Detailed results can be found in Supplementary Tables 4 and 5.

In the regression task with the hardness and Fe as dependent variables, DSO performs the best, with the 
lowest RMSE on the test set, demonstrating its significant advantage in capturing the complex relationships 
between input and output variables. In contrast, traditional regression models (such as MLR, SVR, RF, and 
XGBoost) generally performed poorly, struggling to effectively model the nonlinear relationships between 
micro and macro properties.

We further present the fitting results of the six aforementioned methods under the third cross-validation 
split for Hardness and the first cross-validation split for Fe, as shown in Figures 4 and 5. We also provide 
the residual plots of different regression methods in five-fold cross-validation in Supplementary Figures 3 
and 4.

Although both RF and XGBoost fit the data in the training set better, they do not perform well in the test 
set, which suggests that a certain degree of overfitting occurs and that choosing a model with stronger fitting 
ability does not result in a generalized model, whereas the DSO method has the best test set performance. 
Our experiments on Table 4 SR4Real also demonstrate the stabilizing ability of DSO to uncover formulas in 
various complex cases, which is consistent with the current experimental results.

Analysis of the chemical significance of the formula
We considered three methods that provide explicit expressions: MLR, DSO, and uDSR. The formulas are 
presented in Tables 7 and 8, respectively.

Based on chemical prior knowledge, the relationship between hardness and XLD is positive, while the 
relationship with the content of double bonds is negative. This is because the crosslinking process is 
accompanied by the opening of double bonds, and a higher content of double bonds indicates less 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202503/jmi40103-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202503/jmi40103-SupplementaryMaterials.pdf
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Table 5. Prediction performance of six regression methods on the test set with Shore hardness as the dependent variable

Algorithm Mean RMSE Std RMSE Mean MAE Std MAE

MLR 2.690 0.677 2.189 0.935

SVR 2.890 1.360 2.547 1.118

RF 3.038 1.324 2.481 0.972

XGBoost 3.326 1.449 2.687 1.039

DSO 2.253 1.043 1.814 0.848

uDSR 2.441 1.128 1.771 0.534

We performed a 7:1:2 split for training, validation, and testing on 37 data points, and conducted five-fold cross-validation. The results presented 
above are the outcomes of five runs. RMSE: Root mean square error; MAE: mean absolute error; MLR: multiple linear regression; SVR: support 
vector machine regression; RF: random forest; XGBoost: extreme gradient boosting; DSO: deep symbolic optimization; uDSR: unified deep 
symbolic regression.

Table 6. Prediction performance of six regression methods on the test set with fracture elongation as the dependent variable

Algorithm Mean RMSE Std RMSE Mean MAE Std MAE

MLR 0.076 0.01 0.055 0.007

SVR 0.071 0.007 0.063 0.006

RF 0.072 0.005 0.058 0.006

XGBoost 0.073 0.006 0.057 0.004

DSO 0.061 0.006 0.050 0.004

uDSR 0.066 0.009 0.053 0.007

We performed a 7:1:2 split for training, validation, and testing on 37 data points, and conducted five-fold cross-validation. The results presented 
above are the outcomes of five runs. RMSE: Root mean square error; MAE: mean absolute error; MLR: multiple linear regression; SVR: support 
vector machine regression; RF: random forest; XGBoost: extreme gradient boosting; DSO: deep symbolic optimization; uDSR: unified deep 
symbolic regression.

Table 7. The formula obtained for MLR, DSO, and uDSR under the hardness task

Algorithm Formula

MLR Hardness = 26.775·ω1 + 6.505·μ3 + 11.397·XLD - 20.073·LCa + 33.808

DSO Hardness = (27.154XLD + 7.186) (exp (μ3) - 0.641)

uDSR Hardness = XLD·exp (μ2 + 3.000) + XLD

For the definitions of the variables, please refer to Table 2. The constant coefficient has been rounded to three decimal places. MLR: Multiple 
linear regression; DSO: deep symbolic optimization; uDSR: unified deep symbolic regression; XLD: crosslink density.

crosslinking. Furthermore, the relationship between Fe and XLD is negative, while it is positive with 
plasticizer content.

We observe from the regression formula for Hardness in Table 7 that, in the formula obtained from DSO, 
the term (exp(μ3) - 0.641) can be treated as a constant, given that the range of μ3 is approximately 0 to 0.1. 
This approximation allows the second formula to align well with chemical prior knowledge. However, in the 
MLR model, the coefficient for the double-bond carbon is positive, which contradicts the chemical prior 
knowledge. This suggests that the relationship between the content of double bonds and hardness should 
not be modeled as linear.

From the regression formula of Fe presented in Table 8, it is noted that, in the formula acquired through 
DSO, the second term (-ω1·ω4·μ4·exp(-ω2) - ω2) is significantly smaller than the term (exp(exp(ω4))). As a 
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Figure 4. Performance of six regression methods on the test and training sets for Shore hardness.

result, the overall formula approximates a positive correlation with (ω4) and a negative correlation with 
XLD, which aligns well with chemical prior knowledge. However, in the MLR method, the coefficient for 
the directly measured plasticizer content is negative, which contradicts the chemical prior knowledge.

Based on this analysis, the regression formula derived from the DSO method for the aging experimental 
data holds practical chemical significance.

CONCLUSIONS
In this study, we have proposed a comprehensive evaluation framework for SR algorithms and 
demonstrated its application to the aging process of rubber materials. The primary goal was to explore and 
quantify the relationship between the microscopic characteristics and macroscopic properties of rubber 
materials during aging, leveraging the interpretability and flexibility of SR methods. Through rigorous 
validation and application of SR on experimental aging data, we have made several key findings that 
contribute to the understanding of material aging mechanisms and the potential of SR in material science.

We introduced a novel evaluation framework tailored to real-world experimental data, addressing 
challenges such as data sparsity, noise, and extraneous variables. Unlike traditional evaluation methods that 
rely on artificial datasets, our framework provides a more accurate and comprehensive assessment of SR 
algorithms, highlighting their practical applicability in complex, real-world scenarios. Our evaluation 
framework identified the SR methods that performed better on the experimental dataset. This framework 
ensures that the chosen SR methods are capable of uncovering meaningful relationships in material aging 
data, ultimately improving their usability in scientific research.
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For the definitions of the variables, please refer to Table 2. The constant coefficient has been rounded to three decimal places. MLR: Multiple 
linear regression; DSO: deep symbolic optimization; uDSR: unified deep symbolic regression; XLD: crosslink density.

Figure 5. Performance of six regression methods on the test and training sets for fracture elongation.

Through the SR approach, we revealed robust quantitative relationships between the microscopic features 
and macroscopic properties during the aging process of rubber materials. These relationships are further 
interpreted with chemical significance. They play a crucial role in predicting the service life of materials and 
provide a deeper understanding of the aging quantitative relationships that affect material performance. The 
discovered expressions also offer an intuitive framework for future research on aging prediction and 
material design.

Although this study has achieved certain results, there are several directions especially the following two 
major ones that are worth further exploration: (1) Expansion of Formula Diversity and Quantification: 
Future work can further quantitatively investigate the specific effects of different data scales, noise levels, 
and the number of irrelevant variables, in order to improve the evaluation framework of SR for real-world 
data; (2) Validation of More Aging Experimental Data: Due to the high cost of acquiring aging experimental 
data, the quantitative relationship between microscopic characteristics and macroscopic properties has not 
been fully validated in this study. Future work can further expand the dataset to enhance the accuracy and 

Table 8. The formula obtained for MLR, DSO, and uDSR under the Fe task

Algorithm Formula

MLR Fe = 0.347·ω1 - 1.820·ω2 - 0.233·XLD - 0.006·LCp + 1.748

DSO Fe = ω4 + -ω4ω4ω4exp(-ω4)-ω4+exp(exp(ω4))

uDSR Fe = exp (ω3 + (-μ2- ln(XLD) + 1.000)·exp (ω3·exp (μ3)))

generalization ability of the model.
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