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Abstract
Artificial intelligence (AI) is profoundly impacting most, if not all, scientific and medical disciplines. In abdominal 
wall surgery (AWS), which includes common procedures such as hernia repair, abdominal wall reconstruction, and 
separation, AI models trained on surgical data have immense potential to enhance clinical practice and patient 
outcomes. The benefits include better procedure planning, standardization, interventional guidance, awareness of 
critical structures, complication prevention, quality assurance, and patient monitoring. Moreover, AI may 
significantly transform surgical education by enhancing training, skill assessment, and feedback mechanisms, 
leading to better-prepared surgeons. This review article highlights the latest developments in AI and AWS, 
focusing on key emerging applications and why embracing AI model prediction uncertainty is essential to 
translating these research efforts to clinical practice.
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INTRODUCTION
Abdominal wall surgery (AWS) involves repairing defects or weaknesses in the abdominal wall, such as 
hernias, which may occur from congenital conditions, surgical incisions, or trauma. The goal is to restore 
the abdominal wall’s structural integrity while minimizing complications to achieve positive functional and 
aesthetic outcomes. Each year, over 20 million inguinal hernia repairs are performed globally, making it one 
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of the most common surgical procedures[1]. The hernia repair devices and consumables market has 
increased from $4.7 billion in 2019 to a projection of $6.4 billion by 2027[2]. This is driven by advanced 
prosthetics, increasing adoption of robotic surgery, and a higher global prevalence rate[3].

Abdominal wall hernias may be naturally occurring or acquired. Naturally occurring hernias include 
inguinal (groin area, most common), femoral (lower groin, more common in women), umbilical (near the 
belly button, common in infants and pregnancy), and epigastric (midline upper abdomen). Acquired 
hernias include incisional hernias, which develop at previous surgical sites due to weak healing, and 
parastomal hernias[4], which form around a stoma due to abdominal wall weakness. Other types include 
Spigelian hernias (along the lateral abdominal muscles) and diastasis recti, a separation of abdominal 
muscles rather than a true hernia.

Hernia surgery often requires specialized skills beyond the scope of a general surgeon[5], and the challenges 
are attributed to several factors:

Complex anatomy: The groin region is considered anatomically complex[6], and precise anatomical 
knowledge is critical to avoid injury to nerves, blood vessels, or organs.

Mesh complications: Prosthetic meshes are frequently used in hernia repair; however, they introduce risks 
of infection, rejection, or adhesion to underlying organs. Surgeons must choose the appropriate mesh type, 
size, and placement method. The mesh must be suitably fixed, and the use of staplers or tackers, if placed 
incorrectly, carries greater risks of chronic postoperative pain[7-9].

Large or complex defects: Repairing large or recurrent hernias or abdominal wall defects requires advanced 
techniques, such as component separation, to provide adequate and durable prosthetic support to prevent 
recurrence.

Tissue tension and closure: Achieving a tension-free closure is vital to prevent recurrence[10], yet this can be 
difficult, especially in larger defects or after multiple surgeries, as tissue may be compromised or retracted.

Obesity and comorbidities: Patients with obesity or other conditions such as diabetes pose additional 
challenges[11] due to thicker abdominal walls, a higher risk of infection, and difficulty in achieving a tension-
free repair.

To address the above challenges, surgeons must carefully balance technical precision, material selection, and 
personalized patient care to improve outcomes. Specialized training, such as WebSurg’s Hernia 
Basecamp[12], might be an important factor in reducing recurrence and complication rates, in addition to 
advances in material science in mesh design, biomaterials that support regenerative medicine, and immune 
engineering[13]. However, despite these initiatives and research directions, long-term follow-up of hernia 
patients is often disappointing, both in terms of complications and reoperation rates that remain 
unacceptably high (8% to 15%[1,14,15]).

AI technologies have greater potential to improve abdominal wall and hernia surgery[16,17], including 
applications in preoperative planning and risk assessment, intraoperative guidance and safety enhancement, 
postoperative monitoring, and surgery training. However, AI adoption in routine clinical practice has been 
relatively slow compared to generative AI models, such as ChatGPT, in broader society. As of today, while 
research in AI and AWS has advanced, there are not yet certified AI devices specifically designed to assist 
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with AWS. The following factors contribute to the absence of clinically translated solutions:

Regulatory challenges: One of the primary obstacles preventing the certification of AI devices for AWS is 
the rigorous regulatory landscape in healthcare. Regulatory agencies such as the FDA and EMA require that 
AI-based medical devices undergo extensive validation and testing before they can be approved for clinical 
use. The approval process for medical AI technologies is complex, often involving long timelines and 
substantial evidence to demonstrate safety, efficacy, and clinical relevance. Given the complexity of AWS 
and the variability in patient presentations, demonstrating that AI systems can reliably function across all 
potential scenarios is a significant challenge.

Complexity of surgical data: Unlike fields like radiology, where imaging data follow more standardized 
protocols, surgical data - especially video data from abdominal wall surgeries, are highly complex and 
variable. This variability arises from variations in camera angles, visibility issues due to bleeding or smoke, 
and differences in surgical techniques, instruments, and environments. These factors make it difficult to 
develop robust AI models that can reliably interpret surgical situations in real time. Moreover, the lack of 
standardization in surgical data limits the ability of AI systems to generalize across different hospitals, 
teams, and surgical settings.

Risk and accountability: Surgery is a high-stakes environment where mistakes can have serious 
consequences. For an AI system to be certified for clinical use in AWS, it must demonstrate a high level of 
accuracy, reliability, and decision-making support without compromising patient safety. The important 
question of accountability arises - if an AI system were to make an incorrect recommendation, determining 
responsibility for the resulting harm is complex.

Integration into clinical workflow: The integration of AI into real-world surgical environments presents 
significant logistical challenges. Most hospital systems are not optimized to incorporate AI tools seamlessly 
into day-to-day practice. AI systems may require integration with existing electronic health record (EHR) 
systems and operating room (OR) technologies. Additionally, surgical teams must be trained to trust and 
responsibly operate AI tools, which requires a significant investment in time and resources, and 
performance monitoring systems must be in place to ensure the AI system continues to perform as 
intended. The process of integrating AI into a hospital’s workflow, ensuring smooth communication 
between AI systems and surgical teams, and aligning these tools with hospital protocols is a substantial 
barrier to clinical translation.

Our article focuses on state-of-the-art research and emerging AI technologies that are currently being 
researched to assist AWS, rather than their immediate clinical implementation. While AI is not yet in 
routine clinical use for hernia repair, there is promising research underway that could eventually improve 
surgical outcomes.

ARTIFICIAL INTELLIGENCE BACKGROUND
Key concepts
Artificial intelligence (AI), machine learning (ML), and deep learning (DL) are interconnected fields that 
have revolutionized various industries and research areas in recent years. AI encompasses the broad concept 
of machines performing tasks that typically require human intelligence, such as problem-solving, language 
comprehension, and decision making. ML, a subset of AI, focuses on developing algorithms that enable 
machines to learn from data and improve over time without explicit programming. DL[18], in turn, is a 
specialized and highly successful form of ML that utilizes computational models, known as artificial neural 
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networks (ANNs), which are broadly inspired by the structure and function of the human brain.

ANNs consist of artificial neurons arranged in layers. Each neuron has input connections to receive data 
and output connections to transmit processed information to subsequent neurons. Every connection 
between neurons has a weight, which determines the strength of the information passed into the neuron. 
These weights are crucial to the network’s performance, and during training, the weights are automatically 
adjusted to maximize the model’s performance according to a performance metric, which is selected 
according to the task at hand, such as anatomical structure recognition accuracy.

A single artificial neuron processes its inputs according to simple mathematics; in general, the inputs are 
multiplied by their weights, then the weights inputs are added together, and then an activation function is 
applied, which determines whether the neuron should activate or remain inactive based on the input it 
receives. The activation function plays a crucial role in allowing neural networks to learn and make 
decisions by introducing non-linearity to the output. Various activation functions exist. For example, the 
sigmoid activation function maps the input to a value between 0 and 1, acting like a smooth “on/off” switch 
that controls the strength of a neuron’s output. This makes it useful for tasks like binary classification, where 
the output can represent probabilities.

While a single artificial neuron has limited practical use, the complexity and capability of an ANN arise by 
using many interconnections between many artificial neurons. In particular, increasing the depth of the 
network (i.e., the number of layers of neurons) allows ANNs to learn complex patterns from training data, 
enabling tasks such as medical image analysis[19], language translation[20], and generative AI applications[21,22] 
like image, video[23], and speech[24] creation. The size of contemporary ANNs varies significantly, primarily 
depending on the range of tasks they are designed to perform - broader task ranges typically require larger 
ANNs. The largest ANNs used for understanding and generating natural language are large language 
models (LLMs), such as OpenAI’s GPT-4 (used in ChatGPT[25]). While OpenAI has not released official 
statistics, some open-source alternative LLMs - such as Meta’s Lama 405B - report having 405 billion 
trainable parameters. In contrast, AI models intended for use as medical devices tend to be smaller due to 
narrower intended use. For instance, models used to delineate structures in radiology images, such as 
nnUNet[26], typically have tens of millions of trainable parameters, requiring substantially less time, 
computational resources, and financial investment for model training.

The rapid growth of AI, ML, and DL in recent years is attributed to several key factors. First, the explosion 
of data in the “big data” era has provided essential training material for advanced DL models. Second, 
significant advancements in computational power - fueled by powerful GPUs and specialized hardware - 
have enabled faster processing and more efficient model training. Third, the emergence of open-source, 
sophisticated programming frameworks like TensorFlow[27] and PyTorch[28] has made it easier for 
researchers and AI engineers to train complex models. Lastly, increased investment in AI research and 
development, alongside growing interest from both the public and private sectors, has accelerated progress 
in these fields.

AI model development for healthcare applications
AI development for healthcare applications typically progresses through five main phases. The first phase, 
data collection and model training, involves gathering high-quality, relevant data to teach the AI model. A 
critical aspect of this phase is data annotation, where input-output pairs are labeled or “tagged” with specific 
information, enabling the model to learn in a process known as supervised learning. This process is similar 
to how a student studies for an exam by practicing with questions, looking at the correct answers, and then 
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learning from their mistakes. During supervised learning, the initial “untrained” AI model makes 
predictions on the training data, and a performance metric is used to evaluate how well it performs, such as 
sensitivity, specificity, precision, recall, accuracy, or F1 (the harmonic mean of precision and recall). Based 
on this evaluation, an automatic training process is launched, which makes small modifications to the 
model’s parameters to improve its performance metric. The process repeats iteratively, and the model 
gradually improves its ability to make accurate predictions on the training data.

Alternative ML methods exist, and they can be used alongside supervised learning to enhance model 
training. One such approach is self-supervised learning[29], where the model generates its own labels from 
the input data, allowing the model to identify inherent structures or relationships in the data. Self-
supervised learning is often used as a prelude to supervised learning, where its main benefit is to reduce the 
amount of required labeled data. Another notable approach is reinforcement learning (RL), which 
complements supervised learning by enabling the model to learn through trial and error. In RL, the AI 
model learns strategies, or decision-making policies, designed to maximize a virtual reward. A virtual 
reward refers to a feedback signal that the model uses to gauge the effectiveness of its actions. Unlike in 
supervised learning, where the model is provided with labeled training data, in RL, the model explores 
actions and receives rewards (or penalties) based on the success or failure of those actions. This virtual 
reward can be a numerical value that increases when the model takes actions that bring it closer to achieving 
its goal, or decreases when it moves further away from the desired outcome. Over time, the model learns to 
maximize these rewards by refining its action/decision-making policy.

To draw an analogy, RL is similar to training in a surgical simulation. Initially, the surgeon might perform 
steps in a procedure without knowing whether the action is optimal or whether the outcome will be 
successful. However, the simulator provides feedback that may be positive (if the surgeon performs a task 
correctly, reinforcing the trainee’s good decisions/actions) or negative (e.g., if an action leads to a 
complication), prompting the surgeon to adjust their approach on their next trial. As the surgeon continues 
to practice, they refine their skills based on this continuous cycle of action, feedback, and adjustment, 
ultimately leading to mastery. Similarly, in RL, the model continuously learns from its experiences by 
receiving virtual rewards, allowing it to optimize its performance over time. The main advantage of RL over 
supervised learning is that RL allows the model to learn optimal decision-making strategies through trial 
and error, without requiring explicit labels to tell it which actions or decisions should be performed at each 
step.

The second phase of AI model development is internal validation[28], where the performance of a trained AI 
model is tested using data similar to the training data, typically collected concurrently with the training 
dataset. This helps catch common problems early, such as overfitting or model bias. Overfitting happens 
when the model learns random details or noise in the training data instead of general patterns, causing it to 
perform well on the training data but poorly on new, unseen data. Model bias, on the other hand, occurs 
when the model makes incorrect assumptions about the data, leading to inaccurate predictions.

The third phase is external validation, where the model is tested on unseen, independent data. This step is 
crucial for assessing the model’s ability to generalize to new, real-world scenarios and ensuring that it can 
perform reliably outside the training environment. The fourth phase involves the regulatory approval 
process, where models must meet strict standards and regulations regarding performance, intended 
population, and safety before they can be deployed for real-world use[30]. Finally, the fifth phase is 
performance monitoring, which focuses on tracking the model’s performance over time. This phase is 
required to detect “drift”, or any decline in performance caused by changes in the data or the environment 
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that the model was not originally trained on. Monitoring also helps identify issues like incorrect data 
labeling or shifts in regulatory requirements, prompting updates to the model or its application to ensure 
ongoing reliability and compliance.

Although we have outlined the primary steps involved in AI model development, a detailed discussion falls 
beyond the scope of this article. For a comprehensive examination of AI model development in healthcare, 
we refer readers to a selection of foundational texts, including[31,32].

RESEARCH IN AI AND AWS
Researchers from various other institutions are advancing AI technologies specifically to enhance AWS, 
requiring close interdisciplinary collaborations among surgeons, AI researchers, software engineers, and 
clinical researchers. Drawing on our own experience, this article explores how advancements in AI 
technologies can enhance AWS, organized by five key application areas: (1) preoperative planning and 
outcome prediction; (2) intraoperative assistance; (3) emergency surgery; (4) postoperative care; and (5) 
surgery education. This section reviews the literature, divided into the above five categories.

Preoperative planning and outcome prediction
Computed tomography (CT) is generally considered the most effective imaging modality for accurately 
assessing the size and location of abdominal hernias, rectus diastasis, and any associated muscle atrophy, as 
well as the hernia’s proportion relative to the abdominal wall. This detailed information can guide surgeons 
in selecting the most appropriate surgical approach [open vs. minimally invasive surgery (MIS)], 
determining the optimal positioning and fixation of meshes, and assessing the need for additional 
interventions, such as botulinum toxin injections, preoperative pneumoperitoneum, or component 
separation techniques.

However, despite their importance, these findings are often missing in CT reports, as radiologists may not 
be familiar with evaluating the abdominal wall or understanding the specific details required for surgical 
planning. For this reason, surgeons often do not consult CT images, relying instead on physical examination 
and patient history.

The underutilization of preoperative CT has been recognized as a limitation of current practice, driving 
recent efforts to improve radiology hernia reports for surgeons[33]. AI has great potential to accelerate this 
process. An important advance is the concept of a 3D virtual clone (or “digital twin”)[34], where AI models 
(typically deep neural networks - DNNs[35]) reconstruct 3D models of a patient’s specific anatomy from a 
preoperative image, with a process known as image segmentation. Neural networks such as nnUNet[26] can 
delineate a wide variety of tissues, and recently, TotalSegmentator[36], adapted from nnUNet, delineates 117 
anatomical and pathological classes in CT images using a training dataset of 1,228 patients. Digital twin 
research has matured with products approved for medical use. Visible Patient, a startup founded in 2013 
that spun off from IRCAD France, provides an online service to create patient-specific anatomy models[34] 
from CT and MR images. This combines DNNs and human oversight for output correction and validation.

There are several preliminary works to generate automatic patient-specific 3D models of hernias[37,38]. Zhang 
et al. developed a method to differentiate abdominal wall tissue from the hernia sac to improve 3D hernia 
visualization and measurement and assist treatment planning[37]. This was a small pilot study; however, 
mature models for finer-grained differentiation of muscles, fascia, hernia sacs, and vessels will soon exist, 
trained on larger cohorts with robust multi-centric external validation.
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The use of preoperative imaging and digital twins extends toward other applications in AWS, including 
surgical approach complexity prediction[39] and recommendation, as well as prediction of postoperative 
complications such as surgical site infection (SSI) and pulmonary failure[39,40]. The “surgical complexity” 
prediction performance in[39] was encouraging and reportedly better than expert surgeon judgments, with an 
accuracy of 81.3% compared with 65.0% (P < 0.001). However, the validation of this study has several 
limitations that impact the generalizability and reliability of its findings. One key concern is the lack of 
external validation, as the models were only tested within the same institution where they were developed. 
Without applying the deep learning models (DLMs) to independent datasets from different hospitals or 
more diverse patient populations, it is unclear whether they would perform as well in broader clinical 
settings. Additionally, the patient cohort was mostly white (87.5%), which limits the applicability of the 
models to more diverse populations. The small validation set for the surgical complexity model (35 patients) 
further raises concerns about the robustness of the reported accuracy and predictive power. While internal 
validation is useful, a larger and more heterogeneous dataset would provide stronger evidence of the 
model’s reliability. Another notable limitation is the lack of expert comparison for the SSI and pulmonary 
complication models. Unlike the surgical complexity model, which was evaluated against expert surgeon 
predictions, these other models were not benchmarked against clinical judgment, making it difficult to 
assess their real-world utility. Furthermore, the pulmonary complication model performed poorly, with the 
area under the receiver operator curve (ROC-AUC) of only 0.545, suggesting that the features extracted by 
the model may not be clinically meaningful. This raises questions about the adequacy of the training process 
and feature selection.

Outcome prediction in healthcare, particularly in complex cases like mesh infection, presents a significant 
challenge due to the multifaceted nature of the factors involved. One major difficulty is the need for large-
scale, longitudinal datasets, as outcome data such as mesh infection may not manifest until months or even 
years after the initial procedure[41]. These delayed outcomes make it crucial to gather and analyze data over 
extended periods, often involving patients’ health trajectories, lifestyle changes, and treatment responses 
over time.

Moreover, effectively predicting these outcomes requires the integration of diverse data sources. For 
instance, preoperative imaging can provide insight into the patient’s anatomy and potential risks associated 
with surgery, while EHRs offer a comprehensive history of the patient’s medical conditions, previous 
treatments, and comorbidities. Blood biomarkers, genetic information, and physiological data from 
wearable devices can reveal critical details about the patient’s internal processes and response to treatment, 
contributing to a more personalized and accurate prediction model.

In addition to these external data sources, intraoperative factors - such as the surgeon’s skill, experience, and 
technique - play a vital role in the success or failure of a procedure, further complicating the prediction 
process. The combination of all these data sources can provide a holistic view of the patient’s condition, but 
it also introduces challenges in data integration, quality control, and analysis. More research into advanced 
AI and ML models, which can handle such complex, multidimensional datasets, is essential for improving 
the accuracy of outcome predictions, ultimately helping healthcare professionals make better-informed 
decisions.

Intraoperative assistance
AI may contribute to intraoperative assistance in AWS in several ways:
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Enhanced surgery visualization and safety: AI systems can integrate data from multiple sources to provide 
surgeons with enhanced visualization. For instance, we have developed AI models to automatically detect 
and track seven key anatomical structures in transabdominal preperitoneal (TAPP) inguinal hernia 
repair[16]. This AI system, which can integrate with robot arm movement data, may be used to continually 
visualize structures even if they are obscured by bleeding or a prosthetic. This visualization could enhance 
safety in inguinal hernia surgery by reducing complications, especially chronic postoperative pain due to 
improperly located prosthetic staples, and preventing vascular injury near the “Triangle of Doom”.

Procedure monitoring, standardization, and quality assurance: Procedure guidelines, such as the “10 Golden 
Rules” in MIS inguinal hernia repair[42], were proposed to improve hernia repair quality and standardization. 
However, they are not widely adopted due to a lack of awareness/training, clinical practice variability, and 
guideline complexity. AI systems may significantly increase guideline adoption[16] by continually monitoring 
surgical video data and validating guideline conformity in real time.

We have made the first advances in this direction by developing an AI system that detects critical structures 
that must be exposed to ensure a complete TAPP inguinal hernia dissection[16]. This model may be 
integrated with a mesh detection model to alert the surgeon if they attempt to place a mesh over an 
inadequately dissected hernia. We have also developed an AI model to divide TAPP surgical videos into 
seven main surgical steps automatically[17]. The steps may be nonsequential, typical in bilateral repairs, and 
the system can process live and archive videos. It has various applications, including quantifying time spent 
on each step, which can be applied to enhance OR efficiency by, e.g., alerting the support staff to prepare the 
mesh when the dissection is nearing completion. In the future, these AI models will be enhanced in analysis 
depth, e.g., quantitative assessment of dissection zones, mesh coverage, and tissue tension, and their 
application breadth for use in different abdominal wall procedures.

Automated surgery reports: AI systems are being developed to analyze surgical images and videos and to 
generate automated reports[43]. They are likely to be adapted to AWS soon. This may reduce the burden on 
the surgical staff while also providing a comprehensive and systematic surgical record of every procedure. 
Using video-based recognition models, they may also provide information beyond that of standard reports, 
including a detailed log of events and surgical actions/decisions.

Emergency surgery
Abdominal wall emergencies, such as incarcerated or strangulated hernias, pose significant challenges that 
differ from elective procedures. In these situations, time is critical, and surgeons must make rapid decisions 
to prevent complications like bowel ischemia, perforation, and sepsis. Unlike planned surgeries, where there 
is time for thorough preoperative imaging and detailed surgical planning, emergency cases often require 
immediate action based on clinical judgment and limited diagnostic information.

One of the most pressing concerns in emergency AWS is determining whether bowel loops trapped within a 
hernia sac remain viable or need resection. This decision is traditionally made based on visual inspection 
and subjective assessment of factors like bowel color, peristalsis, and pulsation. However, misjudging bowel 
viability can lead to either unnecessary resections or, conversely, leaving necrotic tissue in place, both of 
which can result in severe complications. AI-assisted imaging techniques, such as real-time perfusion 
analysis using near-infrared fluorescence[44,45] or hyperspectral imaging[46,47], could help surgeons make more 
accurate assessments and reduce errors in intraoperative decision making.
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Another major challenge in emergency settings is deciding whether to use prosthetic mesh for hernia repair, 
particularly in contaminated fields where the risk of infection is high. In elective procedures, careful patient 
selection and preoperative optimization help mitigate these risks, but in emergencies, there is often little 
time for such preparation. AI-driven predictive models could help guide decision making by analyzing 
patient-specific risk factors, surgical conditions, and historical outcomes to suggest the safest and most 
effective repair approach.

Patient fragility is another key factor influencing surgical outcomes in emergencies. Many patients 
presenting with abdominal wall emergencies are elderly or have significant comorbidities such as diabetes, 
cardiovascular disease, or immunosuppression, making them more vulnerable to complications. AI-based 
risk stratification tools could assist surgeons in determining the best course of action, balancing the risks of 
immediate surgery against the potential for conservative management in high-risk patients.

Postoperative complications are more common in emergency AWS than in elective cases. Issues such as 
SSIs, wound dehiscence, and anastomotic leaks can significantly prolong hospital stays and increase 
morbidity. AI-driven early warning systems, which continuously monitor vital signs, laboratory results, and 
other patient data, could help detect complications at an earlier stage, allowing for timely intervention and 
potentially improving patient outcomes.

Postoperative care
The postoperative phase is crucial for ensuring smooth recovery and early detection of complications 
following AWS, particularly in hernia repair and reconstruction. There has been limited research in this 
area specific to AWS; however, we expect systems to be developed focusing on the following key areas:

Vital Sign Monitoring: AI algorithms can analyze real-time data from wearable sensors to track key 
physiological parameters, such as heart rate, oxygen saturation, and body temperature[48]. In the context of 
AWS, they could be valuable tools for early detection of complications like infection or respiratory distress.

Wound Assessment: Postoperative wound care is critical in hernia repair to prevent complications such as 
infection or poor healing. AI-driven image recognition tools can be used to monitor the surgical site, 
detecting early signs of infection, dehiscence (wound opening), or excessive swelling[49-51]. For instance, AI 
can analyze visual data from wound images to identify abnormal signs like increased redness, warmth, or 
fluid accumulation, allowing clinicians to intervene early and reduce the risk of wound-related 
complications.

Mesh Complication Detection: Mesh complications in hernia repairs can include abscesses, hematomas, 
seromas, fistulas, bowel obstructions, mesh retraction, granulomas, and recurrent hernias. Imaging 
techniques, particularly ultrasound[52] and CT[53], are valuable tools for diagnosing these complications at 
earlier stages, allowing for timely intervention and adjustment of treatment plans. Over the past few years, 
the integration of AI into medical imaging has significantly transformed healthcare[54]. We believe these 
technologies should be incorporated into routine postoperative examinations for mesh complication 
detection. By doing so, AI can enhance detection rates, reduce the burden on expert radiologists, and 
improve overall efficiency in patient care.

Personalized Recovery Plans and Patient Follow-up: By leveraging AI for personalized recovery planning, 
postoperative care for abdominal wall reconstruction and hernia repair patients can be more efficient and 
tailored to individual recovery processes. AI-driven models analyze factors such as preoperative health, 
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surgical complexity, lifestyle, genetics, and real-time recovery data to create customized recovery plans. 
These plans could: 
• Optimize recovery trajectories: Where AI systems propose adapting the recovery plan in real time, 
ensuring pain management[55], physical therapy, and wound care are tailored to the patient’s progress. 
• Reduce hospital stays: Where recovery metrics are monitored in real time, leading to AI systems helping 
recommend when patients are ready for discharge[56], reducing unnecessary hospital stays while maintaining 
optimal recovery outcomes. 
• Offer customized exercise recommendations: Where AI systems could make personalized exercise 
recommendations to strengthen abdominal muscles while ensuring the integrity of the surgical repair.

Virtual health assistants: AI is also being explored to improve patient engagement and postoperative follow-
up through automated systems and virtual health assistants. LLMs integrated into conversational AI systems 
are being investigated to facilitate routine follow-ups[57], answer common patient concerns, and guide them 
through the recovery process. AI-powered rehabilitation programs can monitor patient mobility, guide 
core-strengthening exercises, and provide real-time feedback to prevent strain on the healing abdominal 
wall. These interventions can be particularly beneficial for high-risk hernia repair patients who require 
specialized recovery strategies.

Surgery education
The roles of AI in surgery education are likely to be wide-ranging, from realistic simulation-based 
training[58,59], creation of personalized learning pathways, and video-based competency assessment[60] to AI-
curated case studies, technical skill assessment[17], and the enhancement of video-based learning platforms 
such as WebSurg[61]. Additionally, LLMs such as ChatGPT can process, generate, and synthesize vast 
amounts of medical knowledge, making them increasingly valuable tools in surgery education. A very 
promising future direction is the integration of LLMs with surgery video education to enable students to 
learn about video content using natural conversational language. To this end, there has been some recent 
research in Visual Question Answering, such as Surgical-VQA[62], which is an AI model trained to answer 
questionnaires on surgical procedures based on the procedure’s video.

The use of LLMs regarding surgery, however, extends far beyond education, as indicated in the previous 
section. The applications range from improving patient communication[63], helping document clinical 
research[64], performing statistical analysis, and identifying study biases[65] to generating code to assist the 
development of medical device software[66].

DISCUSSION
From research to clinical deployment
Advancing from research to clinical deployment of AI in AWS
The application of AI technologies to AWS is in its infancy. As highlighted above, numerous applications 
are being investigated in the research literature; however, none have yet translated into routine practice.

In the development of AI technologies for AWS and hernia repair, including our own research[16,17], pre-
recorded surgical videos have been instrumental in model development and validation. While these 
retrospective datasets provide a strong foundation, they also present key limitations.

One major challenge is that AI models are typically evaluated based on task performance metrics, such as 
structure recognition rates, without direct assessment of their real-world clinical impact. Transitioning from 
retrospective validation to real-world implementation in AWS is a complex, multi-step process.
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AI models must be seamlessly integrated into the clinical workflow to provide real-time assistance without 
disrupting surgical autonomy or established protocols. A critical step in this transition is prospective clinical 
validation, often through randomized controlled trials (RCTs) or cohort studies. These studies would 
compare AI-assisted hernia repairs to traditional methods, assessing key outcome metrics such as 
complication rates (e.g., infection or recurrence), surgical efficiency (e.g., operation time), and long-term 
patient recovery, including pain management and return to daily activities. However, conducting such 
studies is time-intensive and resource-demanding. Moreover, integrating AI into AWS requires 
compatibility with hospital IT infrastructure, including EHRs and surgical planning tools.

It is also important to recognize the importance of developing AI systems that are robust enough to adapt to 
anatomical variations. One strategy to improve AI’s adaptability in these cases is the inclusion of diverse 
datasets during the training phase, incorporating a wide range of anatomical variations and patient-specific 
characteristics. While this mitigates the issue, it may not completely eliminate it. Continuous monitoring 
and recalibration of AI models, based on real-time feedback and postoperative data, will help improve the 
model’s ability to provide accurate guidance across diverse patient populations. A promising future research 
direction is to develop AI systems to flag cases where anatomical features deviate significantly from the 
norm, prompting the surgeon to make additional assessments or adjustments.

To ensure accountability, prospective validation studies must meticulously document surgical decisions 
both with and without AI assistance. This allows researchers to directly attribute any observed outcome 
changes to AI intervention. Furthermore, long-term follow-up is crucial, as AI’s true impact may take time 
to manifest. In hernia repairs, for instance, complications like chronic pain, mesh-related issues, or 
recurrence may only emerge months or years post-surgery.

AI technologies in AWS, particularly hernia repair, hold great promise, but significant cost-effectiveness 
challenges remain. While university research often produces the initial R&D results and methods, these 
innovations are typically commercialized by medtech companies, which fund further development, clinical 
trials, and validation. Hospitals, while not responsible for the R&D costs, must still invest in integrating 
these technologies into their existing infrastructure. This includes upgrading hardware, software, and 
training staff - expenses that can be substantial, especially if immediate benefits do not translate into clear 
financial returns.

A critical barrier to AI adoption in hernia repair is insurance reimbursement. Insurers may hesitate to cover 
these higher-cost procedures without clear evidence of cost savings or improved outcomes. The long-term 
benefits of AI - such as reduced follow-up surgeries or complications - may not be immediately reflected in 
short-term cost metrics, making it harder for hospitals to justify the additional investment. Reimbursement 
models need to adapt to consider both short-term expenses and long-term benefits, aligning the financial 
interests of hospitals, insurers, and medtech companies. Hospitals require clear financial incentives, 
including reimbursement models that reflect both immediate costs and long-term benefits. Demonstrating 
AI’s ability to improve patient outcomes and reduce long-term healthcare costs will be essential in 
overcoming cost-effectiveness and reimbursement challenges, ensuring the broader adoption of AI in AWS.

Leveraging AI models with managed uncertainty: imperfection does not invalidate utility
It is important to state that in general, an AI model does not need to be perfect to be useful. Any ChatGPT 
user will attest to that. Indeed, if this were not true, research in AI and surgery should have stopped long 
ago, because the complexity of surgery data and surgical tasks practically ensures that AI model outputs will 
have at least some uncertainty. The AI systems described in this article will be deployed in clinical practice 
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only if the risks associated with uncertain predictions have been established in clinical trials and the benefits 
to the patient outweigh the risks. Understanding, communicating, and managing the risks associated with 
prediction uncertainty will be key to success.

AI model prediction uncertainty arises from two main factors: epistemic uncertainty and aleatory 
uncertainty. It is crucial for all stakeholders and users of AI, including surgeons making critical decisions 
based on AI results, to understand these concepts.

Epistemic Uncertainty: This type of uncertainty comes from a lack of knowledge or information. It is 
considered reducible, meaning that adding more training data can help the model better capture underlying 
patterns or relationships, leading to a more accurate representation of the system.

Aleatory Uncertainty: In contrast, aleatory uncertainty is caused by the inherent randomness and variability 
present in the data. This type of uncertainty is irreducible - no matter how many additional data are 
collected, the inherent variability in the data remains.

Considering epistemic uncertainty, if an AI system is trained on a dataset that lacks diversity in terms of 
patient demographics or surgical techniques, or patient abnormalities due to prior surgeries, surgery 
technique recommendations may be untrustworthy due to high epistemic uncertainty. Ensuring that AI 
models are trained on diverse and representative datasets reduces epistemic uncertainty, and the only way 
to understand if the uncertainty is sufficiently reduced is through rigorous model testing with appropriate 
external validation[67].

However, reducing epistemic uncertainty alone is not sufficient to guarantee trustworthy results. For 
instance, a digital twin’s accuracy is limited by the imaging modality from which it was generated. Various 
anatomical structures may not have sufficient contrast for unambiguous delineation, especially in non-
contrast-enhanced CT. Consequently, a digital twin may be imperfect, no matter how many data are used 
for training. This is an example of aleatory uncertainty. By definition, this is irreducible, and whether it is a 
problem depends, crucially, on the intended use of the model’s predictions. Before investing considerable 
research effort in developing a model and gathering training data, this should be fully understood.

Pragmatically, one should always estimate the aleatory uncertainty before investing time in AI model 
development. One of the best ways to do this is to have multiple expert surgeons perform the task 
independently and then measure their inter-rater agreement. A high disagreement indicates high aleatory 
uncertainty, which may prohibit the possibility of a useful AI model ever being developed. We performed 
this kind of analysis when we were researching our system to automatically verify the completion of the 
critical view of the myopectineal orifice (CVMPO)[16], which helped steer the research toward a more 
focused goal of detecting critical structures in the CVMPO. Initially, we aimed to automatically verify the 
completion of every step according to CVMPO guidelines[68]. However, our preliminary inter-rater analysis 
revealed that several steps, such as assuring dissection clearance of 2 cm from Cooper’s ligament, had a low 
agreement among surgeons. This was due to the high difficulty in visually determining the absolute size of 
structures in a scene from single-lens (monocular) laparoscopic images. Instead, we focused on detecting 
critical structures, including Cooper’s ligament, which was a substantially more objective task (with less 
aleatory uncertainty). Aleatory uncertainty can sometimes be reduced by altering the nature of the data - for 
example, by using contrast-enhanced CT scans to improve image clarity and image segmentation 
performance. However, in other situations, reducing this uncertainty may not be feasible without disrupting 
the surgeon’s workflow or making the process impractical. For instance, we have shown that AI models can 
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recognize nerves below the surface using data from a hyperspectral camera[69], and more accurately 
compared to a standard color camera used in laparoscopy. This has the potential to improve the safety of 
inguinal hernia repair. However, this camera is a specialized device that is more expensive and bulkier than 
a standard camera used in MIS, and it does not provide high frame rates. So, on the one hand, aleatory 
uncertainty can be reduced using a specialized camera, but on the other hand, one must balance this with 
any associated impracticalities or costs.

While various AI prediction models have been proposed in the literature, the next phase, before clinical 
deployment, should also involve developing models that can convey accurate assessments of their 
prediction uncertainty using model calibration[70]. Calibration is required to ensure high uncertainty is 
communicated when a prediction is likely to be incorrect.

In this sense, the AI models serve as a tool to assist surgeons, rather than as a replacement for human 
expertise, who will need to assimilate the predictions and uncertainty information in their decision-making 
processes. AI models will continue to improve, yet adequate training of surgeons to use them as tools, with a 
transparent understanding of their inherent limitations, will be fundamental to success. This will require a 
collaborative effort on both sides. AI models will be required to provide results and justification for their 
results - known as “explainable AI”[71]. AI models should also convey the sources of uncertainty.

On the other hand, surgeons will need additional training in data science and ML so they may understand 
how to interpret AI-generated outputs and safely integrate AI into their decision-making processes. This is 
not a simple feat. In radiology, recent studies show that, despite training, incorrect predictions can 
negatively influence a clinical decision due to over-reliance on the technology. For instance, radiologists 
were more likely to miss pathological findings in mammograms when an AI system also missed them[72].

As AI technology advances, its application in AWS is expected to increase, contributing to more 
personalized and efficient surgical practices. Surgeons must remain informed about these developments and 
adapt to emerging technologies to optimize patient outcomes while upholding established standards of care.
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