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Abstract

The association between diabetes mellitus, hyperglycemia, and cholangiocarcinoma (CCA) development and
progression has been established. One speculation of the effects of high glucose levels promoting CCA progression
is via the feeding of substrate to the aerobic glycolysis or so-called Warburg effects in CCA cells. Several glycolytic
enzymes and glucose transporters are upregulated in CCA and further activated by high glucose conditions.
However, the increased glucose uptake and the increased aggressive phenotypes of CCA under high glucose
conditions might not be solely due to this aberrant energy metabolism. High glucose conditions have been proven
to be the activator of the other signaling pathways, as well as the precursors for dysregulated glycosylation of
oncoproteins in CCA. The higher requirement of glucose and the abundant glucose availability in diabetic
conditions then synergize to promote aggressive CCA phenotypes. Additionally, the glucose avidity could also
become the Achilles heel of CCA cells, as they could be sensitive to glucose deprivation. The development of
therapeutic agents targeting glucose metabolisms or glucose-activated pathways is promising for CCA treatments.
This article reviews and discusses the up-to-date research on how high glucose is involved in CCA progression,
both via Warburg effects and other mechanisms.
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INTRODUCTION

Cholangiocarcinoma (CCA), or malignancy of bile duct epithelia, is one of the emerging cancers whose
incidence is increasing worldwide'".. It is the second most prevalent primary liver cancer and accounts for
3% of all gastrointestinal tract cancers”. CCA can be anatomically classified into intrahepatic and
extrahepatic types, in which the latter can be classified into perihilar type when the tumor is located between
the second order of the biliary tree to the cystic duct and distal type when the tumor is distal to the cystic
duct until the ampulla of Vater. Considering rare malignancy in Western countries, a high incidence rate
has been found in East and Southeast Asian countries, up to 85 cases per 100,000 population in Thailand"™?.
Due to late presentation and the aggressive nature of the disease, CCA leads to high mortality each year". A
lot of efforts have been made to address the biological background of this cancer to get a better
understanding, which might lead to the development of effective therapeutic modalities**. One of the

9-11]

approaches that has garnered attention in the research field is metabolic reprogramming'

Like other cancers, metabolic reprogramming in CCA has been found important for cancer aggression and
advancement™"?. CCA cells modify metabolic pathways to benefit their survival and compete with the
surrounding normal tissues. The reprogramming of energetic nutrients such as glucose"*"”, amino
acids"**?, and fatty acids"*"” is reported for their involvement with CCA carcinogenesis and progression. In
addition, many metabolic factors have been experimentally reported that may be involved in the
advancement of CCA and thus lead to poor prognosis of patients. Metabolic disorders, e.g., diabetes
mellitus (DM)"*"*) and obesity'], have also been studied for their promoting effects on CCA biology. The
abnormal metabolic processes in these diseases may favor the metabolism of CCA cells and thus promote
cancer progression. Especially in DM, in which patients usually experience chronic hyperglycemia or high
blood glucose levels”*, which can be utilized in a higher glucose-desired state of aerobic glycolysis or the
Warburg effect”. DM and hyperglycemia are then the emerging factors that might directly play roles in the
aggression and progression of CCA.

DM has been studied for decades for its associations with the increased risk of CCA development and also
poor survival of CCA patients***>**\, It is hypothesized that the effects on CCA risk are probably due to the
mitogenic effects of insulin in a state of compensatory hyperinsulinemia®*”. However, only one study
shows an association between using exogenous insulin and the increased risk of extrahepatic CCA to
date. The effects of other anti-diabetic medications involving increased insulin secretion, such as insulin
secretagogue or incretin-based therapy, have not been agreed upon regarding the risk of CCA
development”*””. Thus, the effects of high glucose on CCA progression are suspicious and have been
investigated later. CCA cells have been shown to have higher glucose consumption; thus, the glucose
transporters (GLUTs) in this cancer are usually upregulated and associated with poor survival of
patients””". As mentioned, glucose is a supplier for Warburg effects and, thereby, may straightforwardly
increase the glycolysis of CCA cells to meet the high energy requirements. However, glucose has not only
been utilized as a nutrient or precursor for glycolysis in CCA cells. High glucose levels have been reported
for their regulatory roles in GLUTs" and glycolytic gene expressions"®. It can also be shunted to the other
metabolic pathways, e.g., pentose phosphate pathways (PPP) and hexosamine biosynthetic pathways (HBP),
that might also support the aggressive phenotypes of CCA cells”**?. Moreover, high glucose also activates
pro-tumorigenic pathways, resulting in CCA cell aggression"”*. Therefore, this review aims to update and
discuss the increased requirement of glucose in CCA cells for energy metabolisms and other aspects. The
opportunity to develop a treatment based on the dysregulation of glucose metabolism is also discussed.
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METABOLIC REPROGRAMMING IN CCA

The metabolic reprogramming of cancers has been recognized since Warburg noticed that cancer cells have
an increased rate of glycolysis even if they are in an adequate oxygen environment*'. It is primarily
hypothesized that this aerobic glycolysis is a result of impaired mitochondria, which compromise the cells
for ineffective oxidative phosphorylation (OXPHOS). However, later studies revealed that although the
mitochondria of cancer cells are intact, the rates of glycolysis in some specific cancers are still high*”. This
led to several “next-generation” studies based on the hypotheses that metabolic alterations in cancer are
beneficial and are a choice of cancer cells, not because of the inability to utilize nutrients due to defective
mitochondrial machinery'. This concept also shifts a paradigm of study and expands the discovery of
cancer metabolism from glucose in glycolysis to the other metabolic pathways, namely amino acid and fatty
acid metabolism.

Metabolic reprogramming has been recognized as one of cancer hallmarks™***. In CCA, mutations of genes
directly and indirectly involving energy metabolism are reported as driver oncogenes, such as IDH1, IDH2,
MYC, and KRAS""”***"). Targeting genes or proteins in the metabolic pathways becomes a promising strategy
for cancer treatments'“*. Glucose metabolism has been well studied in CCA, similar to other cancers, and it
has a high impact on anti-cancer drug development”. In addition to glucose metabolism, the metabolic
pathways involving the catabolism of glutamine and anabolism of lipids also showed their critical roles in
CCA progression. As mentioned, the Warburg effect is more likely a choice of cancer metabolism, which
benefits cancer cell growth and proliferation. Glycolytic intermediates and their products can serve as
precursors for other biomolecule production. For example, pyruvate, a final product of glycolysis, is a
precursor for acetyl coenzyme A synthesis, which is a substrate for fatty acid and cholesterol synthesis. Fatty
acid and cholesterol are essential molecules for cell proliferation, and thus, the inhibition of the synthetic
pathways of both molecules significantly suppresses CCA cell growth'. Moreover, as cancer cells
preferably utilize glucose in glycolysis to provide a carbon skeleton for biosynthesis, glutamine is a choice
for anaplerosis of the tricarboxylic acid (TCA) cycle to replenish energy production. A higher requirement
for glutamine is reported in CCA, together with the upregulation of genes involved in glutaminolysis'?.
Inhibition of glutaminolysis is then another promising strategy for CCA treatment, and co-targeting
glutaminase and GLUTs showed synergistic effects on CCA inhibition"*. These suggest that glucose
metabolism might be the primary pathway that is reprogrammed in cancers, including CCA, and then it is
networked with the other metabolic pathways to orchestrate the driving of CCA progression. The following
topics in this review are mainly focused on this particular aspect and extend to the recent discovery that
reported non-metabolic roles of glucose in CCA, which is another emerging aspect and has the potential for
therapeutic development.

WARBURG EFFECT AND THE PROGRESSION OF CCA

Normal proliferating cells in multicellular organisms display a unique energy metabolism with strict
regulation to ensure proper cell functioning and a balance between cell cycle arrest and cell
proliferation®*”). This balance is essential to maintain proper cellular homeostatic responses and requires
the process of generating energy in the form of ATP obtained from rather complex molecules. Glucose, a
major source of carbohydrates, is a molecule that is primarily utilized for ATP production to meet high
metabolic demands. In normal healthy cells, glucose is converted to pyruvate to yield a small amount of
ATP via the process of glycolysis. The pyruvate derived from glycolysis is then transported from the cytosol
to the mitochondria to be oxidized into acetyl coenzyme A, which is further incorporated into the TCA
cycle in the form of citrate and generates abundant ATPs in a flowing mitochondrial OXPHOS.
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Cancer cells, including CCA, on the contrary, have the ability to alter this normal metabolic process. This

54 one of the hallmarks

change in cancer cell bioenergetics is also referred to as metabolic reprogramming
of cancer, which is shown to influence multiple factors to support tumor development and malignant
transformation'***!. Consequently, this aberrant reprogramming facilitates cancer progression, including
activation of oncogenes, alteration of receptor-initiated signaling pathways, and deregulation of cellular
energetics. Like other cancers, CCA cells require a lot of energy to maintain their continuous growth"?.
Some oncogenic mutations lead to metabolic reprogramming of CCA, such as the mutation of KRAS. KRAS
activation can enhance glucose uptake by upregulation of GLUTSs and several glycolytic enzymes”. The
overexpression of GLUTSs has been reported in KRAS mutant CCA cell lines, and the upregulated GLUT1
was associated with progressive carcinogenesis and poor survival of CCA patients®™. In addition, an
increase in glucose uptake and, thereby, glycolysis, parallel with large amounts of lactate secretion, provides
an acidic tumor microenvironment for facilitating CCA invasion, is also observed .. Moreover, Colyn
et al. also reported that the mutation of KRAS can lead to phosphoglycerate dehydrogenase upregulation
and, hence, increase the reprogramming of glycolytic metabolites to the serine-glycine synthesis pathway'*.
On the other hand, the mutations of tumor suppressor genes, e.g., TP53, also play roles in metabolic
reprogramming since p53 can act as a transcriptional repressor of key genes in glucose metabolisms such as

GLUTSs"".

Although aerobic glycolysis is a less efficient metabolic means of generating ATP compared to OXPHOS in
the mitochondria, cancer cells still benefit substantially from high glycolytic rates, enabling them to survive
and proliferate accordingly'*”. The rationale behind this occurrence is explained by the higher rate of ATP
production by glycolysis, which is considered to be much more rapid compared to normal OXPHOS and,
thus, can be more efficiently employed to meet the increase in ATP demand, gaining a selective advantage
under tumor microenvironment where nutrients have limited availability. Secondly, increased glycolysis
results in an increase in the synthesis of glycolytic metabolites that are necessary biosynthetic precursors for
many cellular pathways, such as the production of lipids, amino acids, and nucleotides due to the
overexpression of pyruvate kinase M2 (PKM2) which causes a reduction in conversion of
phosphoenolpyruvate to pyruvate in the final, irreversible step of glycolysis'>*’. The upregulated PKM2 is
also evident in CCA, and it is associated with a poor prognosis in CCA patients who have DM"*. High
expression levels of PKM2, which causes the retention of glycolytic intermediates, can benefit cancer cells in
many ways. For instance, the rise in levels of glucose-6-phosphate (G6P), one of the glycolytic intermediates
for shunts in PPP responsible for generating nucleotide synthetic precursors, is indispensable for DNA
synthesis and cancer cell progression, while rises in glyceraldehyde-3-phosphate (G3P) account for an
increase in triglyceride and serine biosynthesis. Hence, this transformed glucose metabolism is highly
useful for cancer cells to unlimitedly supply themselves with biosynthetic precursors to satisfy their highly
proliferative characteristics. Moreover, subsequent nicotinamide adenine dinucleotide phosphate (NADPH)
derived from the PPP provides adequate reduced glutathione for resistance to chemotherapeutic agents,
providing additional rationale for how cancer cells may benefit from the Warburg effect.

Apart from altered glucose metabolism, the Warburg effect also influences the expression of signaling
molecules and transcriptional regulatory factors, which promotes cancer occurrence. Oncogenic mutations
cause upregulation of various cancer-promoting factors such as HIF1, SIRTs, and MYC'*”. These genes have
been reported in CCA cells exhibiting the Warburg effect, while the downregulation of tumor suppressor
genes was also manifested. Reprogramming also affects signal transduction pathways, consequently leading
to increased activation of downstream signaling that triggers tumor initiation and progression"*'?. The
PI3K/Akt/mTOR regulatory pathway is one of the pathways being explored in CCA cells"**”. Stimulation of
the PI3K/Akt/mTOR pathway indirectly enhances the Warburg effect by activating the transcription factor
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cMyc, HIF-1, and SIRTs". Together, this promotes the expression of glycolytic proteins and enzymes such
as GLUT1, PKM2, phosphofructokinase 1 (PFK1), hexokinase IT (HK2), and lactate dehydrogenase A
(LDHA), hence explaining the high glycolytic rates seen in the cancer cells including CCA. Glycolytic
inhibitors are therefore considered therapeutic interventions that have an anti-Warburg effect by inhibiting

cancer cell growth and progression*****.

Hypoxia-inducible factor 1 (HIF-1) is another master regulatory protein for glycolysis by upregulating
genes of GLUTs and glycolytic enzymes””'. Under physiological oxygen level, HIF-1 is modified by prolyl
hydroxylation by the enzyme prolyl hydroxylase (PHD) and interacts with tumor-suppressor protein von
Hippel-Lindau (VHL) to be targeted for proteasomal degradation”. However, PHD is inhibited during
hypoxic conditions, and thus, HIF-1 is stabilized. As seen in cancer cells, mutations in oncogenes and tumor
suppressor genes such as vHL ultimately lead to the stabilization of HIF-1, suppressing mitochondrial
activity. HIF-1 not only promotes cancer progression and malignant transformation by potentiating
transcriptions of GLUT1, HK2, PKM2, PFK1, and LDHA, but also increases the expression of pyruvate
dehydrogenase kinase (PDK), which inactivates the pyruvate dehydrogenase complex. Additionally, HIF-1
upregulates vascular endothelial growth factor (VEGEF), thereby resulting in increased angiogenesis. The
upregulation of HIF-1a, a subunit of HIF-1, in a normoxic and hypoxic condition of CCA cells was also
reported”*. The current findings of these effects in CCA are summarized in Figure 1.

Emphasizing the Warburg effect, studies suggest that mitochondrial dysfunction is essential in promoting
tumor progression””, as several underlying mechanisms regarding deregulated cellular energetics are
associated with this phenomenon. Oncogenes such as HIF1 and tumor suppressor gene TP53 impose a
direct link toward mitochondrial activity. Thus, impairments of these genes due to metabolic
reprogramming consequently alter normal cellular metabolism". Firstly, increased expression of pyruvate
dehydrogenase kinase 1 (PDHK1) inhibits the conversion of pyruvate to acetyl coenzyme A by
phosphorylating the pyruvate dehydrogenase, resulting in less substrate entering the TCA cycle and thus
repressing mitochondrial oxidative mechanism. Secondly, HK2, a prevalent isoform with the most
enzymatic activity that catalyzes the conversion of glucose to G6P, can interact with voltage-dependent
anion channels (VDACs) on the outer membrane of the mitochondria; it is this VDAC-HK2 interaction
that gives cancer cells an anti-apoptotic property by blocking cytochrome c release into the cytoplasm,
leading to no caspase activation. Thirdly, the upregulation of GLUTs, especially GLUT1 in CCA cells, which
divert its metabolic flux from OXPHOS to glycolysis as a response to hypoxia and inhibition of
mitochondrial respiration, may be explained by the increased activation of AMP-activated protein kinase
(AMPK) upon decreased ATP production as a subsequent result of mitochondrial dysfunction. Moreover,
the supplementation of glycolysis in CCA was also supported by the uptake of fructose, as reported in the
study that showed the upregulation of GLUT5".

In addition, SIRT3, a nuclear-encoded mitochondrial protein deacetylase, is shown to regulate several
mitochondrial protein activities, including OXPHOS, and is thought to play an antitumor role. Loss of
SIRTS3 function results in mitochondrial dysfunction, increased intracellular reactive oxygen species (ROS)
levels, and tumorigenesis. Interestingly, one study shows that decreased expression of SIRT3 corresponds to
an increase in the glycolytic rate in CCA, highlighting an inverse correlation with HIF-1, therefore
suggesting SIRT3 as a possible molecule exhibiting an anti-Warburg effect™. Another study also showed
that high glucose levels can increase the levels of ROS, which promotes the aggressiveness of CCA"*". Taken
together, Warburg effects might be a linkage among these pro-tumorigenic pathways that enhance the
aggressiveness of CCA cells and promote the disease progression.



Page 6 of 15 Singkarin et al. Hepatoma Res. 2025;11:1 | https://dx.doi.org/10.20517/2394-5079.2024.128

0003 |

OSSR E

Gl
Glucose \ (J

G6PD ez T
, crar )T ¢

F-6-P > HBP

jesioreesvosesoessseesives

T PFK1

@D e e
k‘) PEP 4

ora)t | (w2 T <
Lactate < Pyruvate

\ Glutamine

F1,6BP

Figure 1. Regulatory roles of HIF1 in the expression of genes associated with glycolysis in CCA. HIF1, especially a subunit HIF1-a, is a
master regulatory protein that upregulates many genes encoding the enzymes and transporters that play roles in glucose metabolism,
such as GLUTT, HK2, PFK1, PKM2, and GFAT. Glc: Glucose; G-6-P: glucose-6-phosphate; F-6-P: fructose-6-phosphate; F1,6BP: fructose-
1,6,-bisphosphate; PEP: phosphoenolpyruvate; G6PD: glucose-6-phosphate dehydrogenase; PPP: pentose phosphate pathway; HBP:
hexosamine biosynthetic pathway; HIF1: hypoxia-inducible factor 1; CCA: cholangiocarcinoma; GLUT1: glucose transporter 1, HK2:
hexokinase Il; PFK1: phosphofructokinase 1, PKM2: pyruvate kinase isoform M2; LDHA: lactate dehydrogenase A; GFAT: glutamine
fructose-6-phosphate amidotransferase.

Another pathway that is demonstrated to inhibit apoptosis in CCA, thereby promoting cancer
aggressiveness, is the SIRT2/cMYC pathway'®!. SIRT2 is classified as a class IIT histone deacetylase (HDAC),
responsible for post-translational modification, an important step in controlling a variety of metabolic
regulatory processes. There has been growing evidence that SIRT2 can promote malignant tumor
transformation by upregulating its downstream target transcription factor-cMYC. Pyruvate is a known
inhibitor of HDACS3, such as SIRT2. So, with a low sustained level of pyruvate due to overexpression of
lactate dehydrogenase (LDH) and PKMz2, SIRT2 is stabilized. This, in turn, allows SIRT2 to deacetylate
cMYC, thereby inhibiting its ubiquitin degradation. Conversely, the mechanisms by which the SIRT2/
cMYC pathway has been shown to contribute to metabolic reprogramming in CCA have been explored. A
study using CCA cell lines revealed that these molecules, in coordination, target PDHA1 activity in response
to site-specific phosphorylation, thus inhibiting the TCA and OXPHOS. The increased lactate secretion
levels in the CCA cell line with overexpressed SIRT2 further reinforce the effect of this pathway on the
Warburg effect. Alternatively, in a similar study, the SIRT2/cMYC pathway is also revealed to promote
serine anabolic metabolism by increasing the conversion of glucose to serine via activation of the serine
synthesis pathway (SSP). As aforementioned, the transformed glucose oxidative mechanism led to an
increase in serine biosynthesis'®*!. However, the specific role of SSP and its interplay with cancer has not
been largely explored. Nevertheless, a recent study indicates that downstream activation of SSP plays a
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crucial role in antioxidant production (T-GSH/GSSG/GSH) and anti-apoptotic effect in CCA cell lines.
Serine is a non-essential amino acid, and its function in cancer progression has been assessed. It is shown
that serine can act as the ROS scavenger, contributing to redox homeostasis. Consequently, this provides
CCA with an anti-oxidative tumor microenvironment enhanced for growth and proliferation and protects
CCA cells from oxidative stress-induced apoptosis. The inhibition of SSP is then a promising strategy to
inhibit CCA cell growth, particularly by inhibiting a gain of benefit from metabolic reprogramming".
Collectively from these findings, the metabolic reprogramming functions of the SIRT2/cMYC pathway may

attract potential attention for further anti-Warburg therapies.

DIABETOGENIC GLUCOSE AND ITS NON-WARBURG’'S ROLES IN CCA

In addition to being an energy source, glucose at a supraphysiological level may have other functions rather
than a simple nutrient™. Some straightforward reasons are that glucose can be shunted into collateral
pathways such as the PPP and the HBP, which are important for other biomolecule anabolisms"®. The HBP
is responsible for synthesizing an amino sugar called N-acetylglucosamine (GlcNAc), a precursor of an O-
link GlcNAc glycosylation or O-GlcNAcylation™. The glycosylations of GlcNAc to proteins have several
crucial biological functions, such as activation of the proteins, increasing protein stability, or even activating
the O-GlcNAcylated proteins for cellular degradations. The changes in protein properties become
significant for CCA development and progression when dysregulated O-GlcNAcylation occurs at tumor
suppressors or oncoproteins®**¥. High glucose level was shown to promote global O-GlcNAcylation in
CCA cells by upregulating the expression of glutamine fructose-6-phosphate amidotransferase (GFAT)"?,

the rate-limiting enzyme in HBP, thus resulting in an increase in glucose flux for GIcNAc production in
CCA cells. The increased GlcNAcylation of oncoproteins, namely nuclear factor-«B (NF-«B)"*, vimentin"”,

(Forkhead Box O3) FOXO3"™), mannosidase alpha class 1A member 1", and heterogeneous nuclear
ribonucleoprotein-K (hnRNP-K)®, have been reported for their involvement with aggressive phenotypes of
CCA, e.g., proliferation, migration, and invasion [Figure 2]. Thus, glycosylations are another underlying
mechanism of high glucose promoting the progression of CCA, which is non-negligible.

With unclear mechanisms, high glucose also affects the intracellular signaling pathways of CCA cells. High
glucose levels activate the signal transducer and activator of transcription 3 (STAT3) pathways by increasing
STATS3 phosphorylation and promoting nuclear translocation in CCA cell lines cultured in high glucose and
tumor tissues from patients with CCA who had DM"”**. The activation of STAT3 in high glucose was also
found to crosstalk with NF-«B by the upregulation of communicating cytokines, interleukin-6 (IL-6) and
interleukin-1B (IL-1p), which reciprocally activate STAT3 and NF-«B pathways”>*. The activation of
STAT3 has been shown to have several aggressive consequences in CCA cells, such as increased
proliferation and metastatic potential. Moreover, upregulated IL-1p in CCA cells under hyperglycemia was
shown as one of the factors that promote CCA growth in vitro and in vivo". High glucose also regulates
other transcription factors, such as p-catenin'*”. By controlling several transcription factors, high glucose
can upregulate many proteins that enhance CCA’s aggressive phenotypes, i.e., cell cycle regulatory
proteins"?. Altogether, glucose in the hyperglycemic ranges is one factor that promotes CCA progression.
Rather than being utilized by glycolysis, multiple pathways respond to the increased glucose levels, which
leads to the higher aggression of CCA. Concerning these points, CCA patients with DM who have chronic
hyperglycemia might then be prone to have a poorer prognosis than those with euglycemia*"), as
evidenced by the association between high-glucose-induced molecules and poorer survival of CCA
patients"®”. The development of novel therapeutic agents should thus take the underlying DM and
hyperglycemia into consideration as factors that might compromise the effectiveness of treatment. In
addition, the development of any therapeutic agents that target high-glucose-induced molecules would help
reverse the aggressive phenotypes of CCA cells in hyperglycemic conditions as reported by using static
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Figure 2. Non-energetic roles of glucose in the progression of CCA. Apart from being metabolized in glycolysis to yield ATP, glucose can
be shunted to the hexosamine biosynthetic pathway to be a precursor for GIcNAc synthesis. GIcNAc is utilized in an O-GlcNAcylation,
which alters the stability of several oncoproteins and hence promotes the aggressive phenotypes of CCA cells. On the other hand,
glucose can activate several intracellular signaling pathways such as GSK3B/p-Cat, JAK2/STAT3, and NF-xB. Moreover, high glucose
also upregulates IL-1B and IL-6, which are the upstream activators of those signaling pathways. Altogether, these mechanisms explain in
part how diabetogenic glucose promotes CCA progression. However, the in-depth molecular mechanisms remain elucidated. VIM:
Vimentin; FOX03: Forkhead Box O3; MANTAT. Mannosidase Alpha Class TA Member 1, hnRNPK: Heterogeneous Nuclear
Ribonucleoprotein K; CCNDT: cyclin D1; CCNA: cyclin A; MMP2: matrix metalloproteinase-2; MMP7: matrix metalloproteinase-7; CCA:
cholangiocarcinoma; GIcNAc: N-acetylglucosamine; O-GlcNAcylation: O-link GIcNAc glycosylation; GSK3B/B-Cat: glycogen synthase
kinase-3p/B-catenin; JAK2/STAT3: Janus kinase 2/signal transducer and activator of transcription 3; NF-kB: nuclear factor-«B; IL-1f:
interleukin-1p; IL-6: interleukin-6.

(STATS3 inhibitor)””, dehydroxymethylepoxyquinomicin (NF-«B inhibitor)"”, and anakinra (IL-1 receptor
antagonist), to inhibit CCA cell proliferation under diabetic condition in the in vitro and in vivo model™.

OPPORTUNITIES FOR THERAPEUTIC DEVELOPMENT TARGETING GLUCOSE
METABOLISM IN CCA

The current treatments of CCA in clinical practice are facing several limitations. The only highly effective
and curative treatment for CCA is radical surgical resection. However, this curative treatment can be
expected only when the tumor is localized, which is limited to the very early stage of CCA. Standard
chemotherapeutic drugs can prolong the survival of patients in a few months, but most patients experience
undesired adverse effects””. The approved targeted therapies against fibroblast growth factor receptor 2
(FGFR2) are effective only in patients with FGFR2 mutation, which is found to be approximately 15%
worldwide and less than 1% in liver fluke-associated CCA"". Therefore, the research and development of
therapeutic agents for CCA remains needed, and targeting metabolic reprogramming is one of the hopes to
improve the therapeutic outcomes of the patients.
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Figure 3. Potential CCA therapeutic targets based on glucose metabolism. Upregulation of genes involving glycolysis in CCA provides
opportunities to develop targeted therapies. Previous reports showed that inhibiting the expression of GLUT1, GLUT5, and HK2 by
siRNA, and LDHA by metformin combined with BG-45, significantly reduced CCA cell proliferation and induced cell apoptosis.
Additionally, inhibition of the activities of GLUT1, HK2, and PKM2 by their inhibitor also retarded CCA cell growth. Glc: Glucose; G-6-P:
glucose-6-phosphate, F-6-P: fructose-6-phosphate; PEP: phosphoenolpyruvate; CCA: cholangiocarcinoma; GLUTT1: glucose transporters
1; GLUTS: glucose transporter 5; HK2: hexokinase II; LDHA: lactate dehydrogenase A; PKIM2: pyruvate kinase isoform M2.

High glucose uptakes in CCA cells are correlated with the high expression of glucose transporter families
such as GLUT1P, GLUT2", and GLUT5"™, which provide opportunities to develop therapeutic agents
targeting these molecules. The gradual upregulation of GLUT1 was demonstrated along with
cholangiocarcinogenesis in the liver-fluke-associated CCA in a hamster model™. High expressions of
GLUT!1 in tumor tissues from patients with CCA were also associated with shorter survival of patients®*),
and thus, silencing GLUT1 in CCA cell lines showed a significantly decreased CCA cell prohferatlon[“].
Apart from GLUT1, which is mainly responsible for glucose uptake, immunohistochemistry staining of
CCA tissue microarrays and the study of CCA cell lines discovered significantly higher SLC2A5 (GLUTS5)
expression in CCA than in normal biliary epithelial cells”. Upon knocking down the expression of GLUT5
using siRNA, suppression of CCA cell proliferation was observed in a time-dependent manner, along with
the inhibition of tumor migration and invasion. Since GLUTS5 has a higher affinity to fructose than the
other sugars, these results suggested the dependency on the fructose of CCA cells. Fructose is another
monosaccharide that replenishes glycolysis by being metabolized to glycolytic intermediates. Targeting
these GLUTSs and glycolysis might be promising for developing CCA treatment.
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HK2, the first rate-limiting step of glucose metabolism, is another potential target for drug development.
Overexpression of HK2 in CCA tumor tissues was significantly associated with poor overall survival*®.
Using siRNA to silence the expression of HK2 in CCA cell lines resulted in a significant reduction in
clonogenicity along with their migration capacity. The requirement of the Warburg effect in CCA was
shown in CCA cells with high expression of PKM2, the isoform of pyruvate kinase that promotes glycolysis
and the retention of glycolytic intermediate™**. PKM2 depletion sensitized CCA cells, HCC9810 and RBE,

224 Using PKM2 inhibitors also exhibits significant antitumor

to gemcitabine, a chemotherapeutic drug
effects on CCA cells'™. On the contrary, another study by Tang et al. also shows that metformin can inhibit
the Warburg effect in CCA cells"”. Still, it exerts a minimal impact on inducing CCA cells to apoptosis.
However, metformin, in combination with BG-45, a HDAC 3 inhibitor, significantly increased CCA cell
apoptosis and decreased the expression of LDHA along with metabolite fluctuations. Some potential

molecular targets that have been reported in CCA are summarized in Figure 3.

Although promising results were obtained in the preclinical study, clinical trials of the agents targeting
GLUT, glycolytic enzymes, and the associated molecules remained limited in CCA. This might result from a
lack of a definite tumor-specificity of these enzymes, and then those agents may affect the normal, highly
proliferative tissues®. A clinical trial phase I using metformin for IDH1/2 mutation CCA also showed
unfavorable results””**. Similarly, clinical trials of GLUT1 and HK2 inhibitors in other cancers also showed
unsatisfactory outcomes, and some were terminated*. A combination of devimistat, pyruvate
dehydrogenase and a-ketoglutarate dehydrogenase inhibitors, with gemcitabine/cisplatin for CCA
treatment, did not meet a satisfactory overall response rate”™'*™. Comparisons of the advantages and
limitations of currently available treatment strategies and the proposed metabolic targeted therapy from the
aforementioned part could be summarized in Table 1. The limitation of less specific targeting by synthetic
compounds may be overcome by using other strategies, such as the siRNA that could be designed to
suppress the expression of specific or preferable isoforms of genes involving metabolic reprogramming,
together with the development of effective delivery systems. To date, targeting glucose metabolism remains
a significant challenge for developing cancer treatment, including CCA, which needs further investigations
for a better outcome with minimal adverse effects. Some clinical trials are underway investigating targeting

102]

metabolisms in CCA, such as the inhibitors of IDH1 and IDH2""", as well as sphingolipid metabolism"".

CONCLUSION

Like other cancers, metabolic reprogramming also occurs and benefits CCA’s development and progression.
High glucose consumption of CCA cells, favored with high blood glucose conditions in patients with DM, is
part of the driving force for Warburg effects. On the other hand, high glucose also promotes CCA
progression via a collateral metabolic pathway such as PPP and HBP. Moreover, high glucose can activate
several pro-tumorigenic intracellular signaling pathways, resulting in aggressive phenotypes of CCA. The
attempt to target molecules involving Warburg effects is promising in preclinical experiments. However, the
success rate of clinical studies remains limited. Further development of therapeutic agents targeting the
Warburg effects and related molecules remains a challenge that may require more efforts to overcome this
metabolic dysregulation in CCA.
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Table 1. Comparisons of advantages and limitations among currently available treatments and proposed targeted metabolic

treatment

Therapeutic
methods

Advantages

Limitations

Surgical removal of
tumors

Chemotherapy

FGFR targeted
therapy

Targeted metabolic
treatment

- Curative in the early, non-invasive stage

- Can be used for metastatic cancer
- Widely available at an affordable cost

- Effective and highly specific targeting at FGFR
fusion or rearrangements

- Potential to develop tumor-specific isoforms
- Theoretically useful for metastatic cancer

- Not applicable for patients with metastatic disease
- Require a skillful hepato-biliary specialist for a radical curative
resection

- Less specific to cancer cells, usually causes adverse effects for
highly proliferative tissues
- Prolong a few months survival time

- Only a small proportion (approximately 15%) of CCA patients
possess this mutation

- Fewer than 1% of liver-fluke-associated CCA cases possess this
mutation

- Absolutely specific isoforms for tumors are rare; most metabolic
genes expressed in cancer are expressed in highly proliferative
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tissues
- Have not been extensively studied at clinical levels

- Developing small RNA targeting at the
transcription level of metabolic genes could be a
benefit

FGFR: Fibroblast growth factor receptor; CCA: cholangiocarcinoma.
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