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Abstract
The partition coefficient (log P) is a critical parameter that measures the balance between hydrophilicity and 
lipophilicity of molecules, playing a key role in molecular material design and drug development. Developing 
accurate, efficient, and computationally simple models for log P prediction is essential for advancing drug discovery 
and materials science. In this study, we introduce the optimized 3D molecular representation of structures based 
on electron diffraction descriptor (opt3DM) into machine learning (ML) frameworks, achieving highly accurate log 
P predictions. By fine-tuning key parameters, the scale factor (sL) and descriptor dimension (Ns), we identified the 
optimal values of sL = 0.5 and Ns = 500. Among various ML algorithms tested, automatic relevance determination 
(ARD) regression, Ridge regression, and Bayesian Ridge regression demonstrated superior predictive performance. 
These optimized models outperformed the OPEn structure-activity/property relationship app (OPERA) model on 
the M-dataset and also delivered competitive results in the SAMPL6 and SAMPL9 challenges. Our findings not only 
establish a robust, fast, and precise approach for log P prediction, but also highlight the potential of opt3DM as a 
powerful tool for molecular representation. This work lays a foundation for broader applications in molecular 
material design and drug development.

Keywords: Molecular descriptor, machine learning, partition coefficient, optimized 3D MoRSE descriptor, SAMPL6, 
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INTRODUCTION
The log P value, which denotes the base-10 logarithm of the partition coefficient between two immiscible 
phases, is a critical physicochemical property that provides essential information about a molecule’s 
pharmacokinetics, toxicity, and bioavailability, making it a key factor in drug design. Accurate prediction of 
log P aids in optimizing the absorption, distribution, metabolism, and excretion properties of drug 
candidates, thereby reducing costs and accelerating the drug discovery process. For example, log P is part of 
Lipinski’s Rule of Five, which serves as a significant guide in oral drug development. According to the rule, 
the calculated n-octanol-water log P value will be less than 5[1]. Additionally, log P significantly affects the 
solubility and miscibility of solution-processed organic materials, such as organic photovoltaic materials 
and organic light-emitting diodes, which are crucial for the morphology and performance of organic active 
layers[2,3]. Therefore, fast and accurate log P estimation is highly demanded.

Recent advances in computational chemistry have led to the development of several sophisticated methods 
aimed at accurately predicting the log P values of molecules. These methods range from empirical 
quantitative structure-property relationship (QSPR) models, which rely on historical data and molecular 
descriptors, to more complex physics-based approaches, such as molecular dynamics (MD) simulations[4-6] 
and quantum chemical (QC) calculations[7-9]. Earlier QSPR approaches were widely used in the prediction of 
log P in the 2000s. However, recent years have seen improved predictive performance with more 
sophisticated, physics-based approaches, as evidenced in the SAMPL6 and SAMPL9 challenges. For 
example, In October 2019, Procacci et al. utilized the CHARMM general force field (CGenFF) in a 
nonequilibrium alchemical approach in the SAMPL6 challenge, achieving a root mean square error (RMSE) 
of 0.82[4]. Nikitin employed a Toukan-Rahman water, resulting in an RMSE of 0.75[5]. Tielker et al. applied 
the embedded cluster reference interaction site model (EC-RISM) solvation model with quantum-chemical 
(QC) calculations, attaining an RMSE of 0.47[7]. Guan et al. also made strides with the solvation model 
density (SMD) solvation model, achieving an RMSE of 0.49[8]. Loschen et al. used the conductor-like 
screening model for realistic solvation (COSMO-RS) approach, achieving a lower RMSE of 0.38[9]. However, 
the COSMO-RS method encountered difficulties in predicting the log P values of molecules exhibiting 
dimerization effects, as it tends to overestimate their hydrophilicity, thereby diminishing the accuracy of the 
predictions. To enhance the predictive accuracy, additional data and computational efforts are necessary. 
This indicates that complex approaches are not invariably precise.

In 2020, machine learning (ML) made significant strides in the SAMPL6 challenge. Prasad et al. developed a 
deep learning approach that achieved an RMSE of 0.61[10], which used the extended-connectivity finger 
printing (ECFP) to make a vector space representation of the molecule as the input to the neural network. 
Meanwhile, Lui et al. presented a ML-QSPR model that further excelled with an even lower RMSE of 
0.49[11], outperforming all MD methods. Later, in 2021, Ulrich et al. introduced a new deep learning 
approach that surpassed the best results of the COSMO-RS method in the SAMPL6 challenge, with an 
RMSE of 0.33[12]. Their approach utilized data augmentation by taking potential tautomers of chemicals. 
Continuing this trend, in the SAMPL9 challenge, two ML approaches by Zamora et al. claimed the top 
spots, with RMSEs of 0.84 and 0.86[13], using their meticulously selected high-quality dataset. Topological 
indices and graph algorithms have been rapidly developed in recent years. The optimization of topological 
indices and graph algorithms will promote the predictive capability of deep learning models and lead to 
accurate prediction[14]. For example, these models with graph algorithms were implemented to predict log P. 
Nevolianis et al. implemented the directed-message passing neural network (D-MPNN) to predict the log P 
values of molecules in the SAMPL9 data, achieving an RMSE of 1.02[15]. However, despite its greater model 
complexity and longer training times, the predictive performance did not significantly improve and the 
GNN did not demonstrate significantly superior predictive performance over other approaches.
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Generally, the accuracy of log P prediction, no matter which methods and how complex models were used, 
remains limited. In this work, we were trying to develop the optimized 3D molecule representation of 
structure based on electron diffraction descriptor (opt3DM) descriptors by implementing a scale factor (sL) 
to realize highly accurate log P prediction. After optimizing the sL and dimension, the accuracies of our 
models are comparable, and even higher than QC- and MD-based models. By training ML models on the 
M-dataset, we achieved the lowest RMSE of 0.31 on the SAMPL6 data among all approaches. This work not 
only achieved fast and accurate methods for log P prediction, but also demonstrated that the simple ML-
based models can realize better evaluations than more advanced ML models and QC and MD simulations 
by using only efficient opt3DM descriptors.

METHODS
Dataset
In 2018, Mansouri et al. developed the OPEn structure-activity/property relationship app (OPERA) models
based on their dataset[16]. We used their data as the initial training and testing sets, referring to it as M-
dataset. The M-dataset was derived from the available PHYSPOROP physicochemical property and
environmental fate datasets, with extensive curation conducted to ensure data quality. It provided log P
values and chemical structure formats for 14,050 molecules, along with identifiers such as simplified
molecular input line entry specification (SMILES) and structure data file (SDF). In this work, SMILES of
13,963 molecules and their experimental log P values were selected to create the descriptors. Finally,
descriptors of 13,952 molecules were calculated using homemade code based on the RDKit library.

The datasets for prediction were obtained from the SAMPL6 challenge and the SAMPL9 challenge. The
SAMPL6 challenge provided a set of 11 drug-like molecules in SMILES string format and their experimental
values, and the SAMPL9 challenge provided 16 molecules [Figure 1], which had experimental log P values
ranging from -1.37 log P units to 4.92 log P units. With the SMILES provided, the descriptors used for
prediction were created in the same way as the ones used for training and testing.

Descriptors
The concept of 3D molecular representation of structures based on electron diffraction (3D-MoRSE)
descriptors was initially introduced by Schuur, Selzer, and Gasteiger in 1996[17,18]. These descriptors are
expressed as I (s) = ∑i=2∑j=1AiAjf (s,rij), where f (s,rij) = sinsr serves as the core function, where s is the
scattering parameter ranging from 0 to 31 Å-1, rij is the distance between i th and j th atoms, N is the total
number of atoms, and Ai and Aj are the atomic weights, which can be unweighted or represent various
atomic properties. The atomic weights used in this work are shown in Table 1.

Our previous works have shown that the ML approach with intermolecular 3D-MoRSE descriptors could
realize very high electronic coupling prediction between molecules[19] and the opt3DM descriptors could act
as efficient descriptors for developing interface modifiers in perovskite solar cells[20]. Based on these works,
we here optimized 3D-MoRSE descriptors for the log P prediction. A sL was added to adjust f(s, rij), which is
defined as f (s,rij) = sinsxs. By meticulously adjusting the coefficients (s × sL) and the dimension (Ns,
range of s), this updated descriptor set has demonstrated the potential to surpass all currently available
descriptors in terms of prediction accuracy. As found, the best prediction results were calculated when sL =
0.5 and Ns = 500.

ML model
The ML algorithms used in this work were implemented with the scikit-learn library. Our ML models
consisted of a feature selector and a fitting regressor. The SelectFromModel, a feature selector from the
scikit-learn library, served as the selector in the ML model. Various algorithms, including automatic
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Table 1. Atomic weights used in the optimized 3D MoRSE descriptors

Abbreviation Illustration

morU 1.0

morM Atomic mass

morV Atomic van der Waals volume

morP Atomic polarizability

morE Atomic Sanderson electronegativity

morC Atomic charge

morIP Atomic ionization potential

morIS Atomic intrinsic state

morRC Atomic covalent radius

3D MoRSE: 3D molecular representation of structures based on electron diffraction.

Figure 1. (A) Eleven molecules in the SAMPL6 log P challenge; (B) Sixteen molecules in the SAMPL9 log P challenge.

relevance determination (ARD) regression, Bayesian Ridge, and Ridge, were employed in both the feature 
selection and regression stages. These algorithms were trained on the M-dataset to identify the most suitable 
ones for the ML model, as illustrated in the subsequent sections. The selected ML model was used for the 
prediction of the SAMPL6 and the SAMPL9 datasets. The mean absolute error (MAE), RMSE, and 
coefficients of determination (R2) serve as evaluation metrics, which are defined as
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Where n represents the number of molecules, and yi and yi are the experimental values and the predicted 
values of log P, respectively.

RESULTS AND DISCUSSION
Prediction on the M-dataset
The M-dataset, created by Mansouri et al., is a dataset providing information for predictions on 
physicochemical properties and other fields and it is available on GitHub[21]. The log P distribution is shown 
in Supplementary Figure 1. Mansouri et al. utilized genetic algorithms (GA) to select features and employed 
a k-nearest neighbors (KNN) approach for model fitting and prediction[16]. Their GA-KNN model achieved 
an RMSE of 0.78 and an R2 of 0.86 in the test set.

To achieve the best prediction on the OPERA dataset, selecting descriptors and algorithms is crucial. By 
introducing the sL, the range and sensitivity of the coefficients can be adjusted. The sL serves as a parameter 
that adjusts the granularity at which the descriptors operate. A lower sL increases the sensitivity of the 
descriptors, allowing them to detect finer variations in the molecular stackings, while a higher sL might 
simplify the descriptor, potentially overlooking critical details. Following our previous work[20], we have 
implemented algorithms referred to in the Methods section and tested the sL from 0.03 to 3.0 and the Ns up 
to 500 on the M-dataset with 90% for training and 10% for testing [Supplementary Tables 1 and 2]. 
Figure 2A shows the sL-dependent RMSEs of various algorithms with descriptors calculated with 100 
dimensions (Ns = 100). The Ridge, Bayesian Ridge, and ARD regression achieved lower RMSEs among the 
algorithms, in which we found that the optimal sL is between 0.1-1.0. As shown in Figure 2B, the result 
showcased that feature selection did not affect the selection of sL. Second, we increased the dimension to 500 
and screened sL in the optimal range with 10 tests [Table 2]. The best prediction result (with the smallest 
average RMSE for independent ten predictions) was achieved when sL = 0.50 and Ns = 500.

To abstract as much information as possible from molecules, a large Ns is required. However, the large Ns 
increases the dimension, and also includes some reductant information. Therefore, a feature selection was 
necessary. We employed the SelectFromModel module (Meta-transformer for selecting features based on 
importance weights, which is a module in the scikit-learn library) with ARD regression as the estimator for 
feature selection. In this process, we used 90% of the dataset to select features and to train the ML model, as 
10% of the dataset was set for testing. The dataset was split randomly with a random state ranging from 0 to 
20 in order to obtain robust and reliable results. Moreover, a threshold was set for finding the optimal 
dimension and we found the optimal threshold was 0. 1 [Supplementary Tables 3-8]. However, noticing that 
the reduction of feature dimension may enhance the generalized capability, features selected at a threshold 
of 0.05 will be considered. To test the average performance of these descriptors, we employed these 
descriptors to fit the model and predict the test set based on those divided datasets. The average 
performance of descriptors selected in various thresholds and the dimensions of these descriptors are shown 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/jmi4061-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/jmi4061-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/jmi4061-SupplementaryMaterials.pdf
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Table 2. The RMSEs of prediction for the test set of M-dataset with various algorithms and optimized 3D-MoRSE descriptors 
calculated by selected sL and Ns

Parameter Regressor Average RMSE (lowest, highest)

ARD 0.73 (0.68, 0.74)

Ridge 0.77 (0.71, 0.88)

sL = 0.1, Ns = 500

Bayesian Ridge 0.73 (0.69, 0.76)

ARD 0.72 (0.67, 0.76)

Ridge 0.74 (0.69, 0.78)

sL = 0.2, Ns = 500

Bayesian Ridge 0.71 (0.68, 0.75)

ARD 0.72 (0.67, 0.78)

Ridge 0.72 (0.67, 0.79)

sL = 0.5, Ns = 500

Bayesian Ridge 0.71 (0.67, 0.77)

ARD 0.81 (0.77, 0.92)

Ridge 0.79 (0.71, 0.88)

sL = 1.0, Ns = 500

Bayesian Ridge 0.77 (0.72, 0.87)

The test size was 0.1. RMSEs: Root mean square errors; 3D MoRSE: 3D molecular representation of structures based on electron diffraction; ARD: 
automatic relevance determination.

Figure 2. The RMSEs of predictions for the test set of M-dataset with various algorithms and optimized 3D-MoRSE descriptors 
calculated by various sL. (A) The sL-dependent RMSE without descriptor selection; (B) The sL-dependent RMSE with descriptor selection. 
The testing ratio was 0.1. The descriptors were selected using ARD regression. RMSEs: Root mean square errors; 3D-MoRSE: 3D 
molecular representation of structures based on electron diffraction; ARD: automatic relevance determination.

in Figure 3.

To have a direct comparison with the work of Mansouri et al., we used the same dataset and training and 
testing splitting ratio of 0.75:0.25[16]. To ensure robustness, the dataset was partitioned into training and test 
subsets 20 times with different random states, resulting in 20 distinct tests [Supplementary Table 9]. This 
iterative process mitigates the risk of coincidental outcomes and substantiates the model’s dependability. 
The best and the worst predictions have not much difference in prediction accuracy, as shown in Figure 4, 
demonstrating that our models are very stable and robust. Table 3 lists the performance of the OPERA 
model and our models. The OPERA model predicts on test set for one time and achieves an RMSE of 0.78, 
while our models demonstrate an average RMSE of 0.68. Collectively, these results indicate that our model 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/jmi4061-SupplementaryMaterials.pdf
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Table 3. Comparison of the performance of our model and the OPERA model

Parameter Regressor RMSE (lowest) R2 (highest) Note

The OPERA model KNN 0.78 0.86 One simulation

sL = 0.5, Ns = 500 ARD 0.68 (0.66) 0.86 (0.87) Average of 20 simulations

sL = 0.5, Ns = 500 Ridge 0.68 (0.66) 0.86 (0.87) Average of 20 simulations

sL = 0.5, Ns = 500 Bayesian Ridge 0.68 (0.66) 0.86 (0.87) Average of 20 simulations

Both results of the best random state and the average results of all random states are provided. The test size was 0.25. Descriptors are selected 
from the SelectFromModel module with Thresholds = 0.05 using the ARD regression as the estimator. OPERA: OPEn structure-activity/property 
relationship app; RMSE: root mean square error; R2: coefficients of determination; KNN: k-nearest neighbor; ARD: automatic relevance 
determination.

Figure 3. The RMSEs and feature dimensions of models using descriptors selected with various thresholds. (A) The RMSEs of models 
fitted with various algorithms. The optimal threshold was around 0.001 and 0.05; (B) The feature dimension decreased rapidly with the 
increased threshold. RMSEs: Root mean square errors.

demonstrated superior performance compared to the OPERA model.

Predictions on the SAMPL6 dataset and the SAMPL9 dataset
The SAMPL6 and the SAMPL9 challenges are the two most famous log P challenges, having received over 
100 submissions from various groups. To verify the reliability of our models, we utilized the selected 
descriptors and models trained on the M-dataset to predict the log P in the SAMPL6 and SAMPL9 
challenges.

We employed the ARD regression, Bayesian Ridge Regression and Ridge Regression to train our models, 
which achieved average RMSEs of 0.309, 0.326 and 0.329 [Supplementary Tables 10 and 11], respectively. 
Notably, the minimum values achieved was an RMSE of 0.29 [Figure 5A]. The comparative performance of 
our models and other state-of-the-art models on the SAMPL6 dataset is detailed in Supplementary Table 10 
and Figure 6A. The other models encompassed various methodologies, including deep learning, QC 
calculations, MD simulations, and other complex approaches. Our models outperformed most of the 
challengers. Among them, only the deep neural network with tautomer (DNNtaut) and the deep neural 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/jmi4061-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/jmi4061-SupplementaryMaterials.pdf
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Figure 4. The experimental log P values and the ML predicted log P values. (A) The ARD regression model with the best (A) and the 
worst (B) performance in 20 simulations with different random states; The Bayesian Ridge regression model with the best (C) and the 
worst (D) performance in 20 simulations with different random states. The Ridge regression model with the best (E) and the worst (F) 
performance in 20 simulations with different random states. All models used the coefficient set sL = 0.5 and Ns = 500. The test set was 
0.25. ML: machine learning; ARD: automatic relevance determination.
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Figure 5. The experimental and predictive log P using the ARD regression model with the best random state. (A) This image showcases 
the prediction performance on the SAMPL6 dataset. The error range was 0.30; (B) This image showcases the prediction performance on 
the SAMPL9 dataset. The error range was 1.00. The MAE, RMSE, and R2 are provided. The model was trained on the M-dataset using 
the coefficient set sL = 0.5 and Ns = 500. ARD: Automatic relevance determination; MAE: mean absolute error; RMSE: root mean square 
error; R2: coefficients of determination.

network with original SMILES (DNNmono) demonstrated similar performance compared to ours. The 
DNNmono, a deep learning model developed by Ulrich et al., reported the lowest RMSE of 0.31 and typical 
RMSE of 0.33 in their other models[12]. Our models show the lowest RMSE on the SAMPL6 challenge among 
all models, outperform QC- and MD-based models, and also surpass deep neural network models. They 
offer advantages in terms of complexity, indicating faster prediction times. Additionally, these models 
exhibited commendable stability, which is reflected in the compact distribution of MAE, RMSE, and R2 
across 20 stochastic parameter configurations. Overall, our models provided the most accurate prediction 
on the SAMPL6 dataset among more than 100 submissions, emphasizing the superior efficiency of our 
developed opt3DM descriptors.

Our models not only demonstrated robust performance in the prediction of the M-dataset and the SAMPL6 
dataset, but also showed good prediction in the SAMPL9 challenge. From 2021 to 2023, submissions to the 
SAMPL9 challenge showed varied results, with RMSEs ranging from 1.52 to 2.95[15,22] [Supplementary Table 
12]. Later, Nevolianis et al. replicated the success of the COSMO-RS approach in the SAMPL9 challenge 
achieving an RMSE of 1.23[23]. Despite their sophistication, these physics-based approaches demand 
substantial computational resources as their model requires QC calculations. Besides, the submission by 
Nevolianis et al. to SAMPL9, using the COSMO-RS approach, required 3.7 h to predict the log P of just 
sixteen molecules, indicating that predictions for a larger number of molecules would be time-
consuming[23]. By using ARD regression, we achieved the lowest average RMSE of 1.01 and attained a 
minimum RMSE of 0.97 in a single iteration [Figure 5B and Supplementary Table 13]. The best prediction 
on SAMPL9 was reported by Zamora et al.[13]. However, duplicate entries with SAMPL9 data were found in 
their training dataset[15]. Therefore, we can conclude that our model again gives the most accurate prediction 
in the SAMPL9 challenge with blind test, as shown in Figure 6B. Additionally, we trained the ML models on 
the M-dataset consisting of the n-octanol/water log P (log Po/w), and realized accurate prediction on the 
SAMLP9 data that are all toluene/water log P (log Ptol/w), demonstrating the generalization ability of our 
model in predicting log P.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/jmi4061-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/jmi4061-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/jmi4061-SupplementaryMaterials.pdf
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Figure 6. The RMSEs of various models and our models. (A) The RMSEs of models in SAMPL6 challenges and our models; (B) The 
lowest RMSEs in one literation of models in SAMPL9 challenges and our models. RMSEs: Root mean square errors.

To identify the molecular features with great importance to the log P, we performed Shapley Additive 
Explanations (SHAP) analysis[24], and the results are shown in Figure 7A and B. In previous studies, the first 
half of the sine wave period is pronounced. When sL = 0.5, the half-sine wave period is about 3.14 Å for 
MorU-2, MorRC-2, and MorIP-2. They are longer than most of the chemical bonds (about 1.5 Å) in 
molecules. As the atomic weight is 1.0 for MorU, the descriptor value is solely determined by bond lengths. 
As the bond length decreases, the MorU-2 value increases. Unsaturated carbon chains, compared to 
alkanes, generally have stronger hydrophilicity. This is because the double or triple bonds present in 
unsaturated carbon chains introduce polarity, reducing the overall non-polar nature and enhancing the 
polarity of the molecule. In unsaturated carbon chains, the presence of double bonds leads to an uneven 
distribution of electron cloud density, which imparts polarity to the molecule, thereby increasing the 
interaction with water molecules and making these molecules more hydrophilic. In contrast, alkanes, which 
only have single bonds, have a more uniform electron cloud distribution and are non-polar overall, thus 
exhibiting stronger hydrophobicity. The more unsaturated carbon chains a molecule has, the denser the 
molecule is, the larger the MorU-2 value is, and the more hydrophilic the molecule becomes. It is the same 
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Figure 7. The SHAP values of twenty ARD regression models on (A) M-dataset, (B) SAMPL 6 and SAMPL 9 and (C) The f( s, rij) of 
MorX-2 (X = U, RC, IP), MorRC-26 and MorE-9 and the function values of atoms with various distances in different chemical bonds. 
SHAP: Shapley Additive Explanations; ARD: automatic relevance determination.

for MorRC-2, which gives carbon a larger weight. Therefore, MorU-2 and MorRC-2 are negatively 
correlated with log P. The MorIP-2 gives hydrogen a larger weight. A greater MorIP-2 value indicates more 
alkanes, leading to hydrophobicity. Therefore, MorIP-2 is positively correlated with log P. For the MorE-9, 
the sine wave period is about 1.40 Å. As shown in Figure 7C, its value increases with the length of bonds in 
most cases. More alkanes cause a smaller MorE-9 value and lead to hydrophobicity. Therefore, MorIP-2 is 
negatively correlated with log P. For MorRC-26, the sine wave period is about 0.48 Å. As shown in 
Figure 7C, the C–F and C–Cl bonds in halogenated hydrocarbons which are hydrophobic give a negative 
value on the MorRC-26 curve; The C–O and C–N bonds in hydrophilic groups have little impact on the 
MorRC-26 value. Therefore, MorRC-26 is negatively correlated with log P.

Figure 8 illustrates the RMSE of different ML models applied to the SAMPL6 dataset, along with their 
complexity and computational expense. Notably, our model, being the simplest, achieved the lowest RMSE. 
Its minimal complexity also resulted in significantly reduced computational costs compared to other 
models, highlighting the efficiency of our opt3DM descriptors. These descriptors have significantly 
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Figure 8. The RMSE of predictions, model complexity and categories of various approaches on SAMPL6 dataset. RMSE: Root mean 
square errors.

advanced rapid and precise log P prediction, facilitating extensive drug and material screening.

CONCLUSION
In this work, we introduced the opt3DM descriptors and employed them to construct ML models for 
predicting log P. These ML models were trained and tested on the M-dataset. We have tested sL ranging 
from 0.03 to 3 and Ns up to 500 with various algorithms to select the most suitable parameters for the 
descriptors and efficient algorithms. We found that the best log P prediction was achieved when sL = 0.5 and 
Ns = 500. We further refined our models by selecting features for training and optimizing the algorithms, 
resulting in highly accurate predictions with an average RMSE of 0.68, which surpassed the OPERA model 
(0.78). To further verify the accuracy of our models, we trained them on the M-dataset and subsequently 
used the trained models to forecast log P values of the SAMPL6 and SAMPL9 datasets. The obtained 
average RMSE is 0.31 for SAMPL6, which is 10% lower than the current best model (0.33) among all 
challengers. Our models also give the most accurate prediction for the SAMPL9 with an average RMSE of 
1.01 when the training was performed on log Po/w datasets. It is noteworthy that while these models showed 
promising results, there is still room for improvement in the R2 values. Generally, by using efficient 
descriptors, we are able to use simple ML methods to realize accurate log P prediction comparable to the 
most accurate models based on quantum chemistry calculation and more advanced ML methods. This 
demonstrates that the opt3DM descriptors are highly efficient in representing molecules, potentially 
offering high efficiency across a broad range of applications.
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