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Abstract
Density-functional theory (DFT)-based atomistic simulation methods have been essential in studying the structure-
property relationships in heterogeneous catalysis. However, for complex catalytic processes, such as iron-based
Fischer-Tropsch synthesis (FTS), the temporal or spatial scales involved are generally too large to perform DFT cal-
culations. Recently, the development of machine learning potentials (MLPs) has demonstrated the capability for
atomistic simulation on a large scale and long duration, and the rise of large atomic models (LAMs) is gaining much
attention with unified descriptors incorporating a wide range of chemical knowledge and fine-tuning methodology
for efficiently deploying the model to downstream tasks. In this work, we construct a MLP named fine-tuned Fischer-
Tropsch deep potential (FT2DP) model, which is fine-tuned from upstream DPA-2 LAM on a downstream dataset
focused on the iron-based FTS process. We further applied this model to investigate iron-based FTS in both surface
reactions and reconstructions of edge sites combined with the double-to-single transition state optimization method
and the local genetic algorithm. Our work demonstrated the capability and efficiency of our model for iron-based
FTS simulations, while revealing the reaction mechanism on common active sites containing [Fe4C] squares, and the
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utilizing LAM for atomistic simulation for iron-based FTS processes and other complex catalytic reactions.

Keywords: Large atomic model, machine learning potentials, fine-tuning, Fischer-Tropsch synthesis, transition state
optimization, surface reconstruction

INTRODUCTION
As a key aspect of the chemical industry, heterogeneous catalysis has played a crucial role in the large-scale
production of commodity chemicals such as ammonia, alcohol, and synthetic fuels. Nowadays, computational
simulations based on ab initio density-functional theory (DFT) calculations have offered unprecedented oppor-
tunities for the rational design of novel solid catalysts by providing a deep atomistic analysis of the structures
and reaction properties combined with theories in heterogeneous catalysis [1]. However, accurate and efficient
computational simulations of complex heterogeneous catalytic processes remain highly challenging because of
the demanding computational cost. One of the typical examples of complex heterogeneous catalytic systems is
the Fischer-Tropsch synthesis (FTS), which converts syngas (amixture of CO andH2) into fuels and other valu-
able chemicals, holding a special position in the energy industry [2,3]. Among many possible candidates, the
iron-based catalyst has gained much attention due to its low cost, high sulfur tolerance, and lowmethane selec-
tivity [4,5]. The active phases of iron-based FTS are believed to be in situ formed iron carbides such as 𝜒-Fe5C2,
𝜂-Fe2C, 𝜖-Fe2C/𝜖-Fe2.2C, and 𝜃-Fe3C, which can be verified with spectroscopic and electron-microscopy ex-
periments [6–10]. However, iron-based FTS is recognized as a structure-sensitive reaction [11], and many factors
of Fe-catalysts such as particle size, chemical composition, and promoters are found to have a great impact on
their catalytic activity [11–13], which poses great challenges for both theoretical and experimental research.

To achieve the goal of rational catalyst design, extensive research has been conducted to elucidate the relation-
ship between the surface structures of iron carbides and their reactivities in the FTS process [14–18]. For instance,
Chen et al. found that the CO dissociation barrier on different 𝜒-Fe5C2 surfaces can be effectively predicted
using local descriptors such as atomic charges [16]. They also showed that their derived Brønsted-Evans-Polanyi
(BEP) relationship remains applicable in cases including non-stoichiometric terminations, carbon vacancies,
and potassium promotion. Li et al. studied the CO activation processes on 𝜃-Fe3C(010) surfaces, and revealed
that on the Fe/C-terminated surface, direct CO dissociation is not favored due to the high concentration of
surface carbon atoms, and the participation of hydrogen is essential for CO dissociation, while on the Fe-
terminated 𝜃-Fe3C(010) surface the direct CO dissociation is preferred [17]. Yin et al. investigated the CH4
formation and C-C coupling reactions on multiple 𝜒-Fe5C2 surfaces based on a Wulff structure [18]. They
demonstrated that certain “active facets” only account for a small fraction of the total exposed surface area,
but could play a significant role in the overall FTS activity. Although these studies have provided valuable
insights into the FTS-related properties of iron carbides under various chemical environments, there is still a
lack of comprehensive understanding of the pattern of catalytic sites and reaction mechanisms under realistic
FTS conditions. This is primarily due to the high computational cost of DFT calculations, particularly when
applied to systems with large temporal or spatial scales, which are common in iron-based FTS reactions and
other complex heterogeneous catalytic processes.

The past several years have witnessed enormous advances in artificial intelligence (AI) methods, fueling a
new paradigm shift of discoveries in natural sciences and giving rise to a new area of research, known as AI
for science [19]. Especially, with the rapid development of machine learning potentials (MLPs) with both the
accuracy of DFT and the efficiency of classical force fields, the detailed atomistic simulation for complex het-
erogeneous catalysis systems on a large temporal and spatial scale has become feasible [20], so that there emerge
a large number of so-called AI-driven atomistic simulation platforms incorporating MLPs sharing the same
basic architecture that using structural descriptors to represent the atomic structures and a fitting model (usu-

abundant formation of [Fe4C] squares on several reconstructed surfaces. These insights highlight the potential of
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ally an artificial neural network) to decode the representation from descriptor to the potential energy. One
notable example is the LASP software [21] with its neural network potential constructed by the power-type
structural descriptors represented by atom-centered symmetry functions[22] developed by Huang et al., which has been
widely utilized in computational simulation for various heterogeneous catalysis topics. For instance, in the
ethene epoxidation reaction on silver [23], they identified the O5 phase as highly active. Moreover, the calcu-
lated selectivity and ethene conversion are consistent with experimental results. In the case of the Fe-FTS
system, Liu et al. showed that surface reconstructions of iron carbides under a typical FTS gas atmosphere
are significant and usually involve the relocation of surface carbon atoms [24]. They demonstrated that the A-
P5 site, a pentagon configuration consisting of five iron atoms and a carbon atom bonded to four of the iron
atoms, is abundant on several active surfaces of iron carbides as an active site for CO dissociation and C-C
coupling [25]. Their obtained product yield also shows good agreement with experiments [26]. Another well-
known example is the DeePMD-kit software [27–30] with its deep potential (DP) method using an end-to-end
symmetry-preserving structural descriptor consisting of smooth internal coordinates and embedding network
transformation for encoding local atomic environment [27,31], widely used for atomistic simulation including
the dynamics of growing carbon nanotube interfaces [32], the sintering of Au nano-particles on supports having
different metal affinities [33], the size effects of supported Au catalysts for CO oxidation activity [34], CO adsorp-
tion induced surface reconstruction dynamics on the Cu surfaces [35], and structural/compositional evolution
of Pd(111) surfaces for CO oxidation under varying adsorption coverages [36].

Despite numerous successes of MLPs in atomistic simulations, their applications often face economic and
scalability limitations. The most obvious one is that all of the data used for training and validating MLPs are
generated from scratch, namely, by ab initiomolecular dynamic (AIMD) simulation or other simulation meth-
ods with ab initio calculation (typically DFT). Efficient data generation platforms through an active learning
procedure such as DP GENerator (DP-GEN) [37] or Generating DP with Python (GDPy) [38] can significantly
facilitate this process. However, a substantial amount of effort is still needed to construct DFT-labeled datasets,
especially for heterogeneous catalysis domain due to its complexity with characteristics of bulks, surfaces, and
adsorbates altogether. The publicly available large datasets, such as OC20 [39], OC22 [40], and MPtrj [41], have
covered extensive physical and chemical knowledge, becoming very useful for overcoming the challenges of
data generation. However, traditional MLPs usually struggle to generalize to applications not covered by the
training data, especially when additional elements and structural configuration are included in the simulation
tasks, making them poor at combining and utilizing the knowledge from these multiple and large datasets
together due to the varying ab initio calculation methods employed in different datasets and the vast compo-
sitional space contained across all these datasets.

Recently, the rise of “universal” or “fundamental” MLPs offers opportunities for addressing the issues above
and greatly extending the application scope of MLPs, often referred to as large atomic models (LAMs). One
remarkable advancement in LAM is the second version of the deep potential with attention pre-trained model
(DPA-2) developed by Zhang et al. from theDeepModeling open-source community [42,43]. Thismodel utilizes
unified descriptors constructed by deep neural network architecture, and uses themulti-task pre-training strat-
egy to jointly pre-train a multi-head model using multiple datasets that encompass multidisciplinary knowl-
edge from a broad range of application domains. By fine-tuning for specific downstream tasks, the pre-trained
DPA-2 model can be efficiently deployed to evaluate the potential energy surface (PES) of a specific research
domain with precision and generalization.

In this work, we have developed an MLP based on the pre-trained DPA-2 model by fine-tuning methodology,
named fine-tuned Fischer-Tropsch deep potential (FT2DP), which aims to describe the global chemical space
consisting of Fe-C-H-O compositions in an accurate and extendable way, enabling us to perform efficient
computational simulation to investigate the characteristics of Fe-FTS systems. This paper is organized as fol-
lows. In the next section, we present theoretical schemes and computational settings used in this work. In the

http://dx.doi.org/10.20517/jmi.2024.105


Page 4 of 18 Liu et al. J. Mater. Inf. 2025, 5, 27 I http://dx.doi.org/10.20517/jmi.2024.105

section “Results and Discussions”, we illustrate the construction of FT2DP, and its application of the Fe-FTS at
the DFT precision level with efficiency, including exploring the reaction mechanism of Fe-FTS reactions and
revealing the morphology of reconstructed FeC𝑥 surfaces with steps. The last section summarizes the main
findings of this work and remarks on the possible further developments and applications of the FT2DP model
in the future.

MATERIALS AND METHODS
DFT calculations
All spin-polarized DFT calculations were carried out by using Atomic-orbital Based Ab-initio Computation
at UStc (ABACUS) package [44,45]. The SG15-optimized Norm-Conserving Vanderbilt (SG15-ONCV) multi-
projector pseudopotentials [46,47] were employed and the valence configurationswere [H]1s1, [C]2s22p2, [O]2s22p4

and [Fe]3d64s2. The generalized gradient approximation (GGA) in the Perdew-Burke-Ernzerhof (PBE) vari-
ant [48] was adopted for the exchange-correlation functional. The second generation of numerical atomic or-
bitals (NAOs) in the double-𝜁 plus polarization function (DZP) form [49] was used as the basis set. The periodic
boundary condition (PBC) and the Γ-centered Monkhorst–Pack scheme [50] for sampling the Brillouin zone
were adopted in the DFT calculations, with an automated mesh determined by k-spacing = 0.14 Bohr−1 and
only one k-point for the direction without and with vacuum layers, respectively. The dipole correction perpen-
dicular to the surfacewas applied for all DFT calculations of surfaces. The electrondensity criterion for electron
self-consistency convergence was set at 1×10−7, and the first-orderMethfessel-Paxton (MP) smearing [51] was
used for the occupation of orbitals. In geometry and transition state (TS) optimizations, the convergence
criterion for the largest force among all atoms was set to 0.05 eV/Å.

DPA-2 and fine-tuning methodology
DPA-2 is a multi-task pre-trained LAM originating from the DP architecture and evolved from the DPA-1
model [52]. The DPA-1 descriptor has introduced an element-type embedding for encoding the elemental
information covering the whole periodic table, and a gated self-attention mechanism [53] excelling in mod-
eling the importance of neighboring atoms and re-weighting the interaction among them, which also makes
the model generalizable and pre-trainable. Inheriting the DPA-1 backbone, the DPA-2 descriptor further en-
hances its resolution and generalizability of atomic representation through stacking multiple transformer [53]

layers called representation transformer, incorporating operators such as convolution, symmetrization, local-
ized self-attention, and gated self-attention, which can be interpreted as an E(3) equivariant graph neural net-
work (GNN) and offers greater capacity compared to conventional GNNs [42], ensuring the robust capability
of DPA-2 for serving as a LAM assembling comprehensive knowledge from massive pre-training data.

Besides having a more sophisticated model architecture, DPA-2 employs a multi-task training strategy for pre-
training in multiple datasets labeled with different DFT settings to extract multidisciplinary knowledge. In
particular, the multi-task DPA-2 model has multiple heads, and each head is an identical fitting network used
to fit the DFT labels of each pre-training dataset from different downstream domains. During the pre-training
process, the parameters within the DPA-2 descriptor are concurrently optimized through back-propagation
using all pre-training datasets, while the parameters of the fitting network are updated exclusively with the
specific pre-training dataset to which they are associated [42].

The pre-trained descriptor and fitting networks can be fine-tuned on specific downstream tasks, and the mul-
tidisciplinary knowledge learned from the multiple upstream datasets can help to reduce the consumption in
model training and the amount of training data. In the fine-tuning process, the descriptor of the downstream
model will be initialized with the pre-trained parameters, and the fitting network could also be initialized by
choosing a fitting network in the pre-trained model. The energy bias in the fitting network will be aligned
to the labels of the downstream dataset subsequently, and then the typical model training process will pro-
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ceed with the initialized parameters incorporating upstream knowledge. Our FT2DP is constructed by this
pre-training-fine-tuning methodology based on the publicly available pre-trained upstreamDPA-2 model. All
fine-tuning and model validation in this work were performed using DeePMD-kit software in version 3.0.0
beta 3 [30].

Double-to-single workflow for TS optimization
To investigate the catalytic reaction mechanism from a theoretical point of view, a crucial task is the optimiza-
tion of TS structures of each elementary reaction for acquiring the activation energy. The climbing-image
nudged elastic band (CI-NEB) [54,55] and the dimer method [56,57] are the two most popular TS optimization
methods in heterogeneous catalysis simulation, representing two types of TS optimization methods respec-
tively: double-ended methods that start from combining optimized initial state (IS) and final state (FS), and
single-endedmethods that are based on only one state, usually a guessed TS. It is well-known that the efficiency
of single-ended methods highly relies on the quality of the input structure, but the optimization will converge
quickly when the optimization reaches the quadratic region around TS. On the contrary, double-ended meth-
ods have no reliance on any guessed TS structure, but they tend to have convergence problems. In our work,
we combine these two types of methods together as a workflow, named double-to-single (D2S), implemented
in the atomic simulation environment (ASE) package [58] (as illustrated in Figure 1A) tomake good use of them
for accelerating the TS optimization process. The D2S workflow uses CI-NEB first to generate a rough reac-
tion pathway with a relatively loose convergence criterion (usually 1.0 eV/Å for maximum of atomic forces),
and then a single-ended method, such as the dimer, or a better choice, Sella algorithm based on iterative Hes-
sian diagonalization and partitioned rational function optimization (P-RFO) [59,60], is utilized by starting from
the maximum point of the NEB pathway for strict TS optimization with target convergence criterion (usually
0.05 eV/Å for maximum of atomic forces). The free energy corrections, including zero-point energy (ZPE)
and thermal corrections (translational, rotational and vibrational) for gas-phase molecules, as well as ZPE and
vibrational contribution for adsorbates, are also computed using ASE. All these codes are open-sourced in
the ATST-Tools suite [61], which supports using ABACUS and our FT2DP model as a property calculator. All
structures in this part were visualized using ASE.

Genetic algorithm for global optimization
We employed the genetic algorithm (GA) implemented in ASE [62], using FT2DP as the energy-evaluation
calculator. In our global optimization process, the initial and subsequent populations each consist of 80 mem-
bers, with each population exploring 80 new mutated candidates. If convergence is found difficult with this
default setting, the population size and number of mutated candidates will be increased to 100. The mutation
of candidates involves three operators implemented in the ASE-GA module: mirror (mirroring half atoms in
a randomly oriented cutting plane), rattle (perturbing a part of atoms with a small random displacement), and
permutation (switching the positions of a subset of atoms randomly), each with the same probability of 1/3.
The stopping criterion in GA is regarded as met when the best candidate does not change for ten generations
and the current generation number is at least 20. Following this, at least ten lowest-energy candidates are re-
fined with PBE-DFT single-point calculations to identify the most stable structure. When using GA to obtain
low-energy surface reconstructions, conventional implementation typically operates on an entire surface with
constraints only on the z-axis [63,64]. This approach is unnecessary for predicting surface reconstructions that
only involve local environments such as edge structures. In this work, we adopted a local setting implemented
in ASE, specifying the involved atoms and where they are generated [Figure 1B]. All structures in this part
were visualized using VESTA [65].

Ab initio atomistic thermodynamics
To evaluate the stability of reconstructed surfaces with different compositions, the ab initio atomistic thermo-
dynamics theory developed by Reuter and Scheffler [66,67] was used in this work. In this way, the surface energy
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Figure 1. Scheme of model applications. (A) TS optimization, starting from a map of probable reaction network providing the reaction
patterns of elementary reactions, and each reaction (taking CO dissociation as an example) is calculated by optimizing its IS, FS, and TS,
where the TS is optimized by the D2S workflow; (B) Conventional and local schemes in optimizing the edge sites of the 𝜒-Fe5C2(510) slab
using a GA. Orange: Fe atoms; Grey: C atoms; Red: O atoms. TS: Transition state; IS: initial state; FS: final state; D2S: double-to-single; GA:
genetic algorithm.

(𝛾) of a symmetric surface can be calculated from

𝛾 =
1

2𝐴
[𝐺slab (𝑁Fe, 𝑁C) − 𝑁Fe𝜇Fe − 𝑁C𝜇C] , (1)

where 𝐺slab is the Gibbs free energy of a slab with two equivalent surfaces, 𝜇Fe and 𝜇C are the chemical poten-
tials of Fe and C atoms, 𝑁Fe and 𝑁C are the numbers of Fe and C atoms, and 𝐴 is the surface area. The Gibbs
free energies were calculated by FT2DP under 𝑇 = 523 K, which is a typical iron-based FTS temperature.

For a surface that is in equilibrium with a bulk with a fixed composition (e.g., FeCx), the chemical potentials of
the contained elements are not all independent. In this work, 𝜇Fe and 𝜇C are related to the Gibbs free energy
per formula unit of the FeC𝑥 bulk (𝜇FeC𝑥 ) as:

𝜇Fe + x𝜇C = 𝜇FeC𝑥 . (2)

In our discussion, since not all structures contain the same amount of atoms, we defined a relative surface
energy (Δ𝛾) as:

Δ𝛾 =
1
𝐴

[
𝐺rec (𝑁Fe − Δ𝑁Fe, 𝑁C − Δ𝑁C) − 𝐺slab (𝑁Fe, 𝑁C) + Δ𝑁Fe𝜇FeCx + (Δ𝑁C − xΔ𝑁Fe) 𝜇C

]
. (3)

Here, the reference (𝐺slab ) is the clean slab without edge sites. The reason why the denominator “2𝐴” in
Equation (1) is replaced by “𝐴” in Equation (3) is that edge sites are only built on the top layer in this work, while
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Table 1. A brief overview of the FT2DP downstream dataset used in training the model

Type of structures 3D bulks 2D surfaces 1D strings 0D clusters All

Numbers of structures with Fe 6,917 13,829 117 37 20,900
Numbers of structures without Fe 7,341 1,114 330 971 9,756
Total numbers 14,258 14,943 447 1,008 30,656

FT2DP: Fine-tuned Fischer-Tropsch deep potential; 3D: three-dimensional; 2D: two-
dimensional; 1D: one-dimensional; 0D: zero-dimensional.

the bottom layers remain fixed in structural relaxations. Additionally, Δ𝑁Fe or Δ𝑁C represents the differences
in the number of Fe or C atoms between the reconstructed structure and the clean surface, respectively.

For convenience, we used the electronic energy of an isolated carbon atom (𝐸C) as the reference for the carbon
chemical potential, that is Δ𝜇C = 𝜇C − 𝐸C. Since the free energies and chemical potentials are relevant to
temperature, pressure, and gas atmosphere. Here we used the results from Liu et al. to simulate a realistic
iron-based FTS condition (𝑇 = 523 K, -6.60 eV ≤ Δ𝜇C ≤ -7.45 eV) [24].

RESULTS AND DISCUSSION
FT2DP construction and validation
Our model, FT2DP, is constructed through fine-tuning on our downstream dataset from the upstream DPA-
2.2.0 model [68], which is a pre-trained open LAM (OpenLAM) from the AIS Square website [69]. Thanks to
the multi-task training protocol, this LAM was trained on more than 20 different datasets containing various
physical and chemical systems including organic molecules, clusters, alloys, semiconductors, surfaces, and ad-
sorbates throughmulti-task trainingmechanism, gatheringmultidisciplinary knowledge in one unified DPA-2
descriptor. Apart from the descriptor, the fittingmodel is a neural network containing three hidden layers with
the typical numbers of neurons being (240, 240, 240) for all heads in the upstream DPA-2.2.0 model and our
fine-tuned model.

There are 30,656 frames in our FT2DP downstream dataset, including Fe-C-H-O element combinations and
various types of structures, derived from the previous work by Liu et al. [25], and approximately 8,000 structures
were removed after the data cleaning procedures below to remove outliers and redundancies: (1) Removal of
structures with identical DFT-calculated energy labels to eliminate redundant conformations; (2) Removal of
the structures with fewer than 12 atoms per cell, which often represent isolated molecules or radicals in a cell.
Such configurations are prone to DFT inaccuracies in PBCs or poor MLP generalizability; (3) Exclusion of
structures having the absolute difference between model prediction and DFT results exceeds 80.0 meV/atom
(energy) or 1.00 eV/Å (maximum atomic forces), where the model referenced here was fine-tuned from the
upstream DPA-2 model on the original datasets following the same fine-tuning protocol detailed in the next
paragraph. All DFT energies and forces were calculated by ABACUS following the computational settings
mentioned above. A brief overview of this dataset is given in Table 1, showing the number of structures (with
or without Fe) in different types, including three-dimensional (3D) bulks, two-dimensional (2D) surfaces, one-
dimensional (1D) strings, and zero-dimensional (0D) clusters. Besides, a sketch-map visualization is shown
in Figure 2 for illustrating the wide configuration distribution of our FT2DP dataset.

Our fine-tuning protocol was initialized by using the parameters of the global descriptor in pre-trained DPA-
2.2.0 model and fitting network from the Domains_OC2M branch. The fine-tuning process on our dataset is
done by following the default training process of the DPA-2 model with some setting modifications. In the
default pre-training process of DPA-2.2.0 LAM, the learning rate starts from 2 × 10−4 and gradually decreases
to 3.51×10−8 by an exponential decreasing scheme with each decrease performed at every 1/200 checkpoint of
the total training step. The setting is usually effective for from-scratch training process, but the initial learning
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Figure 2. Sketch-map visualization of the FT2DP downstream dataset. Each point of this map represents an individual atomic configuration.
The position of each point is determined by t-SNE of the learned descriptor of FT2DP model, and its color indicates the corresponding
formation energy of the structure. FT2DP: Fine-tuned Fischer-Tropsch deep potential; t-SNE: t-distribution stochastic neighbor embedding

rate may be too large to be suitable for our fine-turning tasks owing to the loss of global knowledge in model
descriptor after over-fitting in downstream dataset and possible gradient explosion in training practices. As a
result, a relatively low initial learning rate 2 × 10−5 was utilized together with one million training batches in
our fine-tuning protocol.

To evaluate the generalizability of the FT2DP model, we performed a validation test where a model, named
FT2DP-80p, was trained on a randomly selected 80% subset and tested on the remaining 20%. Validation
results [Supplementary Figure 1, Table 2] present parity plots of formation energies and atomic forces, along-
side R2 values, as well as the mean absolute error (MAE) and the root mean square error (RMSE) metrics
comparing model predictions to DFT-calculated energies and forces. The FT2DP-80p model achieved com-
parable performance on training and validation subsets, confirming the robust generalizability. Furthermore,
the accuracy of the final FT2DP model fine-tuned on the entire dataset is demonstrated in Figure 3A and B
and Table 2 (final column), showing strong agreement between FT2DP prediction and DFT calculation for
energies and forces. Moreover, the violin plots in Figure 3C and D illustrate the distribution of energy differ-
ence and atomic force difference between FT2DP prediction and DFT results, showing that although there are
some outliers in a relatively wide range, our FT2DPmodel still achieves a good accuracy with energy deviation
of less than 3 meV/Atom and a force deviation of less than 0.09 eV/Å for 75% of the FT2DP dataset. All these
results indicate the model’s promising reliability for direct usage in high-efficiency structural optimization and
TS searching tasks. The accuracy of the final FT2DP model will be further demonstrated below by comparing
FT2DP and DFT results for the lots of structures that emerged from atomistic modeling practices.

Additionally, it is valuable to identify outlier structures with high prediction errors to investigate their charac-
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Table 2. Validation results of the FT2DPmodels

Test items
FT2DP-80p on
the training set

FT2DP-80p on
the validation set

Final FT2DP on
the entire dataset

Number of structures 24,525 6,131 30,656

Energy parity plot R2 1.000 1.000 1.000

Energy MAE (eV) 0.1837 0.1890 0.1829

Energy RMSE (eV) 0.3141 0.3233 0.3112

Energy MAE
(meV/atom) 5.497 5.780 5.500

Energy RMSE
(meV/atom) 10.02 10.85 9.974

Force parity plot R2 0.9605 0.9480 0.9570

Force MAE (eV/Å) 0.0764 0.0792 0.0764

Force RMSE (eV/Å) 0.1167 0.1271 0.1167

FT2DP: Fine-tuned Fischer-Tropsch deep potential; MAE: mean absolute error; RMSE: root
mean square error.

teristics and similarities. Structures in the entire FT2DP dataset with the top ten highest absolute prediction
errors in energies (|Δ𝐸 |) and maximum absolute prediction errors in atomic forces (|Δ𝐹 |𝑚𝑎𝑥) are presented in
Supplementary Tables 1 and 2 and Supplementary Figures 2 and 3, respectively. We observe that most of these
structures exhibit disordered configurations or unphysical features. For example, 60% of these structures cor-
respond to the same chemical formula C6H12O6, displaying disorderedmolecular configurations in a relatively
small cubic cell with lattice vector equals to 10Å, rendering their physical state (gas/liquid/solid) indetermi-
nate. Moreover, the third- and sixth-ranked structures in |Δ𝐸 | contain unphysical H6 clusters located in the
vacuum layer of Fe16H7 surfaces. While these outliers reflect the equilibrium diversity of the dataset, which
could improve model stability in the non-equilibrium region [70], they also highlight the presence of unphysi-
cal configurations that necessitate data cleaning to remove the outliers for preventing training instability and
downgraded model performance in practical atomistic modeling applications.

Reaction pathways
Many previous studies have demonstrated that certain surfaces exhibit much higher FTS activity, identifying
them as the active surfaces [6,71]. A well-known example is the 𝜒-Fe5C2(510) surface, which has been shown
to present relatively low CO dissociation and C-C coupling barriers [16,24,25]. In this section, the FT2DPmodel
and our D2S TS optimization workflow are utilized to investigate the key elementary reactions of FTS reaction
pathways on the A-P5 site of 𝜒-Fe5C2 (510) surface, known as an important active site for FTS process due
to the participation of the lattice carbon and carbon vacancy on it in the surface reaction through a Mars-von
Krevelen (MvK) mechanism revealed by previous studies [6,24,25]. In particular, we consider the dissociative
adsorption of H2 by Langmuir-Hinshelwood (L-H)mechanism, the dissociative adsorption of CO by theMvK
mechanism, the competition between chain growth (C-C coupling) and carbon hydrogenation (C-H coupling)
for carbon adsorbates, and the desorption of hydrocarbon compounds such as CH4. The MvK reaction mech-
anism similar to previous works is also revealed in our investigation, especially for CO dissociation and chain
growth process, illustrating the importance of the A-P5 site on iron carbide for FTS.

To further validate the accuracy of the FT2DP model in the TS optimization, we compared the results from
three types of calculations: (1) purely FT2DP-based; (2) DFT single-point calculation after TS optimization
by FT2DP, denoted as DFT@FT2DP; and (3) purely DFT-based, in Figure 4, illustrating that most reaction
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Figure 3. Validation results of the FT2DP model after fine-tuning on the entire dataset. Figures on the left are the parity plots comparing
formation energies (A) and forces (B) from FT2DP against those from DFT on the dataset, with R2 equal to 1.000 and 0.9570, respectively.
Figures on the right illustrate the violin plots of (C) distribution of DFT formation energies and atomic forces of the FT2DP dataset and (D)
distribution of difference in energies and atomic forces between FT2DP predictions and DFT results on this dataset, and a box-plot without
outlier is used to show the detailed distribution inside the peak region. FT2DP: Fine-tuned Fischer-Tropsch deep potential; DFT: density-
functional theory.

pathways calculated directly by FT2DP agree well with DFT benchmarks. However, a subset of cases exhibits
notable energy discrepancies between FT2DP andDFT, particularly for TS. For example, the TS5 andTS6 states
in Figure 4B show energy differences up to 0.30 eV. Such errors could propagate into significant uncertainties in
identifying the rate-determining step (RDS) andmicrokinetics modeling of reaction networks. This highlights
the inherent challenges in training MLPs to capture reactive dynamics and the limitations of relying solely on
MLPs for reaction simulation, especially for out-of-distribution configurations. Further improvement can be
attained in the DFT@FT2DP scheme. For instance, the energy differences of TS5 and TS6 states in Figure 4B
are reduced to 0.01 and 0.03 eV, respectively, when comparing DFT@FT2DP results and pure DFT results. This
hybrid approach aligns with established practices in MLP-based studies [24], following the spirit of using low-
fidelity (or rough) computational methods for geometry evaluation while performing high-fidelity (or precise)
computational methods to refine the energy and electronic structure of crucial states [72,73]. While FT2DP can
qualitativelymap reaction networks without requiring posterior DFT energy corrections, quantitative accuracy
cannot be fully guaranteed without further model refinement and dataset expansion to span the target reactive
chemical space.

Global optimization of reconstruction of edge sites
In addition to the 𝜒-Fe5C2(510) surface, some other surfaces have also been proposed as catalytically active in
Fe-FTS process, including 𝜒-Fe5C2(021), 𝜒-Fe5C2(411), 𝜂-Fe2C(111), 𝜃-Fe3C(010), and 𝜃-Fe3C(031) [18,25]. In
recent years, some studies have suggested that the FTS activity of low-coordinated atoms (typically at edges and
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Figure 4. FTS reaction pathways on 𝜒-Fe5C2(510) surface, including (A) dissociation of H2 and CO on A-P5 site; (B) *CH-*C coupling
and following steps towards long-chain (C2+) hydrocarbon products; (C) *CH-*H coupling steps towards CH4 product; and (D) *CH-*CH
coupling steps towards CH2CH2 product. In these plots, red line denotes that the PES calculations are done merely by FT2DP, blue line
denotes that the calculated data are acquired by single-point DFT calculation after FT2DP optimization, purple line denotes that the PES
calculations are purely performedbyDFTcalculation, andC𝑣 stands for carbon vacancy onA-P5 site. All the top views are forDFT-optimized
structures. Orange: Fe atoms; Grey: C atoms;White: H atoms; Red: O atoms. FTS: Fischer-Tropsch synthesis; PES: potential energy surface;
FT2DP: fine-tuned Fischer-Tropsch deep potential; DFT: density-functional theory.

corners) may differ significantly from that of regular surface atoms [12,74], highlighting the importance of these
sites inmechanistic research. In this section, four potential FeC𝑥 active surfaces in iron-based Fischer-Tropsch,
i.e., 𝜒-Fe5C2(510), 𝜒-Fe5C2(021), 𝜂-Fe2C(111), and 𝜃-Fe3C(010) [Supplementary Figure 4], were considered
to investigate the surface morphology and stability of edge sites. Each surface was modeled using a slab with
a thickness of more than 10 Å, with the bottom two or three layers of FeC𝑥 fixed during structural relaxations.
A vacuum layer of 20 Å was introduced to separate two neighboring slabs for all surfaces. To model the edge
sites, a ‘half-surface’ scheme was employed: half atoms of the top layer were removed, maximizing the distance
and simultaneously minimizing the interaction between two adjacent edge sites. This approach is particularly
useful for GA calculations, as it allows for two independent local searches on two edges to identify the most
stable reconstructed structure.

Before performing GA calculations, we first checked the accuracy of FT2DP on large clean surfaces and unre-
constructed edge structures. We used the FT2DP model to optimize the structures and then calculated their
single-point energies on the PBE level. In Supplementary Tables 3 and 4, we report the energy differences
between PBE single-point energies for FT2DP and PBE-optimized structures. The energy differences for all
tested structures are less than 1.2 meV/atom, indicating that FT2DP is sufficiently accurate for investigating
surface reconstructions of iron carbides.

http://dx.doi.org/10.20517/jmi.2024.105
https://oaepublishstorage.blob.core.windows.net/344c92a0-d778-4c7e-9bba-fd78baabda16/jmi40105-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/344c92a0-d778-4c7e-9bba-fd78baabda16/jmi40105-SupplementaryMaterials.pdf


Page 12 of 18 Liu et al. J. Mater. Inf. 2025, 5, 27 I http://dx.doi.org/10.20517/jmi.2024.105

Figure 5. Structure of the lowest-energy reconstruction of each surface and relative surface energies of low-energy reconstructions with
respect to Δ𝜇C. (A) and (B) 𝜒-Fe5C2(510) surface, (C) and (D) 𝜒-Fe5C2(021) surface, (E) and (F) 𝜃-Fe3C(010) surface. When referring to 𝜒-
Fe5C2(510) surfaces, “Fe-” or “C-” denotes the Fe-terminated or C-terminated surface, respectively. The numbers in the names of surfaces
[e.g., 6-15 in 𝜃-Fe3C(010) surface] represent the range of column numbers (counted from left to right) from which iron atoms have been
removed. The cyan curve in (B) marked by “clean-rec” corresponds to the reconstructed 𝜒-Fe5C2(510) surface reported by the previous
work of Liu et al. [24].

There are two possible terminations of 𝜒-Fe5C2(510) [75]: Fe- and C-terminated surfaces, and their relative
stability is dependent on the chemical potential of carbon (Δ𝜇C). In modeling the edge sites, we chose to re-
move four consecutive rows of Fe atoms (24 Fe atoms in total), along with the corresponding C atoms. These
unreconstructed structures with edge sites may contain many under-coordinated Fe and C atoms, making
global optimization essential to obtain low-energy reconstructed structures. A representative low-energy re-
constructed structure of 𝜒-Fe5C2(510) surface with edge sites is shown in Figure 5A. In this configuration,
only the relocation of carbon atoms is observed, while the positions of iron atoms remain largely unchanged,
which is consistent with previous findings [24]. In contrast, reconstructions involving the migration of both
iron and carbon atoms on Fe-terminated surfaces were identified, together with some newly formed [Fe4C]
squares [Supplementary Figure 5]. Since the atom number of different structures is not identical, we used
Equation (3) to characterize their stabilities and plotted the relative surface energies (Δ𝛾) against Δ𝜇C in Fig-
ure 5B. Notably, reconstructed C-terminated surfaces, such as C-4-7 in Figure 5B, exhibit higher stability than
other clean surfaces at the upper limit of Δ𝜇C, including the reconstructed 𝜒-Fe5C2(510) surface, which is
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Figure 6. Results of variable-composition calculations on the 𝜂-Fe2C(111) surface. (A) A schematic representation of the variable-
composition search, where “-3C” indicates three fewer carbon atoms compared to the unreconstructed structure; (B) Side and top views
of unreconstructed and reconstructed structures of the most stable configuration at the lower Δ𝜇C limit; (C) Plot of the relative surface
energies of the most stable reconstructions with different total carbon numbers against Δ𝜇C.

built according to the previous work of Liu et al. [24]. Previous studies [25] have demonstrated the important
role of [Fe4C] squares (or A-P5 sites) in facilitating both CO dissociation and C-C coupling reactions. We
obtained a reconstructed structure containing a row of inclined [Fe4C] squares as shown in Figure 5A, which
implies that the reconstructed edge sites on 𝜒-Fe5C2(510) surfaces could serve as active sites for iron-based
Fischer-Tropsch reactions.

𝜒-Fe5C2(021) and 𝜃-Fe3C(010)were also considered as potential active surfaces in iron-based FTS [17,25]. Among
them, the 𝜒-Fe5C2(021) surface exhibits greater structural complexity compared to the other three surfaces,
consisting of both [Fe4C] squares and [Fe5C] pentagons [Supplementary Figure 4]. Despite this complexity,
our workflow successfully performed global optimizations and identified the reconstructed surfaces with edge
sites. The most stable reconstructed structure is illustrated in Figure 5C, where newly formed [Fe4C] squares
are also observed (also see Supplementary Figure 6 for additional structures). The relative surface energies (Δ𝛾)
against Δ𝜇C are plotted in Figure 5D. Although all of them are less stable than the clean 𝜒-Fe5C2(021) surface,
with relatively small energy differences, they may still play certain roles in the FTS at a high temperature.

The clean 𝜃-Fe3C(010) surface exhibits a highly ordered structure. The most stable reconstructed structure of
𝜃-Fe3C(010) surface with edge sites is presented in Figure 5E.This behavior resembles the phenomenon of “is-
land decay” in surface science [76], where a rough surface evolves toward a smoother surface to achieve higher
stability (also see Supplementary Figure 7 for two additional reconstructions). Similar to the 𝜒-Fe5C2(021)
surface, newly formed [Fe4C] are observed in these reconstructed 𝜃-Fe3C(010) surfaces, while the original
surface morphology is still preserved. The relative surface energies (Δ𝛾) as a function of Δ𝜇C are also plotted
in Figure 5F. Notably, none of the reconstructed 𝜃-Fe3C(010) surfaces are found to be more stable than the
clean surface. Moreover, the energy differences are significantly larger than those on 𝜒-Fe5C2(021) surfaces, in-
dicating that the formation of edge sites on 𝜃-Fe3C(010) is much less favorable under a typical Fischer-Tropsch
reaction condition.

Compared to other surfaces, the 𝜂-Fe2C(111) surface exhibits a relatively simple structure and all surface Fe-
4fold square sites are fully occupied by carbon atoms [Supplementary Figure 4]. Here, we demonstrated
variable-composition global optimization calculations involving different numbers of carbon atoms. When
performing fixed-composition calculations, two edges of each surface were optimized using GA separately.
While performing variable-composition calculations, the number of atoms at each edge can be changed and
these searches will be repeated several times under different total numbers of atoms [Figure 6A]. One example
of a reconstructed surface is shown in Figure 6B, where carbon atoms migrate from one edge to the other,
forming C-C dimers to fully bond with neighboring atoms. The relative surface energies (Δ𝛾) of the recon-
structed surfaces against Δ𝜇C are plotted in Figure 6C. Structures with varying carbon numbers are detailed in
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Supplementary Figure 8. Although all of the reconstructed surfaces are less stable than the clean 𝜂-Fe2C(111)
surface, the energy differences between them are relatively small, especially for carbon-rich structures under a
high Δ𝜇C. For example, at the lower limit of Δ𝜇C = -7.45 eV, the most stable reconstructed surface is identified
as “-3C”. This means the surface energy is minimized when three fewer carbon atoms are present compared
to the unreconstructed structure. Conversely, at the upper limit of Δ𝜇C = -6.60 eV, the relative surface energy
decreases monotonically with an increasing carbon number. In the end, the stability of the surface with most
carbon atoms (“+C”) is very close to the clean surface. This suggests carbon deposition on the iron-carbon
surface is presumed to be thermodynamically favorable under a high Δ𝜇C, typically near the reactant-catalyst
equilibrium in a carbon-rich gas environment.

CONCLUSIONS
To summarize, we have constructed the FT2DPmodel by fine-tuning the DPA-2 LAM on a dataset focused on
the iron-based FTS process and demonstrating its performances for the investigation of key reaction pathways
in the FTS process and global optimization of several iron carbide surfaces with edge sites. The model valida-
tion and the atomistic simulation tasks served as comparative analysis between the results obtained through
MLP and DFT calculations demonstrate that our FT2DP fine-tuning protocol exhibits significant promise for
constructing universal MLPs with notable performance in studying reaction pathways, surface reconstruction
and other atomistic processes of complex heterogeneous catalytic systems such as iron-based FTS, providing
a valuable practice for the application of LAM in the theoretical simulation of heterogeneous catalysis as well.
It should be emphasized that all our works including DFT calculation, MLP training, and atomic simulation
workflow construction have been conducted in open-source platforms for integrating the collective intelligence
of developers from varying domains and making our contributions at the same time.

We close the paper by giving a few general remarks. While the FT2DP model constructed via our fine-tuning
protocol has achieved promising results, there remains significant room for improvement. Most importantly,
since the model is pre-trained and fine-tuned by mainly using DFT data at the GGA-level, it is expected to
be inadequate for systems with strong electronic correlation such as the surfaces of Fe oxides that also play
important roles in the FTS process. To extend the FT2DP model to more diverse chemical scenarios that are
relevant to FTS, it is necessary to include more accurate DFT training data that cover structures falling outside
the current training set. First-principles calculation of strongly correlated materials with sufficient accuracy
and efficiency is challenging by itself, and it is under active exploration to build unified MLP models that can
describe weakly and strongly correlated systems with comparable accuracy by using mixed training data ob-
tained from different theoretical methods. Considering highly demanding computational cost of generating
new training data, especially when using advanced electronic structure methods beyond GGA that are nec-
essary for strongly correlated systems, it is crucial to leverage various active learning strategies [70] to discern
iteratively and automatically unlabeled structures that can improve the current model in the most efficient way.
There are available platforms to facilitate this process such as DP-GEN [37]; however, further optimizing the
active learning protocol for fine-tuned LAMs remains an open challenge. For example, conventional data se-
lection criteria in active learning often rely on ensemble-based (also known as query-by-committee [70]) uncer-
tainty quantification, which may under-perform for LAMs owing to additional computational costs required
for training several large models, and more importantly can suffer from overconfidence problems [77]. Further-
more, as the upstream DPA-2 LAM and its associated DeePMD-kit platform are in continuous development,
our fine-tuning protocol should keep evolving to harness emerging capabilities. Finally, applying the FT2DP
model tomore simulation tasks would broaden its utility and deepen insights into the challenges in the domain
of iron-based FTS. In the future, we expect to further improve the FT2DP model, including using multi-task
fine-tuning tactics to resist knowledge loss in unified descriptors, and refining the dataset by active-learning
strategies with suitable uncertainty quantification and unique data selection in order to enrich the dataset for
effectively covering larger configuration space related to the FTS domain from open-source datasets and spe-
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cific catalytic simulation tasks while concurrently dropping redundant and outlying data, making it better for
addressing more advanced challenges in iron-based FTS, such as the automatic exploration of surface reaction
pathways, the morphology of FeCx nanoclusters under different chemical environments, or the detailed effects
of alkali promoters in FTS process. Our work may provide a blueprint for utilizing pre-trained LAMs through
fine-tuning methodology in the atomistic simulation not only for iron-based FTS but also for other complex
heterogeneous catalytic systems.
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