Collins et al. Art Int Surg. 2025;5:254-69 Art|f|C|a|

DOI: 10.20517/ais.2024.92 .
Intelligence Surgery

Review Open Access

'.’ Check for updates

The role of artificial intelligence in abdominal wall
surgery: recent progress and embracing uncertainty

Toby Collins, Guinther Saibro, Antonello Forgione, Alexandre Hostettler, Jacques Marescaux
Department of Surgical Data Science, IRCAD France, Strasbourg 67000, France.

Correspondence to: Dr. Toby Collins, Department of Surgical Data Science, IRCAD France, 1 Place de I'Hopital, Strasbourg
67000, France; E-mail: toby.collins@ircad.fr

How to cite this article: Collins T, Saibro G, Forgione A, Hostettler A, Marescaux J. The role of artificial intelligence in abdominal
wall surgery: recent progress and embracing uncertainty. Art Int Surg. 2025;5:254-69. https://dx.doi.org/10.20517/ais.2024.92

Received: 17 Oct 2024 First Decision: 28 Nov 2024 Revised: 7 Apr 2025 Accepted: 15 Apr 2025 Published: 27 May 2025

Academic Editor: Andrew Gumbs Copy Editor: Pei-Yun Wang Production Editor: Pei-Yun Wang

Abstract

Artificial intelligence (Al) is profoundly impacting most, if not all, scientific and medical disciplines. In abdominal
wall surgery (AWS), which includes common procedures such as hernia repair, abdominal wall reconstruction, and
separation, Al models trained on surgical data have immense potential to enhance clinical practice and patient
outcomes. The benefits include better procedure planning, standardization, interventional guidance, awareness of
critical structures, complication prevention, quality assurance, and patient monitoring. Moreover, Al may
significantly transform surgical education by enhancing training, skill assessment, and feedback mechanisms,
leading to better-prepared surgeons. This review article highlights the latest developments in Al and AWS,
focusing on key emerging applications and why embracing Al model prediction uncertainty is essential to
translating these research efforts to clinical practice.
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INTRODUCTION

Abdominal wall surgery (AWS) involves repairing defects or weaknesses in the abdominal wall, such as
hernias, which may occur from congenital conditions, surgical incisions, or trauma. The goal is to restore
the abdominal wall’s structural integrity while minimizing complications to achieve positive functional and
aesthetic outcomes. Each year, over 20 million inguinal hernia repairs are performed globally, making it one
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of the most common surgical procedures". The hernia repair devices and consumables market has
increased from $4.7 billion in 2019 to a projection of $6.4 billion by 2027". This is driven by advanced
prosthetics, increasing adoption of robotic surgery, and a higher global prevalence rate®’.

Abdominal wall hernias may be naturally occurring or acquired. Naturally occurring hernias include
inguinal (groin area, most common), femoral (lower groin, more common in women), umbilical (near the
belly button, common in infants and pregnancy), and epigastric (midline upper abdomen). Acquired
hernias include incisional hernias, which develop at previous surgical sites due to weak healing, and
parastomal hernias', which form around a stoma due to abdominal wall weakness. Other types include
Spigelian hernias (along the lateral abdominal muscles) and diastasis recti, a separation of abdominal
muscles rather than a true hernia.

Hernia surgery often requires specialized skills beyond the scope of a general surgeon", and the challenges
are attributed to several factors:

Complex anatomy: The groin region is considered anatomically complex', and precise anatomical
knowledge is critical to avoid injury to nerves, blood vessels, or organs.

Mesh complications: Prosthetic meshes are frequently used in hernia repair; however, they introduce risks
of infection, rejection, or adhesion to underlying organs. Surgeons must choose the appropriate mesh type,
size, and placement method. The mesh must be suitably fixed, and the use of staplers or tackers, if placed

incorrectly, carries greater risks of chronic postoperative pain"”*.

Large or complex defects: Repairing large or recurrent hernias or abdominal wall defects requires advanced
techniques, such as component separation, to provide adequate and durable prosthetic support to prevent
recurrence.

Tissue tension and closure: Achieving a tension-free closure is vital to prevent recurrence”, yet this can be
difficult, especially in larger defects or after multiple surgeries, as tissue may be compromised or retracted.

Obesity and comorbidities: Patients with obesity or other conditions such as diabetes pose additional
challenges™" due to thicker abdominal walls, a higher risk of infection, and difficulty in achieving a tension-
free repair.

To address the above challenges, surgeons must carefully balance technical precision, material selection, and
personalized patient care to improve outcomes. Specialized training, such as WebSurg’s Hernia
Basecamp!”?, might be an important factor in reducing recurrence and complication rates, in addition to
advances in material science in mesh design, biomaterials that support regenerative medicine, and immune
engineering”. However, despite these initiatives and research directions, long-term follow-up of hernia
patients is often disappointing, both in terms of complications and reoperation rates that remain
unacceptably high (8% to 15%'**).

[16,17]

AT technologies have greater potential to improve abdominal wall and hernia surgery"*”, including
applications in preoperative planning and risk assessment, intraoperative guidance and safety enhancement,
postoperative monitoring, and surgery training. However, Al adoption in routine clinical practice has been
relatively slow compared to generative AI models, such as ChatGPT, in broader society. As of today, while

research in Al and AWS has advanced, there are not yet certified AI devices specifically designed to assist
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with AWS. The following factors contribute to the absence of clinically translated solutions:

Regulatory challenges: One of the primary obstacles preventing the certification of AI devices for AWS is
the rigorous regulatory landscape in healthcare. Regulatory agencies such as the FDA and EMA require that
Al-based medical devices undergo extensive validation and testing before they can be approved for clinical
use. The approval process for medical AI technologies is complex, often involving long timelines and
substantial evidence to demonstrate safety, efficacy, and clinical relevance. Given the complexity of AWS
and the variability in patient presentations, demonstrating that AI systems can reliably function across all
potential scenarios is a significant challenge.

Complexity of surgical data: Unlike fields like radiology, where imaging data follow more standardized
protocols, surgical data - especially video data from abdominal wall surgeries, are highly complex and
variable. This variability arises from variations in camera angles, visibility issues due to bleeding or smoke,
and differences in surgical techniques, instruments, and environments. These factors make it difficult to
develop robust AI models that can reliably interpret surgical situations in real time. Moreover, the lack of
standardization in surgical data limits the ability of AI systems to generalize across different hospitals,
teams, and surgical settings.

Risk and accountability: Surgery is a high-stakes environment where mistakes can have serious
consequences. For an Al system to be certified for clinical use in AWS, it must demonstrate a high level of
accuracy, reliability, and decision-making support without compromising patient safety. The important
question of accountability arises - if an AI system were to make an incorrect recommendation, determining
responsibility for the resulting harm is complex.

Integration into clinical workflow: The integration of AI into real-world surgical environments presents
significant logistical challenges. Most hospital systems are not optimized to incorporate Al tools seamlessly
into day-to-day practice. Al systems may require integration with existing electronic health record (EHR)
systems and operating room (OR) technologies. Additionally, surgical teams must be trained to trust and
responsibly operate Al tools, which requires a significant investment in time and resources, and
performance monitoring systems must be in place to ensure the AI system continues to perform as
intended. The process of integrating Al into a hospital’s workflow, ensuring smooth communication
between AI systems and surgical teams, and aligning these tools with hospital protocols is a substantial
barrier to clinical translation.

Our article focuses on state-of-the-art research and emerging AI technologies that are currently being
researched to assist AWS, rather than their immediate clinical implementation. While Al is not yet in
routine clinical use for hernia repair, there is promising research underway that could eventually improve
surgical outcomes.

ARTIFICIAL INTELLIGENCE BACKGROUND

Key concepts

Artificial intelligence (AI), machine learning (ML), and deep learning (DL) are interconnected fields that
have revolutionized various industries and research areas in recent years. Al encompasses the broad concept
of machines performing tasks that typically require human intelligence, such as problem-solving, language
comprehension, and decision making. ML, a subset of Al focuses on developing algorithms that enable
machines to learn from data and improve over time without explicit programming. DL", in turn, is a
specialized and highly successful form of ML that utilizes computational models, known as artificial neural
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networks (ANNs), which are broadly inspired by the structure and function of the human brain.

ANNSs consist of artificial neurons arranged in layers. Each neuron has input connections to receive data
and output connections to transmit processed information to subsequent neurons. Every connection
between neurons has a weight, which determines the strength of the information passed into the neuron.
These weights are crucial to the network’s performance, and during training, the weights are automatically
adjusted to maximize the model’s performance according to a performance metric, which is selected
according to the task at hand, such as anatomical structure recognition accuracy.

A single artificial neuron processes its inputs according to simple mathematics; in general, the inputs are
multiplied by their weights, then the weights inputs are added together, and then an activation function is
applied, which determines whether the neuron should activate or remain inactive based on the input it
receives. The activation function plays a crucial role in allowing neural networks to learn and make
decisions by introducing non-linearity to the output. Various activation functions exist. For example, the
sigmoid activation function maps the input to a value between 0 and 1, acting like a smooth “on/off” switch
that controls the strength of a neuron’s output. This makes it useful for tasks like binary classification, where
the output can represent probabilities.

While a single artificial neuron has limited practical use, the complexity and capability of an ANN arise by
using many interconnections between many artificial neurons. In particular, increasing the depth of the
network (i.e., the number of layers of neurons) allows ANNs to learn complex patterns from training data,
enabling tasks such as medical image analysis"”, language translation, and generative Al applications"*”
like image, video”, and speech® creation. The size of contemporary ANNs varies significantly, primarily
depending on the range of tasks they are designed to perform - broader task ranges typically require larger
ANNSs. The largest ANNs used for understanding and generating natural language are large language
models (LLMs), such as OpenAIl’s GPT-4 (used in ChatGPT™'). While OpenAl has not released official
statistics, some open-source alternative LLMs - such as Meta’s Lama 405B - report having 405 billion
trainable parameters. In contrast, Al models intended for use as medical devices tend to be smaller due to
narrower intended use. For instance, models used to delineate structures in radiology images, such as
nnUNet™, typically have tens of millions of trainable parameters, requiring substantially less time,
computational resources, and financial investment for model training.

The rapid growth of AI, ML, and DL in recent years is attributed to several key factors. First, the explosion
of data in the “big data” era has provided essential training material for advanced DL models. Second,
significant advancements in computational power - fueled by powerful GPUs and specialized hardware -
have enabled faster processing and more efficient model training. Third, the emergence of open-source,
sophisticated programming frameworks like TensorFlow”” and PyTorch® has made it easier for
researchers and Al engineers to train complex models. Lastly, increased investment in AI research and
development, alongside growing interest from both the public and private sectors, has accelerated progress
in these fields.

Al model development for healthcare applications

AT development for healthcare applications typically progresses through five main phases. The first phase,
data collection and model training, involves gathering high-quality, relevant data to teach the AI model. A
critical aspect of this phase is data annotation, where input-output pairs are labeled or “tagged” with specific
information, enabling the model to learn in a process known as supervised learning. This process is similar
to how a student studies for an exam by practicing with questions, looking at the correct answers, and then



Collins et al. Art Int Surg. 2025;5:254-69 | https://dx.doi.org/10.20517/ais.2024.92 Page 258

learning from their mistakes. During supervised learning, the initial “untrained” AI model makes
predictions on the training data, and a performance metric is used to evaluate how well it performs, such as
sensitivity, specificity, precision, recall, accuracy, or F1 (the harmonic mean of precision and recall). Based
on this evaluation, an automatic training process is launched, which makes small modifications to the
model’s parameters to improve its performance metric. The process repeats iteratively, and the model
gradually improves its ability to make accurate predictions on the training data.

Alternative ML methods exist, and they can be used alongside supervised learning to enhance model
training. One such approach is self-supervised learning™’, where the model generates its own labels from
the input data, allowing the model to identify inherent structures or relationships in the data. Self-
supervised learning is often used as a prelude to supervised learning, where its main benefit is to reduce the
amount of required labeled data. Another notable approach is reinforcement learning (RL), which
complements supervised learning by enabling the model to learn through trial and error. In RL, the AI
model learns strategies, or decision-making policies, designed to maximize a virtual reward. A virtual
reward refers to a feedback signal that the model uses to gauge the effectiveness of its actions. Unlike in
supervised learning, where the model is provided with labeled training data, in RL, the model explores
actions and receives rewards (or penalties) based on the success or failure of those actions. This virtual
reward can be a numerical value that increases when the model takes actions that bring it closer to achieving
its goal, or decreases when it moves further away from the desired outcome. Over time, the model learns to
maximize these rewards by refining its action/decision-making policy.

To draw an analogy, RL is similar to training in a surgical simulation. Initially, the surgeon might perform
steps in a procedure without knowing whether the action is optimal or whether the outcome will be
successful. However, the simulator provides feedback that may be positive (if the surgeon performs a task
correctly, reinforcing the trainee’s good decisions/actions) or negative (e.g., if an action leads to a
complication), prompting the surgeon to adjust their approach on their next trial. As the surgeon continues
to practice, they refine their skills based on this continuous cycle of action, feedback, and adjustment,
ultimately leading to mastery. Similarly, in RL, the model continuously learns from its experiences by
receiving virtual rewards, allowing it to optimize its performance over time. The main advantage of RL over
supervised learning is that RL allows the model to learn optimal decision-making strategies through trial
and error, without requiring explicit labels to tell it which actions or decisions should be performed at each
step.

The second phase of Al model development is internal validation™, where the performance of a trained Al
model is tested using data similar to the training data, typically collected concurrently with the training
dataset. This helps catch common problems early, such as overfitting or model bias. Overfitting happens
when the model learns random details or noise in the training data instead of general patterns, causing it to
perform well on the training data but poorly on new, unseen data. Model bias, on the other hand, occurs
when the model makes incorrect assumptions about the data, leading to inaccurate predictions.

The third phase is external validation, where the model is tested on unseen, independent data. This step is
crucial for assessing the model’s ability to generalize to new, real-world scenarios and ensuring that it can
perform reliably outside the training environment. The fourth phase involves the regulatory approval
process, where models must meet strict standards and regulations regarding performance, intended
population, and safety before they can be deployed for real-world use". Finally, the fifth phase is
performance monitoring, which focuses on tracking the model’s performance over time. This phase is
required to detect “drift”, or any decline in performance caused by changes in the data or the environment
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that the model was not originally trained on. Monitoring also helps identify issues like incorrect data
labeling or shifts in regulatory requirements, prompting updates to the model or its application to ensure
ongoing reliability and compliance.

Although we have outlined the primary steps involved in AT model development, a detailed discussion falls
beyond the scope of this article. For a comprehensive examination of AI model development in healthcare,
we refer readers to a selection of foundational texts, including”"**.

RESEARCH IN Al AND AWS

Researchers from various other institutions are advancing AI technologies specifically to enhance AWS,
requiring close interdisciplinary collaborations among surgeons, Al researchers, software engineers, and
clinical researchers. Drawing on our own experience, this article explores how advancements in Al
technologies can enhance AWS, organized by five key application areas: (1) preoperative planning and
outcome prediction; (2) intraoperative assistance; (3) emergency surgery; (4) postoperative care; and (5)
surgery education. This section reviews the literature, divided into the above five categories.

Preoperative planning and outcome prediction

Computed tomography (CT) is generally considered the most effective imaging modality for accurately
assessing the size and location of abdominal hernias, rectus diastasis, and any associated muscle atrophy, as
well as the hernia’s proportion relative to the abdominal wall. This detailed information can guide surgeons
in selecting the most appropriate surgical approach [open vs. minimally invasive surgery (MIS)],
determining the optimal positioning and fixation of meshes, and assessing the need for additional
interventions, such as botulinum toxin injections, preoperative pneumoperitoneum, or component
separation techniques.

However, despite their importance, these findings are often missing in CT reports, as radiologists may not
be familiar with evaluating the abdominal wall or understanding the specific details required for surgical
planning. For this reason, surgeons often do not consult CT images, relying instead on physical examination
and patient history.

The underutilization of preoperative CT has been recognized as a limitation of current practice, driving
recent efforts to improve radiology hernia reports for surgeons™. Al has great potential to accelerate this
process. An important advance is the concept of a 3D virtual clone (or “digital twin”)"*, where Al models
(typically deep neural networks - DNNs™') reconstruct 3D models of a patient’s specific anatomy from a
preoperative image, with a process known as image segmentation. Neural networks such as nnUNet™’ can
delineate a wide variety of tissues, and recently, TotalSegmentator™, adapted from nnUNet, delineates 117
anatomical and pathological classes in CT images using a training dataset of 1,228 patients. Digital twin
research has matured with products approved for medical use. Visible Patient, a startup founded in 2013
that spun off from IRCAD France, provides an online service to create patient-specific anatomy models"!
from CT and MR images. This combines DNNs and human oversight for output correction and validation.

There are several preliminary works to generate automatic patient-specific 3D models of hernias””>**. Zhang
et al. developed a method to differentiate abdominal wall tissue from the hernia sac to improve 3D hernia
visualization and measurement and assist treatment planning"”. This was a small pilot study; however,
mature models for finer-grained differentiation of muscles, fascia, hernia sacs, and vessels will soon exist,
trained on larger cohorts with robust multi-centric external validation.
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The use of preoperative imaging and digital twins extends toward other applications in AWS, including
surgical approach complexity prediction” and recommendation, as well as prediction of postoperative
complications such as surgical site infection (SSI) and pulmonary failure®*!. The “surgical complexity”

prediction performance in"”!

was encouraging and reportedly better than expert surgeon judgments, with an
accuracy of 81.3% compared with 65.0% (P < 0.001). However, the validation of this study has several
limitations that impact the generalizability and reliability of its findings. One key concern is the lack of
external validation, as the models were only tested within the same institution where they were developed.
Without applying the deep learning models (DLMs) to independent datasets from different hospitals or
more diverse patient populations, it is unclear whether they would perform as well in broader clinical
settings. Additionally, the patient cohort was mostly white (87.5%), which limits the applicability of the
models to more diverse populations. The small validation set for the surgical complexity model (35 patients)
further raises concerns about the robustness of the reported accuracy and predictive power. While internal
validation is useful, a larger and more heterogeneous dataset would provide stronger evidence of the
model’s reliability. Another notable limitation is the lack of expert comparison for the SSI and pulmonary
complication models. Unlike the surgical complexity model, which was evaluated against expert surgeon
predictions, these other models were not benchmarked against clinical judgment, making it difficult to
assess their real-world utility. Furthermore, the pulmonary complication model performed poorly, with the
area under the receiver operator curve (ROC-AUC) of only 0.545, suggesting that the features extracted by
the model may not be clinically meaningful. This raises questions about the adequacy of the training process
and feature selection.

Outcome prediction in healthcare, particularly in complex cases like mesh infection, presents a significant
challenge due to the multifaceted nature of the factors involved. One major difficulty is the need for large-
scale, longitudinal datasets, as outcome data such as mesh infection may not manifest until months or even
years after the initial procedure®. These delayed outcomes make it crucial to gather and analyze data over
extended periods, often involving patients” health trajectories, lifestyle changes, and treatment responses
over time.

Moreover, effectively predicting these outcomes requires the integration of diverse data sources. For
instance, preoperative imaging can provide insight into the patient’s anatomy and potential risks associated
with surgery, while EHRs offer a comprehensive history of the patient’s medical conditions, previous
treatments, and comorbidities. Blood biomarkers, genetic information, and physiological data from
wearable devices can reveal critical details about the patient’s internal processes and response to treatment,
contributing to a more personalized and accurate prediction model.

In addition to these external data sources, intraoperative factors - such as the surgeon’s skill, experience, and
technique - play a vital role in the success or failure of a procedure, further complicating the prediction
process. The combination of all these data sources can provide a holistic view of the patient’s condition, but
it also introduces challenges in data integration, quality control, and analysis. More research into advanced
AT and ML models, which can handle such complex, multidimensional datasets, is essential for improving
the accuracy of outcome predictions, ultimately helping healthcare professionals make better-informed
decisions.

Intraoperative assistance
AT may contribute to intraoperative assistance in AWS in several ways:
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Enhanced surgery visualization and safety: Al systems can integrate data from multiple sources to provide
surgeons with enhanced visualization. For instance, we have developed Al models to automatically detect
and track seven key anatomical structures in transabdominal preperitoneal (TAPP) inguinal hernia
repair". This AI system, which can integrate with robot arm movement data, may be used to continually
visualize structures even if they are obscured by bleeding or a prosthetic. This visualization could enhance
safety in inguinal hernia surgery by reducing complications, especially chronic postoperative pain due to
improperly located prosthetic staples, and preventing vascular injury near the “Triangle of Doom”.

Procedure monitoring, standardization, and quality assurance: Procedure guidelines, such as the “10 Golden
Rules” in MIS inguinal hernia repair'*”, were proposed to improve hernia repair quality and standardization.
However, they are not widely adopted due to a lack of awareness/training, clinical practice variability, and
guideline complexity. Al systems may significantly increase guideline adoption" by continually monitoring
surgical video data and validating guideline conformity in real time.

We have made the first advances in this direction by developing an Al system that detects critical structures
that must be exposed to ensure a complete TAPP inguinal hernia dissection"®. This model may be
integrated with a mesh detection model to alert the surgeon if they attempt to place a mesh over an
inadequately dissected hernia. We have also developed an AI model to divide TAPP surgical videos into
seven main surgical steps automatically”. The steps may be nonsequential, typical in bilateral repairs, and
the system can process live and archive videos. It has various applications, including quantifying time spent
on each step, which can be applied to enhance OR efficiency by, e.g., alerting the support staff to prepare the
mesh when the dissection is nearing completion. In the future, these Al models will be enhanced in analysis
depth, e.g., quantitative assessment of dissection zones, mesh coverage, and tissue tension, and their
application breadth for use in different abdominal wall procedures.

Automated surgery reports: Al systems are being developed to analyze surgical images and videos and to
generate automated reports'*’. They are likely to be adapted to AWS soon. This may reduce the burden on
the surgical staff while also providing a comprehensive and systematic surgical record of every procedure.
Using video-based recognition models, they may also provide information beyond that of standard reports,
including a detailed log of events and surgical actions/decisions.

Emergency surgery

Abdominal wall emergencies, such as incarcerated or strangulated hernias, pose significant challenges that
differ from elective procedures. In these situations, time is critical, and surgeons must make rapid decisions
to prevent complications like bowel ischemia, perforation, and sepsis. Unlike planned surgeries, where there
is time for thorough preoperative imaging and detailed surgical planning, emergency cases often require
immediate action based on clinical judgment and limited diagnostic information.

One of the most pressing concerns in emergency AWS is determining whether bowel loops trapped within a
hernia sac remain viable or need resection. This decision is traditionally made based on visual inspection
and subjective assessment of factors like bowel color, peristalsis, and pulsation. However, misjudging bowel
viability can lead to either unnecessary resections or, conversely, leaving necrotic tissue in place, both of
which can result in severe complications. Al-assisted imaging techniques, such as real-time perfusion
analysis using near-infrared fluorescence***! or hyperspectral imaging***”, could help surgeons make more
accurate assessments and reduce errors in intraoperative decision making.

46,47]
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Another major challenge in emergency settings is deciding whether to use prosthetic mesh for hernia repair,
particularly in contaminated fields where the risk of infection is high. In elective procedures, careful patient
selection and preoperative optimization help mitigate these risks, but in emergencies, there is often little
time for such preparation. Al-driven predictive models could help guide decision making by analyzing
patient-specific risk factors, surgical conditions, and historical outcomes to suggest the safest and most
effective repair approach.

Patient fragility is another key factor influencing surgical outcomes in emergencies. Many patients
presenting with abdominal wall emergencies are elderly or have significant comorbidities such as diabetes,
cardiovascular disease, or immunosuppression, making them more vulnerable to complications. Al-based
risk stratification tools could assist surgeons in determining the best course of action, balancing the risks of
immediate surgery against the potential for conservative management in high-risk patients.

Postoperative complications are more common in emergency AWS than in elective cases. Issues such as
SSIs, wound dehiscence, and anastomotic leaks can significantly prolong hospital stays and increase
morbidity. AI-driven early warning systems, which continuously monitor vital signs, laboratory results, and
other patient data, could help detect complications at an earlier stage, allowing for timely intervention and
potentially improving patient outcomes.

Postoperative care

The postoperative phase is crucial for ensuring smooth recovery and early detection of complications
following AWS, particularly in hernia repair and reconstruction. There has been limited research in this
area specific to AWS; however, we expect systems to be developed focusing on the following key areas:

Vital Sign Monitoring: AI algorithms can analyze real-time data from wearable sensors to track key
physiological parameters, such as heart rate, oxygen saturation, and body temperature™*”. In the context of
AWS, they could be valuable tools for early detection of complications like infection or respiratory distress.

Wound Assessment: Postoperative wound care is critical in hernia repair to prevent complications such as
infection or poor healing. Al-driven image recognition tools can be used to monitor the surgical site,
detecting early signs of infection, dehiscence (wound opening), or excessive swelling!**". For instance, Al
can analyze visual data from wound images to identify abnormal signs like increased redness, warmth, or
fluid accumulation, allowing clinicians to intervene early and reduce the risk of wound-related
complications.

Mesh Complication Detection: Mesh complications in hernia repairs can include abscesses, hematomas,
seromas, fistulas, bowel obstructions, mesh retraction, granulomas, and recurrent hernias. Imaging
techniques, particularly ultrasound® and CT"?, are valuable tools for diagnosing these complications at
earlier stages, allowing for timely intervention and adjustment of treatment plans. Over the past few years,
the integration of AI into medical imaging has significantly transformed healthcare®”. We believe these
technologies should be incorporated into routine postoperative examinations for mesh complication
detection. By doing so, AI can enhance detection rates, reduce the burden on expert radiologists, and
improve overall efficiency in patient care.

Personalized Recovery Plans and Patient Follow-up: By leveraging AI for personalized recovery planning,
postoperative care for abdominal wall reconstruction and hernia repair patients can be more efficient and
tailored to individual recovery processes. Al-driven models analyze factors such as preoperative health,
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surgical complexity, lifestyle, genetics, and real-time recovery data to create customized recovery plans.
These plans could:

« Optimize recovery trajectories: Where Al systems propose adapting the recovery plan in real time,
ensuring pain management””, physical therapy, and wound care are tailored to the patient’s progress.

« Reduce hospital stays: Where recovery metrics are monitored in real time, leading to AI systems helping
recommend when patients are ready for discharge™, reducing unnecessary hospital stays while maintaining
optimal recovery outcomes.

+ Offer customized exercise reccommendations: Where AI systems could make personalized exercise
recommendations to strengthen abdominal muscles while ensuring the integrity of the surgical repair.

Virtual health assistants: Al is also being explored to improve patient engagement and postoperative follow-
up through automated systems and virtual health assistants. LLMs integrated into conversational Al systems
are being investigated to facilitate routine follow-ups™”’, answer common patient concerns, and guide them
through the recovery process. Al-powered rehabilitation programs can monitor patient mobility, guide
core-strengthening exercises, and provide real-time feedback to prevent strain on the healing abdominal
wall. These interventions can be particularly beneficial for high-risk hernia repair patients who require
specialized recovery strategies.

Surgery education
The roles of AI in surgery education are likely to be wide-ranging, from realistic simulation-based
58,59]

training***”), creation of personalized learning pathways, and video-based competency assessment'® to Al-

curated case studies, technical skill assessment"”, and the enhancement of video-based learning platforms

[61

such as WebSurg'*’. Additionally, LLMs such as ChatGPT can process, generate, and synthesize vast
amounts of medical knowledge, making them increasingly valuable tools in surgery education. A very
promising future direction is the integration of LLMs with surgery video education to enable students to
learn about video content using natural conversational language. To this end, there has been some recent
research in Visual Question Answering, such as Surgical-VQA'*, which is an AI model trained to answer

questionnaires on surgical procedures based on the procedure’s video.

The use of LLMs regarding surgery, however, extends far beyond education, as indicated in the previous
section. The applications range from improving patient communication®”, helping document clinical
research!®, performing statistical analysis, and identifying study biases'” to generating code to assist the
development of medical device software!*,

DISCUSSION

From research to clinical deployment

Advancing from research to clinical deployment of AI in AWS

The application of Al technologies to AWS is in its infancy. As highlighted above, numerous applications
are being investigated in the research literature; however, none have yet translated into routine practice.

In the development of Al technologies for AWS and hernia repair, including our own research"*'”, pre-
recorded surgical videos have been instrumental in model development and validation. While these
retrospective datasets provide a strong foundation, they also present key limitations.

One major challenge is that Al models are typically evaluated based on task performance metrics, such as
structure recognition rates, without direct assessment of their real-world clinical impact. Transitioning from
retrospective validation to real-world implementation in AWS is a complex, multi-step process.
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Al models must be seamlessly integrated into the clinical workflow to provide real-time assistance without
disrupting surgical autonomy or established protocols. A critical step in this transition is prospective clinical
validation, often through randomized controlled trials (RCTs) or cohort studies. These studies would
compare Al-assisted hernia repairs to traditional methods, assessing key outcome metrics such as
complication rates (e.g., infection or recurrence), surgical efficiency (e.g., operation time), and long-term
patient recovery, including pain management and return to daily activities. However, conducting such
studies is time-intensive and resource-demanding. Moreover, integrating Al into AWS requires
compatibility with hospital IT infrastructure, including EHRs and surgical planning tools.

It is also important to recognize the importance of developing Al systems that are robust enough to adapt to
anatomical variations. One strategy to improve AI’s adaptability in these cases is the inclusion of diverse
datasets during the training phase, incorporating a wide range of anatomical variations and patient-specific
characteristics. While this mitigates the issue, it may not completely eliminate it. Continuous monitoring
and recalibration of AT models, based on real-time feedback and postoperative data, will help improve the
model’s ability to provide accurate guidance across diverse patient populations. A promising future research
direction is to develop Al systems to flag cases where anatomical features deviate significantly from the
norm, prompting the surgeon to make additional assessments or adjustments.

To ensure accountability, prospective validation studies must meticulously document surgical decisions
both with and without AI assistance. This allows researchers to directly attribute any observed outcome
changes to Al intervention. Furthermore, long-term follow-up is crucial, as A’s true impact may take time
to manifest. In hernia repairs, for instance, complications like chronic pain, mesh-related issues, or
recurrence may only emerge months or years post-surgery.

AT technologies in AWS, particularly hernia repair, hold great promise, but significant cost-effectiveness
challenges remain. While university research often produces the initial R&D results and methods, these
innovations are typically commercialized by medtech companies, which fund further development, clinical
trials, and validation. Hospitals, while not responsible for the R&D costs, must still invest in integrating
these technologies into their existing infrastructure. This includes upgrading hardware, software, and
training staff - expenses that can be substantial, especially if immediate benefits do not translate into clear
financial returns.

A critical barrier to Al adoption in hernia repair is insurance reimbursement. Insurers may hesitate to cover
these higher-cost procedures without clear evidence of cost savings or improved outcomes. The long-term
benefits of Al - such as reduced follow-up surgeries or complications - may not be immediately reflected in
short-term cost metrics, making it harder for hospitals to justify the additional investment. Reimbursement
models need to adapt to consider both short-term expenses and long-term benefits, aligning the financial
interests of hospitals, insurers, and medtech companies. Hospitals require clear financial incentives,
including reimbursement models that reflect both immediate costs and long-term benefits. Demonstrating
AT’s ability to improve patient outcomes and reduce long-term healthcare costs will be essential in
overcoming cost-effectiveness and reimbursement challenges, ensuring the broader adoption of AT in AWS.

Leveraging AI models with managed uncertainty: imperfection does not invalidate utility

It is important to state that in general, an AI model does not need to be perfect to be useful. Any ChatGPT
user will attest to that. Indeed, if this were not true, research in AI and surgery should have stopped long
ago, because the complexity of surgery data and surgical tasks practically ensures that AI model outputs will
have at least some uncertainty. The Al systems described in this article will be deployed in clinical practice
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only if the risks associated with uncertain predictions have been established in clinical trials and the benefits
to the patient outweigh the risks. Understanding, communicating, and managing the risks associated with
prediction uncertainty will be key to success.

Al model prediction uncertainty arises from two main factors: epistemic uncertainty and aleatory
uncertainty. It is crucial for all stakeholders and users of Al, including surgeons making critical decisions
based on Al results, to understand these concepts.

Epistemic Uncertainty: This type of uncertainty comes from a lack of knowledge or information. It is
considered reducible, meaning that adding more training data can help the model better capture underlying
patterns or relationships, leading to a more accurate representation of the system.

Aleatory Uncertainty: In contrast, aleatory uncertainty is caused by the inherent randomness and variability
present in the data. This type of uncertainty is irreducible - no matter how many additional data are
collected, the inherent variability in the data remains.

Considering epistemic uncertainty, if an Al system is trained on a dataset that lacks diversity in terms of
patient demographics or surgical techniques, or patient abnormalities due to prior surgeries, surgery
technique recommendations may be untrustworthy due to high epistemic uncertainty. Ensuring that Al
models are trained on diverse and representative datasets reduces epistemic uncertainty, and the only way
to understand if the uncertainty is sufficiently reduced is through rigorous model testing with appropriate
external validation'”.

However, reducing epistemic uncertainty alone is not sufficient to guarantee trustworthy results. For
instance, a digital twin’s accuracy is limited by the imaging modality from which it was generated. Various
anatomical structures may not have sufficient contrast for unambiguous delineation, especially in non-
contrast-enhanced CT. Consequently, a digital twin may be imperfect, no matter how many data are used
for training. This is an example of aleatory uncertainty. By definition, this is irreducible, and whether it is a
problem depends, crucially, on the intended use of the model’s predictions. Before investing considerable
research effort in developing a model and gathering training data, this should be fully understood.

Pragmatically, one should always estimate the aleatory uncertainty before investing time in AI model
development. One of the best ways to do this is to have multiple expert surgeons perform the task
independently and then measure their inter-rater agreement. A high disagreement indicates high aleatory
uncertainty, which may prohibit the possibility of a useful AI model ever being developed. We performed
this kind of analysis when we were researching our system to automatically verify the completion of the
critical view of the myopectineal orifice (CVMPO)", which helped steer the research toward a more
focused goal of detecting critical structures in the CVMPO. Initially, we aimed to automatically verify the
completion of every step according to CVMPO guidelines™. However, our preliminary inter-rater analysis
revealed that several steps, such as assuring dissection clearance of 2 cm from Cooper’s ligament, had a low
agreement among surgeons. This was due to the high difficulty in visually determining the absolute size of
structures in a scene from single-lens (monocular) laparoscopic images. Instead, we focused on detecting
critical structures, including Cooper’s ligament, which was a substantially more objective task (with less
aleatory uncertainty). Aleatory uncertainty can sometimes be reduced by altering the nature of the data - for
example, by using contrast-enhanced CT scans to improve image clarity and image segmentation
performance. However, in other situations, reducing this uncertainty may not be feasible without disrupting
the surgeon’s workflow or making the process impractical. For instance, we have shown that AT models can
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recognize nerves below the surface using data from a hyperspectral camera'®, and more accurately
compared to a standard color camera used in laparoscopy. This has the potential to improve the safety of
inguinal hernia repair. However, this camera is a specialized device that is more expensive and bulkier than
a standard camera used in MIS, and it does not provide high frame rates. So, on the one hand, aleatory
uncertainty can be reduced using a specialized camera, but on the other hand, one must balance this with
any associated impracticalities or costs.

While various Al prediction models have been proposed in the literature, the next phase, before clinical
deployment, should also involve developing models that can convey accurate assessments of their
prediction uncertainty using model calibration”. Calibration is required to ensure high uncertainty is
communicated when a prediction is likely to be incorrect.

In this sense, the AI models serve as a tool to assist surgeons, rather than as a replacement for human
expertise, who will need to assimilate the predictions and uncertainty information in their decision-making
processes. Al models will continue to improve, yet adequate training of surgeons to use them as tools, with a
transparent understanding of their inherent limitations, will be fundamental to success. This will require a
collaborative effort on both sides. AI models will be required to provide results and justification for their
results - known as “explainable AI”"". AT models should also convey the sources of uncertainty.

On the other hand, surgeons will need additional training in data science and ML so they may understand
how to interpret Al-generated outputs and safely integrate Al into their decision-making processes. This is
not a simple feat. In radiology, recent studies show that, despite training, incorrect predictions can
negatively influence a clinical decision due to over-reliance on the technology. For instance, radiologists
were more likely to miss pathological findings in mammograms when an Al system also missed them'..

As AT technology advances, its application in AWS is expected to increase, contributing to more
personalized and efficient surgical practices. Surgeons must remain informed about these developments and
adapt to emerging technologies to optimize patient outcomes while upholding established standards of care.
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