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Abstract
To address the issues of detail loss and blurred restoration in the non-uniform image dehazing process of existing
non-uniformly hazy images, this paper presents a novel non-uniform image dehazing algorithm based on serialized
integrated attention and multi-dimensional Transformer. This approach aims to restore clear, detailed scenes from
heavily hazy images. Firstly, a serialized integrated attention module is established to capture image features. This
module amalgamates spatial and channel attention mechanisms and is applied to the shallow-layer network. It ef-
fectively concentrates on the local features of the image in both spatial and channel dimensions. Secondly, a multi-
dimensional Transformermodule is incorporated into the deep-layer network to extract global information and reduce
information loss during feature extraction. Finally, feature network fusion is carried out to adaptively fuse the feature
maps of the shallow layer and the deep layer. This allows the model to take into account local and global informa-
tion, combine the detailed local features of the shallow layer with the broad global information of the deep layer, and
capture fine-grained details while integrating the image context. The experimental results clearly demonstrate the
effectiveness of the proposed algorithm. On the I-HAZE, O-HAZE, and NH-HAZE non-uniform haze datasets, the
algorithm achieves Peak Signal-to-Noise Ratio values of 22.86, 25.86, and 22.06, along with Structural Similarity In-
dex Measurement values of 0.8731, 0.7799, and 0.7796, respectively. Moreover, the effectiveness of this algorithm
is verified on real-world hazy images. Compared with other dehazing algorithms, our proposed method outperforms
them in both visual effects and objective metrics.
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1. INTRODUCTION
In modern society, computer vision and image processing technologies are extensively applied across various
domains, from security surveillance to autonomous driving, and even to everyday entertainment. High-quality
image information is indispensable in all these applications. However, under adverse weather conditions such
as haze, image quality often deteriorates, causing a loss of detail and posing significant challenges for related
applications. Therefore, research on image dehazing algorithms holds substantial practical significance.

Currently, in the domain of dehazing, traditional approaches mainly include image enhancement and restora-
tion, which were among the earliest techniques used for image dehazing. Image enhancement dehazing algo-
rithms are designed to improve image quality by specifically reducing or eliminating the degradation caused
by weather conditions such as fog and haze. These algorithms typically enhance aspects of the image such as
contrast, brightness, color, and detail, making the image visually clearer for human observation and analysis.
Examples include histogram equalization algorithms [1] and the color attenuation prior [2]. Conversely, image
restoration dehazing algorithms focus on a deep understanding of the physical mechanisms underlying image
degradation and use this understanding to establish atmospheric scattering models. These models often rely
on certain prior knowledge, such as the assumption that scene depth information changes gradually over large
areas or that local regions of the image exhibit consistency. By accurately estimating the parameters of these
models, researchers can infer the image content as it would appear under ideal, fog-free conditions, thereby
restoring the hazy image. For example, Dark Channel Prior (DCP) [3] is based on the observation that, in a
fog-free outdoor image, the majority of pixels in its dark channel (the minimum value across the color chan-
nels for each pixel) are very close to zero. This prior knowledge can be used to estimate the transmission map
in the atmospheric scattering model, which then allows for the recovery of a fog-free image. However, this
methodmay not performwell on images with dense fog or more complex fog effects and tends to produce halo
effects in bright areas such as the sky. Liu et al. proposed a multi-purpose dehazing framework for nighttime
hazy images [4]. They mainly constructed a non-linear model based on the Retinex theory to describe various
adverse degradation situations of nighttime hazy images. A prior dehazing method was used to remove the
haze in the illumination component. However, if the prior assumptions do not match the actual image condi-
tions, such as the presence of special lighting or abnormal haze distribution in the scene, the dehazing effect
may not be satisfactory, and problems such as halos and color distortion may occur.

In recent years, with the rise of deep learning technologies, significant advancements have been made in deep
learning-based image dehazing algorithms [5]. Deep learning models learn the mapping relationship for image
dehazing by training on large datasets, enabling them to automatically extract features from images and opti-
mize dehazing effects [6]. These methods offer greater flexibility and accuracy, allowing them to better adapt
to various complex scenes and weather conditions. Convolutional Neural Networks (CNN) are the most com-
monly used models in this domain. They extract feature information from images through multiple layers
of convolution and pooling operations [7]. By training CNN models on hazy images, these models can detect
and remove haze-related features, thereby restoring clear images. Additionally, attention mechanisms have be-
come a popular technique for improving the effectiveness of dehazing on hazy images [8]. Li et al. proposed a
non-uniform dehazing algorithm based on improved ConvNeXt [9]. Although the ImageNet-pre-trained Con-
vNeXt model was adopted to supplement knowledge, when dealing with small non-uniform haze datasets,
there may still be an overfitting problem. This leads to a decline in the generalization ability of the model on
new, unseen data, resulting in unstable dehazing effects. The dehazing module obtains more image informa-
tion through the Feature Fusion Group (FFG) [10], which reduces color distortion and artifacts in the dehazed
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images. Then, the obtained image information is passed to the DeepNormalized Corrected Convolution Block
(DNCC) to reduce covariate shift, making the model easier to train.

However, CNN has its own limitations. Its receptive field is relatively limited. Although the receptive field
can be expanded by stacking multiple convolutional layers, it still struggles to capture the global information
of images when dealing with complex image dehazing tasks. It is difficult for CNN to effectively grasp the
distribution law of fog in the entire image and the long-range dependency relationships between various objects
in the scene. Different from CNN, the Transformer architecture, with its self-attention mechanism at the core,
has certain advantages in feature extraction. The self-attention mechanism allows the model to calculate the
dependency relationships between each position in the sequence in parallel, breaking the limitation of locality,
thus enabling the model to conduct global-perspective modeling and analysis of the image.

To this end, recently, Song et al. proposed the DehazeFormer de-fogging framework [11]. On the commonly
used Standard Objective Testing Set (SOTS) -indoor dataset, it outperformed Feature Fusion Attention Net-
work (FFANet) with only 25% of the parameters and 5% of the computational cost, surpassingmost de-fogging
algorithms. However, this algorithm also has certain drawbacks, such as high computational complexity and
a high degree of dependence on data. In order to give full play to the advantages of both CNN and Trans-
former and overcome their respective shortcomings, hybrid algorithms of Transformer and CNN emerged.
Subsequently, Wang et al. proposed a de-fogging algorithm based on the fusion of dual-attention convolution
and Transformer for image de-fogging [12]. However, it has deficiencies in the restoration of image de-fogging
details. Recently, Wang et al. proposed the GridFormer image de-fogging algorithm [13]. This research focused
on the problems of image blurring and low contrast in severe weather, and innovatively proposed a residual
dense Transformer model with a grid structure. Through the unique grid-structure design, this model effec-
tively integrates multi-scale information and improves the feature-extraction ability. Jiang et al. introduced
the Mutual Retinex method, which combines transformers and CNNs to enhance image quality by capturing
both global and local features [14]. This approach improves image enhancement performance, particularly in
challenging conditions, but its higher computational cost and the complexity of training may limit its prac-
tical application in real-time systems. Zheng et al. proposed a dehazing network named T-Net to address
the problem of single image dehazing [15]. Stacked T-Nets use a recursive strategy to explore complex feature
relationships in the image and improve the de-fogging effect. However, the T-Net framework is complex, and
the training and testing costs are high in devices or scenarios with limited computing resources. Qiu et al.
introduced the Multi-scale Attention Refinement (MSAR) module to correct the error of the Taylor expansion
of softmax-attention, enabling the model to more accurately process image information during the de-fogging
process, reducing the error caused by approximation and improving the de-fogging accuracy [16]. Although
there is the MSAR module, the Taylor expansion approximation may still have errors that cannot be com-
pletely eliminated in images with complex textures under extreme fog conditions, resulting in less-than-ideal
de-fogging effects, and the restoration of details and color accuracy may be affected (references). Moreover,
evaluation metrics are also a key point of research. Commonly used metrics such as Mean Squared Error
(MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measurement (SSIM) are used to
evaluate the performance of image de-fogging algorithms.

Based on the above analysis, this paper proposes a non-uniform image dehazing algorithm based on Serialized
Integrated Attention and Multi-dimensional Transformer (SIA-MT), addressing the challenge of recovering
detailed information obscured by haze in different regions of real-world non-uniform hazy images. Unlike
existing algorithms, the proposed method combines CNN and Transformer [17] to jointly process hazy images
for dehazing purposes. It primarily constructs a shallow feature extraction network using spatial and channel
dual attention serialized convolution based on CNN, along with a deep feature extraction network centered
on the fusion of Transformer modules and Swin Transformer [18] modules to extract both shallow and deep
features from hazy images. Furthermore, a multi-feature fusion reconstruction network is designed to obtain
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the dehazed image.

2. METHODS
2.1. Peptide topology data representation
2.1.1 Swin transformer
The Transformer architecture achieves global modeling capabilities through its global self-attention mecha-
nism. However, it is less effective at handling multi-scale features. In the original Transformer, multi-head
self-attention (MHSA) is applied across all spatial positions, resulting in a computational complexity of 𝐻 ×𝑊
for processing an image of size𝑂 = 2× (𝐻𝑊)2 × 𝑑. The computational complexity of the original Transformer
increases quadratically with the image resolution. Consequently, when processing high-resolution images,
the original Transformer becomes less efficient and requires more resources. Moreover, single-scale feature
representation has inherent limitations.

To reduce computational complexity and effectively handlemulti-scale features, the Swin Transformer employs
self-attention within smaller windows rather than across the entire image as in the original Transformer. This
approach ensures that the computational complexity of self-attention is fixed as long as thewindow size remains
constant. The computational complexity for the entire image scales linearly with the size of the image. The
operations in a Swin Transformer layer are as follows: Given an input feature map, a linear layer projects it
into the self-attention queries 𝑄, keys 𝐾 , and values 𝑉 matrices, and performs window-based grouping. Swin
Transformer applies MHSA within each window, with different partitions for adjacent windows. Thus, the
self-attention computation is given in

Attention (𝑸, 𝑲,𝑽) = SoftMax
(
𝑸𝑲T
√
𝑑

+ 𝑩

)
𝑽 (1)

Where 𝑑 represents the number of channels, and 𝐵 denotes the relative positional bias term. Finally, the output
is projected to the final self-attention output through a linear layer.

2.2. Overall framework of the dehazing networks
The non-uniform image dehazing algorithm of serial integrated attention and multi-dimensional Transformer
proposed in this paper has an overall structure as shown in Figure 1.

The network primarily consists of four feature extraction network hierarchies and a Gated Fusion Sub-network
(GFS) [19]. Among them, the feature extraction network hierarchy includes a concatenated comprehensive
attention module and a fusion Transformer module. The concatenated comprehensive attention module is
located in the first two layers of the feature extraction stage, aiming to extract shallow features, better preserve
and recover image details, and handle both channel and spatial dimensional features to better address non-
uniformity. The multi-dimensional Transformer module combines the Transformer and Swin Transformer
for deep feature extraction in both channel and spatial dimensions. Leveraging the advantages of global self-
attention in Transformer, it enhances global channel features along the channel dimension, while the window-
based self-attention of the Swin Transformer reduces computational load and facilitates local information inter-
action, thereby aggregating global spatial features. The GFS, serving as a fusion mechanism for features from
different layers, can adaptively control the fusion ratio of features at different levels, enhancing fine-grained
details and complementing key features across layers. Moreover, it integrates the high-resolution spatial infor-
mation from shallow features and the semantic information from deep features to enhance the model’s feature
representation capability.
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Figure 1. Overall framework of the dehazing network.

In the SIA-MT algorithm, convolutional attention is employed in the shallow network stages where the image
spatial scale is large and the number of channels is small, while Transformer is used in the deeper network
stages where the image spatial scale is smaller and the number of channels is larger. This approach effectively
enhances local fine-grained details in shallow features and global semantic information in deep features, while
maintaining good computational efficiency. Additionally, the GFS compensates for missing feature informa-
tion and strengthens the model’s expressive power.

To address the problem of blur in non-uniform image dehazing, this paper attempts to incorporate attention-
based recurrent networks to handle haze information. The algorithm first introduces the hazy image into
a CNN-based shallow feature extraction network for local feature extraction, generating distinctive feature
attention maps in both spatial and channel dimensions. After a series of CNN processes, the resulting feature
maps are then input into the Transformer-based deep feature extraction network for global feature extraction.

2.3. Serial integrated attention
In real-world scenarios, hazy images often exhibit non-uniform characteristics with both randomness and
uncertainty in their distribution. In contrast, traditional dehazing algorithms primarily address artificially
synthesized images with uniform haze. Due to the inherent differences between synthesized and real-world
non-uniform haze, traditional methods often fall short in handling the latter effectively. To better restore
image details obscured by non-uniform haze in real-world conditions, an attention mechanism was designed
under the shallow feature extraction network, integrating spatial and channel attentionmechanisms in a series,
referred to as serial integrated attention (SIA), to enhance shallow feature extraction.

The proposed SIA module utilizes global average pooling and global max pooling operations to compress spa-
tial and channel information while focusing on the weighted information of different spatial and channel di-
mensions. This approach compresses the size of the feature maps and removes redundant information, thereby
effectively simplifying the model’s complexity. The SIA attention mechanism is illustrated in Figure 2. The spa-
tial attention mechanism in the SIA module first weights each spatial position of the input image, focusing on
the important regions in the image. By calculating the importance in the spatial dimension, spatial attention
can highlight the key areas in the image (such as foreground objects or parts with rich details), thus helping
the network avoid processing background noise or irrelevant information. Based on the output of the spatial
attention mechanism, the channel attention mechanism further adjusts the weights of different channels, se-
lectively enhancing the feature channels with rich information content or stronger semantic information. It
assigns different weighted values according to the importance of the channels, enabling the network to focus
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Figure 2. Serial integrated attention (SIA).

on those most discriminative feature channels.

Placing spatial attention first helps to screen out the most important regions in the image initially, preventing
thewaste of computational resources on irrelevant areas in subsequent operations. This approach is particularly
suitable for the image dehazing task. Since haze is usually unevenly distributed in different regions of the
image, focusing through spatial attention at the early stage can assist subsequent steps in more accurately
restoring details. Under the influence of spatial attention, channel attention can further enhance valuable
channel features within important regions, ensuring a more detailed and hierarchical image restoration.

The specific design process of the spatial attention module is as follows: The input is a feature map with a
size of 𝐻 ×𝑊 × 𝐶, where 𝐻 and𝑊 represent the height and 𝐶 width of the image, respectively, and 𝐶 is the
number of channels. This feature map contains the preliminary feature information extracted by the shallow-
layer network. First, global average pooling and global max pooling are performed on the input feature map
in the channel dimension, respectively. By compressing the channel size, we obtain the weighted feature maps
corresponding to the average value and the maximum value of all channels at each spatial position, which is
convenient for learning spatial features later. Then, the weighted feature maps of the average and maximum
values are multiplied pixel-by-pixel with the input feature map respectively to get two output feature maps
both of size 𝐻 ×𝑊 × 𝐶, after which important spatial regions are assigned higher weights and unimportant
regions are weakened. Finally, the two output feature maps are optimized by 3 × 3 convolutions respectively
and then added pixel-by-pixel to obtain the final feature map that combines the advantages of global average
pooling and global max pooling, highlighting important spatial regions and significant features in the image
and effectively improving the dehazing effect when passed to subsequent network layers.

The specific design process of the channel attention module is that the input is the feature map output from
the spatial attention module. First, global max pooling in the spatial dimension is performed on the input
feature map, and the obtained weighted feature map is of size 1 × 1 × 𝐶, where the value of each channel
represents the most significant feature of that channel. Next, a 1 × 1 convolution and Rectified Linear Unit
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(ReLU) function activation are carried out on the weighted featuremap to adjust the weights between channels,
enhancing the network’s attention to important channels and also the model’s expressive ability. Then, it goes
through 1×1 convolution and Sigmoid function again to further adjust the weights between channels, ensuring
that the channel attention mechanism can perform refined weighting, and then maps the weighted value of
each channel to the range of [0, 1] to represent the importance of that channel. Finally, the channel-weighted
feature map (1 × 1 × 𝐶) is multiplied element-by-element with the original input feature map (𝐻 ×𝑊 × 𝐶).
This step weights the input feature map through the weight of each channel in the channel-weighted feature
map, highlighting the features of important channels and suppressing unimportant channels.

Supposing 𝐹𝑋 ∈ 𝑅𝐻×𝑊×𝐶 is the input of the serial integrated attention module, this module can be expressed
as:

𝐹𝑐1 = Conv
( (
𝐺𝐴𝑣𝑔 (𝐹𝑥) ⊗ 𝐹𝑥

)
, 𝑘 = 3

)
(2)

𝐹𝑐2 = Conv ((𝐺𝑀𝑎𝑥 (𝐹𝑥) ⊗ 𝐹𝑥) , 𝑘 = 3) (3)

𝐶𝐹𝑐 = Conv ((𝐹𝑐1 ⊕ 𝐹𝑐2) , 𝑘 = 1) (4)

𝑃𝐹𝑐 = 𝜕 (Conv (𝜑 (Conv (𝐺max (𝐶𝐹𝑐) , 𝑘 = 1)) , 𝑘 = 1)) (5)

𝐹𝑐𝑝 = 𝐶𝐹𝑐 ⊗ 𝑃𝐹𝑐 (6)

Where 𝜕 represents the Sigmoid activation function, 𝜑 indicates the ReLU function, 𝐹𝑥 stands for the input
feature map, ⊗ denotes the element-wise multiplication, and ⊕ signifies the element-wise addition.

2.4. Multi-dimensional transformer module
In the deep feature extraction architecture, as consecutive downsampling operations are performed, the spatial
dimensions are progressively reduced, thereby increasing the receptive field of the features and enriching the
captured global semantic information. To efficiently extract these global characteristics, the introduction of
the Transformer module has become an effective strategy, leveraging its inherent capability for global coarse-
grained processing. The core component of the Transformer module is the MHSA mechanism, which does
not directly compute self-attention at the pixel level on fine-grained data, but instead cleverly employs a self-
attention strategy along the channel dimension. This design significantly reduces computational overhead and
enhances overall efficiency while still effectively capturing and integrating global feature information.

The Swin Transformer adopts a hierarchical structural design, where the resolution of feature maps gradually
decreases and the number of channels increases as the network deepens, allowing the model to capture multi-
scale features from local to global. Therefore, in the deep feature extraction network, an innovative approach
combining Transformer in the channel dimension (CDT) with Swin Transformer is employed, referred to as
Multi-dimensional Transformer (MT), to extract feature information, as illustrated in Figure 3.

Firstly, 𝐹𝑡 ∈ 𝑅𝐻×𝑊×2𝐶 given the input feature 𝐹𝑡 ∈ 𝑅𝐻×𝑊×2𝐶 , a 1 × 1 convolution and a 3 × 3 depthwise
separable convolution are applied to generate the query, representing query-related feature information, the
key, representing feature information that matches the query, and the value. The results are then fed into the
channel-dimensionMHSA calculation. After a series of computations, the output is finally added to the feature
𝐹t input into the Swin Transformer, resulting in the 𝐹st feature map.

2.5. Gated fusion subnetwork
The GFS is a feature convolution module that integrates features from different levels [19]. Its core idea is to
learn the importance weights of features at various levels and linearly combine these features according to the
learned weights, thereby achieving effective feature fusion. Current dehazing algorithms often fail to effectively
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Figure 3. Multi-dimensional transformer module(MTM).

Figure 4. Gated fusion subnetwork(GFS).

utilize multi-level feature information, leading to excessive feature redundancy and subsequently reducing
the performance of dehazing on non-uniform haze images. In response, this paper introduces the GFS to
intelligently fuse multi-level feature information, fully leveraging the advantages of each level to enhance the
overall performance and output quality of the network. In the task of image dehazing, the GFS effectively
combines low-level and high-level feature information, thereby improving image clarity and visual effects, as
illustrated in Figure 4.

Firstly, two different levels of feature information are separately input and fused through concatenation. The
input features are processed with a convolutional layer 1 × 1 that adjusts channel parameters, followed by a
ReLU activation function to introduce non-linearity into the network. The features are then passed through a
subsequent point-wise convolution 1 × 1 to transform the channels, resulting in channel features containing
information from both levels. Next, a Softmax activation function is used to adaptively assign weight informa-
tion to different channels. These weights are then used to perform adaptive fusion with the features extracted
from different layers. Finally, the resulting outputs are summed to further enhance the feature representation.
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2.6. Loss function
The loss function plays a central role in machine learning and deep learning, serving as a crucial metric for
measuring the discrepancy between the model’s predictions and the actual results. It acts not only as a bench-
mark for evaluating model performance but also as a foundational element in optimizing model parameters,
implementing the backpropagation algorithm, and conducting model selection and comparison. In this paper,
a combination of pixel-wise reconstruction loss [20] and perceptual loss [21] is employed to enhance the visual
quality of the images.

2.6.1 Pixel reconstruction loss function
The pixel-wise reconstruction loss function primarily measures the loss between the dehazed image obtained
from the dehazing network and the true clear image. This loss function is used to constrain the dehazing
network, ensuring that the dehazed image is closer to the true clear image [20], which is given by

𝐿𝑠 =
1
𝑁

𝑁∑
𝑖=1

{
0.5𝑥2 if |𝑥 | < 1
|𝑥 | − 0.5 otherwise

(7)

where 𝑁 represents the total number of pixels, 𝑥 = 𝐽g
𝑖 − 𝐽d

𝑖 and 𝐽
g
𝑖 denote the values at the 𝑖 pixel of the true

image, and 𝐽d





𝑖 denotes the value at the 𝑖 pixel of the dehazed image.

2.6.2 Perceptual loss function
To ensure visual perceptual similarity between the dehazed image and the true image, a perceptual loss func-
tion [21] is introduced, as given in

𝐿p =
1

𝐶 𝑗𝐻 𝑗𝑊 𝑗



𝜑 𝑗

(
𝐽d
)
− 𝜑 𝑗 (𝐽g)




2

2
(8)

where 𝜑 𝑗 represents the feature maps extracted from the 𝑗 layer of the VGG16 model.

2.6.3 Overall loss function
To better train the performance of the dehazing network model, a combined loss function is chosen. The
pixel reconstruction loss function and the perceptual loss function are appropriately combined to constrain
the dehazing network. The total loss function is defined as

𝐿 = 𝐿𝑠 + 0.01𝐿𝑝 (9)

3. RESULTS AND DISCUSSION
3.1. Analysis of benchmark dataset
In this study, we primarily utilized the real-world non-homogeneous haze datasets I-HAZE [22], O-HAZE [23],
and NH-HAZE [24], as well as the synthetically generated haze dataset RESIDE [25] for training the dehazing
network model. During model training, due to the limited number of images in the real non-uniform hazy
dataset, this study selects 30 pairs from the I-HAZE dataset and 45 images from the O-HAZE dataset. These
images are uniformly divided into 64 parts, resulting in 1,920 pairs of images in the cut I-HAZE dataset and
2,880 pairs in the cut O-HAZE dataset. The NH-HAZE dataset consists of 55 pairs, which are uniformly
divided into 16 parts, resulting in 880 pairs of images in the cut NH-HAZE dataset.

Among these, images from the I-HAZE and O-HAZE datasets are randomly selected in a proportion close to
15:1 to form the training and testing sets for the dehazing model. For the NH-HAZE dataset, the majority of
the image pairs are randomly selected as the training set, with a smaller portion of images used as the test set
for the dehazing model.
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Figure 5. I-HAZE dataset test results.

Finally, the experimental results of the dehazing model on these test sets were compared both subjectively and
objectively with the results of existing dehazing algorithms, including DCP [3], FFANet [26], Gated Context Ag-
gregation Network (GCANet) [19], GridDehazeNet [27], Multi-Scale Boosted Dehazing Network (MSBDN) [28],
Ultrahighdefinition image Dehazing (UD) [29], and Dual Attention and Transformer (DAT) [12].

3.2. Subjective evaluation on real non-uniform haze datasets
To verify the effectiveness of the proposed dehazing model on real non-uniform haze images, this study con-
ducted tests on the I-HAZE, O-HAZE, and NH-HAZE test datasets. The dehazing results on these different
datasets were subjected to a subjective visual evaluation to assess the model’s performance in enhancing the
visual clarity of hazy images.

3.2.1 Analysis of I-HAZE dataset test results
The testing results of different algorithms on the I-HAZE dataset are shown in Figure 5.

From Figure 5, it can be observed that while the DCP dehazing algorithm achieves some dehazing effect, the
overall distortion is relatively severe. For instance, the images in the second column have a generally dark color
tone.

The FFANet and GridDehazeNet dehazing algorithms leave a small amount of haze residue in the test images.
For example, the images in the third column show slight haze, and the first image in the fifth column exhibits
more noticeable haze. The GCANet dehazing algorithm shows poor dehazing performance, with artifacts
visible in the red regions of the fourth image in the fourth column.

TheMSBDN and UD dehazing algorithms introduce localized color distortions in the test images, such as the
bookshelf color in the second image of the sixth column, and the bookshelf and canvas colors in the second
and third images of the seventh column. The DAT dehazing algorithm also leaves residual haze in some of the
test images, as seen in the first image of the eighth column, where haze remains in the left half of the image. In
contrast, the test images from the proposed algorithm are visually closer to the real clear images, demonstrating
significantly better dehazing performance.
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Figure 6. O-HAZE dataset test results.

3.2.2 Analysis of O-HAZE dataset test results
The test results of different dehazing algorithms on the O-HAZE dataset are shown in Figure 6.

From Figure 6, it can be observed that the DCP dehazing algorithm produces images with an overall bluish tint,
leading to significant color distortion. The FFANet and GCANet algorithms also show some haze remnants, as
seen in the lower right corner of the fourth image in the third and fourth columns. GridDehazeNet’s dehazed
images exhibit minor haze remnants in certain areas, such as the central region of the first, third, and fourth
images in the fifth column.

While the MSBDN algorithm effectively removes haze, its performance in detail recovery is not as strong as
the proposed algorithm. For instance, the central region of the first image in the sixth column and the first
image in the ninth column demonstrate less effective detail recovery compared to the proposed method. The
UD algorithm also shows dehazing effects, but some images suffer from color distortion, such as the presence
of blue hues in the third and fourth images in the seventh column.

Both the DAT algorithm and the proposed algorithm achieve successful dehazing, but the proposed method
excels in detail recovery compared to the DAT algorithm. For example, in the eighth and ninth columns, the
recovery of stone details is more pronounced in the results of the proposed method when compared to the real
label images in the tenth column.

3.2.3 Analysis of NH-HAZE dataset test results
To further validate the dehazing effect of the proposed algorithm on hazy images and enhance the general-
ization ability of the dehazing network model, testing was conducted on the NH-HAZE dataset. The testing
results are shown in Figure 7.

From Figure 7, the DCP and UD dehazing algorithms exhibit color distortion in the test images. For example,
the test images in the second and seventh columns show severe color distortion compared to the ground truth
images. The GCANet, GridDehazeNet, and MSBDN dehazing algorithms result in haze residue in the test
images, with poor dehazing performance. For instance, in the fourth, fifth, and sixth columns, the zoomed-in
regions of the images exhibit residual haze. The FFANet dehazing algorithm shows haze remnants, as seen in
the zoomed-in area of the fourth image in the third column. The DAT dehazing algorithm struggles with the
recovery of texture details. For example, in the fourth image of the eighth column, the restoration of the chair’s
details is blurry. In contrast, the proposed algorithm demonstrates superior texture detail recovery compared
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Figure 7. NH-HAZE dataset test results.

Table 1. Comparison of objective metrics for different algorithms on real non-uniform hazy datasets

Algorithm
I-HAZE O-HAZE NH-HAZE

PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM
DCP 10.06 0.574 12.54 0.6807 10.82 0.6556
FFANet 21.25 0.8428 24.57 0.758 19.97 0.7442
GCANet 21.4 0.8406 24.33 0.7599 19.94 0.7333
GridDehazeNet 20.45 0.8256 23.04 0.7448 20.74 0.7507
MSBDN 21.61 0.8576 24.27 0.7651 20.05 0.7521
UD 19.19 0.8181 22.46 0.7387 17.24 0.6764
DAT 23.02 0.865 25.59 0.7771 21.22 0.7734
Ours 22.86 0.8731 25.86 0.7799 22.06 0.7796

to the DAT algorithm, with the best dehazing effect overall.

3.3. Objective evaluation on real non-homogeneous haze image datasets
To verify the dehazing performance of various algorithms, an objective evaluation of the image restoration
effects was conducted. Theobjective evaluationmetrics usedwere Peak Signal toNoise Ratio (PSNR) and SSIM.
The objective evaluation results of different dehazing algorithms on various datasets are shown in Table 1.

In Table 1,the optimal objective metric values are highlighted in bold, and the second-best values are under-
lined. As observed from this Table, the proposed algorithm achieves the best objective metrics on the I-HAZE,
O-HAZE, and NH-HAZE real non-homogeneous haze datasets. Specifically, the PSNR of the proposed algo-
rithm on the I-HAZE dataset is 22.86 dB, slightly lower than the optimal value, but its SSIM is 0.8731, which is
0.0081 higher than the second-best value. On the O-HAZE and NH-HAZE non-homogeneous haze datasets,
the proposed algorithm demonstrates superior performance, with the best objective metric values compared
to other benchmark algorithms.

3.4. Subjective visual evaluation on synthetic uniform haze dataset
To further validate the effectiveness of the dehazing algorithm, we conducted tests on both indoor and outdoor
images from the SOTS dataset. The test results are shown in Figure 8.

From Figure 8 above, it can be observed that the DCP dehazing algorithm results in color distortion in the
test images, such as the overall darkening of images in the second column. The FFANet and GridDehazeNet
algorithms leave haze residue in the test images, with poor dehazing performance. For instance, the fourth
image in the third column has haze remnants, and the fourth, fifth, and sixth regions in the fifth column still
exhibit haze. The GCANet dehazing algorithm shows limited dehazing effectiveness in the sky areas of the test
images, and indoor images suffer from some color distortion, such as the fourth image in the fourth column
and the floor area in the second image of the fourth column. TheMSBDN and UD dehazing algorithms result
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Figure 8. SOTS dataset test results.

Table 2. Comparison of image metrics for different algorithms on the SOTS dataset

Algorithm
SOTS-indoor SOTS-outdoor

PSNR/dB SSIM PSNR/dB SSIM
DCP 8.26 0.5579 9.75 0.6686
FFANet 30.12 0.9681 19.83 0.8225
GCANet 29.73 0.9626 21.77 0.8968
GridDehazeNet 29.07 0.9749 18.31 0.8450
MSBDN 28.31 0.9663 23.22 0.9125
UD 22.63 0.8946 22.00 0.9066
DAT 31.36 0.9767 22.68 0.9130
Ours 32.13 0.9784 24.19 0.9189

in overly bright images after dehazing, evident in the first and fourth images of the sixth column and the
first and second images of the seventh column. The DAT dehazing algorithm exhibits slightly weaker detail
recovery compared to the ground truth images, such as poor recovery in the ground area of the fifth image
in the eighth column. In contrast, the proposed algorithm produces test images that are closer to the ground
truth images, demonstrating better dehazing results and more noticeable detail recovery.

3.5. Objective evaluation of dehazing results on synthetic haze datasets
To further validate the effectiveness of the proposed algorithm for dehazing haze images, objective evaluation
metrics PSNR and SSIM were used to analyze the test results on synthetic haze datasets, as shown in Table 2.
The optimal objective metric values are highlighted in bold, and the second-best values are underlined.

As shown in Table 2, the proposed algorithm consistently achieves the best objective metrics. Specifically, in
the SOTS-indoor dataset, the test images of the proposed algorithm have a PSNR of 32.13 dB, which is 0.77 dB
higher than the second-best value, and an SSIM of 97.84, exceeding the second-best value by 0.0007. In the
SOTS-outdoor dataset, the test images of the proposed algorithm achieve a PSNR of 24.19 dB, which is 0.97
dB higher than the second-best, and an SSIM of 0.9189, surpassing the second-best by 0.0069.
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Figure 9. Test results on real-world hazy images.

3.6. Visual effects of real-world hazy images
Due to the random and uneven distribution of haze in real-world scenes, with varying thicknesses, we further
validated the performance of the proposed algorithm on real non-uniform haze images. To evaluate this, we
assessed four randomly selected dehazed images from real scenes without ground truth labels, as shown in
Figure 9.

From Figure 9, it is evident that FFANet, GridDehazeNet, and UD dehazing algorithms leave haze residue
in the test images, with poor dehazing performance in images such as the first images in columns 3, 5, and
7. The GCANet dehazing algorithm results in color distortion, such as excessive whiteness in the sky area of
the third image in column 4. The DCP, MSBDN, and DAT dehazing algorithms do not perform as well in
detail recovery compared to the proposed algorithm, with examples such as the face of the doll in the second
image of columns 2, 6, and 8 showing less effective recovery. In summary, the subjective visual evaluation of
the dehazed results on real non-uniform haze images demonstrates that the proposed algorithm outperforms
other comparative algorithms in both haze removal and texture detail recovery.

3.7. Ablation study
To demonstrate the effectiveness of each module in the proposed algorithm, ablation experiments were con-
ducted using different configurations trained and tested on the real non-uniform haze dataset I-HAZE. The
differences between the experimental results and the ground truth images were computed, and both subjec-
tive visual assessments and objective metrics (PSNR, SSIM) were used for comparison. The specific ablation
experiments are as follows:

• Using a multi-dimensional Transformer network for deep feature extraction, referred to as “MT”;
• Using a channel attention mechanism for shallow feature extraction to focus on haze features in different
channels, with a multi-dimensional Transformer for deep feature extraction, referred to as “MT+CA”;

• Using a spatial attention mechanism for shallow feature extraction to focus on haze concentration in dif-
ferent regions, with a multi-dimensional Transformer for deep feature extraction, referred to as “MT+SA”;

• Using a serial comprehensive attention mechanism for shallow feature extraction, focusing on different
haze regions, combined with a multi-dimensional Transformer for deep feature extraction, which is the
proposed non-uniform image dehazing algorithm, referred to as “Ours.”

The ablation results are shown in Figure 10, with the red box highlighting the enlarged regions.
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Figure 10. Ablation study test results.

Table 3. Test results of different modules on the I-HAZE dataset

Module
I-HAZE

PSNR/dB SSIM
MT 22.64 0.8561
MT+CA 22.66 0.8635
MT+SA 22.08 0.866
Ours 22.86 0.8731

The first column shows hazy images; the second to fifth columns display the dehazing results, and the sixth
column shows the ground truth images. From the second row, it is evident that all methods achieve some
dehazing effect. However, the combination of serial comprehensive attention and multi-dimensional Trans-
former provides better color restoration, with the proposed algorithm’s results being closer to the ground truth
images, while other methods show color distortion. The fourth row demonstrates that the proposed algorithm
also effectively recovers details, such as those on wooden boards in non-uniform haze images.

To further validate the effectiveness of the proposed algorithm for dehazing non-uniform haze images, objec-
tive evaluation metrics were used to assess the results of the ablation experiments. Table 3 presents a compari-
son of the objective evaluation metrics for the four ablation experiments. The optimal objective metric values
are highlighted in bold.

From Table 3, the results on the I-HAZE dataset indicate that the proposed algorithm achieves the best PSNR
and SSIM scores. This demonstrates that the combination of the serial comprehensive attention mechanism
and multi-dimensional Transformer in the proposed non-uniform dehazing algorithm not only effectively
removes haze from non-uniform images but also achieves the best performance in these objective metrics.

4. CONCLUSIONS AND FUTURE WORK
To tackle the problems of detail loss and blurry restoration results in existing dehazing algorithms, this paper
incorporates the non-uniform image dehazing algorithm based on serialized integrated attention and multi-
dimensional transformer. By merging spatial and channel attention mechanisms seamlessly, the algorithm
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accurately targets crucial local image features in both the spatial and channel dimensions, providing a ro-
bust basis for subsequent feature processing and image restoration. Building upon this foundation, a multi-
dimensional Transformermodule is introduced into the deep feature extraction network. Leveraging its strong
global modeling capability, this module effectively captures global image information, notably minimizing in-
formation loss and overcoming the limitations of traditional algorithms in dealing with global features. By
deploying these two modules with unique advantages into the shallow and deep networks respectively and
enabling them to cooperate, the proposed algorithm is able to extract comprehensively and profoundly the
image’s feature information, achieving more efficient dehazing of non-uniform images. Extensive experimen-
tal results confirm the superior performance of the proposed algorithm. Compared to other algorithms, the
dehazed images achieve optimal SSIM and PSNR values, and exhibit enhanced dehazing efficiency. Notwith-
standing these advancements, the time-consuming nature of the algorithm restricts its application in real-time
scenarios, leaving considerable room for improvement. In the future, we will continue to conduct in-depth
research, focusing on optimizing the algorithm structure and reducing computational complexity, aiming to
enhance the algorithm’s efficiency and better meet the demands of various practical application scenarios,
thereby further unlocking its potential in the field of image processing.
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