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Abstract

Lattice thermal conductivity (x,) is crucial for e icient thermal management in electronics and energy conversion
technologies. Traditional methods for predicting «, are often computationally expensive, limiting their scalability for
large-scale material screening. Empirical models, such as the Slack model, offer faster alternatives but require time-
consuming calculations for key parameters such as sound velocity and the Griineisen parameter. This work
presents a high-throughput framework, physical-informed kappa (PINK), which combines the predictive power of
crystal graph convolutional neural networks (CGCNNs) with the physical interpretability of the Slack model to
predict x, directly from crystallographic information files (CIFs). Unlike previous approaches, PINK enables rapid,
batch predictions by extracting material properties such as bulk and shear modulus from CIFs using a well-trained
CGCNN model. These properties are then used to compute the necessary parameters for x, calculation through a
simplified physical formula. PINK was applied to a dataset of 377,221 stable materials, enabling the e icient
identification of promising candidates with ultralow «, values, such as Ag,Te,W and Ag,Te,Ta. The platform,
accessible via a user-friendly interface, offers an unprecedented combination of speed, accuracy, and scalability,
significantly accelerating material discovery for thermal management and energy conversion applications.
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INTRODUCTION

Understanding the temperature dependence of lattice thermal conductivity (k) is essential for assessing the
thermal transport capabilities of a material. This property plays a crucial role in both scientific research and
industrial applications, including thermal management in microelectronics'™”, energy conversion, and
temperature regulation”. For example, materials exhibiting high «;, such as boron arsenide (BAs), are
particularly suitable for heat dissipation in gallium nitride devices". Conversely, materials with low x; can
improve thermoelectric conversion efficiency by enabling the effective transformation of waste heat into

electrical energy'.

In recent years, significant theoretical advancements have been made in the theoretical prediction of «; in
solid materials”"”. A widely used approach for predicting «, involves solving the phonon Boltzmann
transport equation (PBTE) within the framework of density functional theory (DFT)Y, while classical
molecular dynamics (MD) simulations are particularly useful for systems with complex crystal structures"'’.

However, identifying materials with exceptionally low or high «, remains a significant challenge, mainly due
|, Moreover, calculations required
to obtain interatomic force constants (IFCs) are especially demanding for large, low-symmetry primitive
cells"”. Furthermore, the reliability of MD simulations is strongly dependent on the selection of interatomic
potentials, limiting their broader applicability""?. Besides these challenges, significant progress has been
made in accelerating material discovery and improving performance. Luo et al. reviewed the application of
machine learning (ML) for predicting «,, emphasizing the potential of high-throughput predictions and ML
potentials (MLPs) to overcome the limitations of traditional approaches"?. Liu ef al. focused on active and
reversible techniques for regulating «;, such as the use of ferroelectric, ferromagnetic, and nanomaterials,
enabling dynamic control of thermal conductivity for efficient thermal management”. Additionally, Shi
et al. examined advancements in thermoelectric materials for multifunctional energy conversion and

[12

to the high computational costs and time-consuming synthesis processes

storage technologies, highlighting ongoing challenges related to scalability, material stability, and efficiency
that must be addressed to fully realize their potential in practical applications"”. Consequently, rapid
determination of «, is crucial for advancing these materials.

Alternatively, empirical models such as the Debye-Callaway model"”"* and the Slack model"*** provide
faster and more cost-effective approaches for estimating «;. The Slack model, in particular, has been widely
applied to predict , in a variety of materials”'*. For instance, Qin et al. successfully employed the model to
quickly predict thermal conductivity, offering valuable insights into thermal transport behavior. Cao et al.
explored the n-type thermoelectric properties of ABO, cubic chalcogenides using a high-throughput
method combined with Slack modeling"*®. They screened 46 stable materials, identified four conduction
band minima structures, investigated the influence of chemical bonding on transport properties, and
shortlisted 13 candidates with high thermoelectric figure of merit (ZT) values. However, the model’s
reliance on experimental data or first-principles calculations for several parameters limits its scalability for
large-scale, high-throughput screenings. Obtaining critical parameters, such as average sound velocity,
acoustic Debye temperature, and the Griineisen parameter, often requires considerable time and resources,
posing a significant barrier.

In our previous work™, we proposed a refined formula based on the Slack model, which enables highly
accurate predictions of x, with an 8.97% mean relative error. The formula utilizes only the shear modulus,
average sound velocity, and Griineisen parameter, all of which are relatively easy to obtain. For example, the
bulk modulus (B) and shear modulus (G) can be used to derive the average sound velocity in a material™.
Additionally, significant research has been conducted to simplify the estimation of the Griineisen parameter.
Belomestnykh""! developed a method that links Poisson’s ratio with sound velocity and elastic properties,
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yielding results consistent with quasiharmonic lattice dynamics calculations. This work underscores the
strong relationship between elastic modulus and ;. The crystallographic information file (CIF) provides
comprehensive data on crystal structures, including lattice constants, crystal systems, density, and other key
parameters. However, existing approximation methods have not fully exploited this information to predict
x;. Only a limited number of studies have directly connected CIF data with «; for fast, high-throughput
predictions. For example, Ju et al. used a neural network that leveraged descriptors from a pre-trained
model to establish a relationship between crystal information and thermal conductivity™. Xie et al.
introduced the crystal graph convolutional neural network (CGCNN) method"”, which converts crystal
structure data into graph representations, enabling convolutional neural networks to predict the
relationship between crystal features and thermoelectric properties®**”. Recently, Omee et al. reviewed the
performance of five out-of-distribution (OOD) test sets across eight graph neural network (GNN) models
using elasticity datasets”. Notably, the CGCNN model achieved the best mean absolute error (MAE) for
both the Leave-One-Cluster-Out (LOCO"") test [0.0585 log10 (GPa)] and the SparseXsingle test [0.0499
log10 (GPa)], targeting structures with the lowest density and surpassing the other seven GNN models.
These findings highlight the excellent generalization capabilities of CGCNN models.

In this work, to enable rapid and high-throughput «, predictions, we integrate the physical interpretability
of our derived formula with the predictive power of the CGCNN model. This study introduces a high-
throughput framework that combines a trained modulus model with our formula, facilitating the fast
estimation of «, directly from CIF files. Encapsulated in a custom-developed web application, physical-
informed kappa (PINK), this process enables batch predictions of x;, within seconds of uploading CIF files.
Users can also customize inputs such as bulk modulus, shear modulus, and Griineisen parameter.

Our framework begins by extracting crystallographic information from the CIF files and utilizing the
trained CGCNN model to predict the bulk and shear modulus. Subsequently, physical models are applied to
calculate the average sound velocity and Griineisen parameters, which are then incorporated into a formula
to calculate the ;. Using this approach, we predict «; for 377,221 stable materials identified by Merchant
et al. through graph networks”. Building on these high-throughput predictions, we develop an efficient
method to accelerate the screening of materials with ultralow «;, applicable to any inorganic crystal structure
with one or more CIF files. This method enabled the identification of thousands of promising materials with
low «, from over 370,000 inorganic crystalline samples, with minimal computational cost. To validate our
results, we confirm the ultralow «; values for Ag Te X (X = W, Ta) through first-principles calculations. The
PINK application, powered by the CGCNN model, serves as a powerful tool for rapid material pre-
screening. It provides researchers with an efficient, user-friendly platform for estimating «;, accelerating the
discovery of materials with optimal thermal properties.

METHODS

CGCNN algorithms

Before presenting the framework of PINK, it is essential to clarify the method by which the CGCNN model
predicts material properties based on crystal structures. CGCNN, an advanced ML algorithm, uses trained
models to predict material properties with high efficiency®. The crystal structure is converted into a graph
representation, where nodes correspond to atoms, and edges represent the bonds between them. This
format allows the model to capture the local chemical environment.

Through convolutional and pooling layers, CGCNN autonomously identifies critical features necessary for
predicting various material properties, such as bulk modulus and shear modulus. These predictions are both
accurate and interpretable, providing valuable insights for the rational design of new materials. Moreover,
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the robust generalization capabilities of this model enable it to handle diverse crystal structures and
compositions, significantly accelerating the material discovery process”>***. In this study, the elastic
modulus dataset was split into training, validation, and test sets with a ratio of 80%, 10%, and 10%,
respectively. The model consisted of three convolutional layers and two hidden layers, and was trained for
30 epochs with a learning rate of 0.01.

The PINK framework

As illustrated in Figure 1, we present a comprehensive workflow for calculating «; using our automated
property prediction system. This workflow is designed to be user-friendly, requiring only CIF files as input.
To ensure accurate calculations, the system automatically converts the uploaded crystal structure into its
primitive cell format, which is essential for both CGCNN predictions and the parameters used in Equation
(2). The process begins by extracting fundamental crystallographic data from the CIF file, including the
primitive cell volume, number of atoms, and density. Next, our embedded CGCNN model, trained on
extensive material data, predicts the bulk modulus and shear modulus. Using these predicted values, custom
Python scripts calculate additional physical parameters crucial for estimating «,, including the longitudinal
and transverse sound velocities, the average speed of sound, and the Griineisen parameters. Finally, all of
these calculated quantities are systematically incorporated into Equation (2) to compute ;. This automated
workflow significantly streamlines the process of «; prediction, making it accessible to researchers without
requiring in-depth expertise in each individual computational step.

The application provides comprehensive physical property data for 377,221 new materials, including 11,869
materials screened in this study. The modified open-source CGCNN code used for predicting bulk and
shear modulus, as well as the Python scripts for CIF file processing and calculation execution (e.g.,
“app.py’), is also available. All of these data and codes are accessible via the following link: https://github.
com/Jack-Liu0227/Al4Kappa.

Surrogate an interpretable formula for x,
Recently, Wang et al. proposed a simple and universal empirical formula that exhibits strong generalization
ability and provides clear physical insights for «; of crystals, which is given as®

3 GUSV%
© nT?d

where G is the shear modulus, v, represents the average sound velocity, V is the volume of the primitive cell,
n is the number of atoms in the primitive cell, § lies between 1 and 2 (with & = 1 for three-phonon
scattering), T is the temperature in Kelvin, and y denotes the Griineisen parameter. It is important to note
that x; and v, in Equation (1) do not exhibit a conventional proportional correlation, as both G and y are
functionally dependent on v (see Supplementary Materials for details)®.

KL LN (1)

The theoretical basis of the power law is complex, involving competition between scattering processes
driven by cubic and quartic anharmonic terms"**’. For simplicity, we focus only on three-phonon
scattering, assuming ¢ = 1:

GUSV% 7
=T @

Which, derived from Slack’s approach® is useful for evaluating x, across various materials. A key aspect in
evaluating «; involves determining the average speed of sound (v,) and the Griineisen parameter (y). Jia et al.
proposed that v, can be accurately estimated from elastic properties [bulk modulus (B) and shear modulus

KL
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Figure 1. The workflow for calculating x, using PINK begins with the input of CIF files representing crystal structures. Starting with these
CIF files, the framework utilizes CGCNN to predict the bulk and shear modulus, while also extracting crystal information such as volume,
number of atoms, and density. These parameters are subsequently used to calculate both longitudinal and transverse sound velocities,
which are essential for determining the Griineisen parameter and the average speed of sound. All of these parameters are incorporated
into Equation (2), which includes the Griineisen parameter (y), volume (V), temperature (T), and other variables necessary for predicting
x,. PINK: Physical-informed kappa; CIF: crystallographic information file; CGCNN: crystal graph convolutional neural network.

(G)]"\. This approach is computationally more efficient than experimental methods or costly lattice
dynamics simulations. The bulk modulus (B) and shear modulus (G) can both be extracted from our trained
CGCNN model, providing an alternative means of estimating elastic properties and sound velocities, as
demonstrated in"*"*,

(3)
G
VU =41 [—, (4)
P
_1
| 1+2 ’ -
vs=43s|—=+t—= : 5
’ 3v;’ vl

where v, v, and v, are the average sound velocity, longitudinal sound velocity, and transverse sound velocity,
respectively, and p is the material density.

After estimating o, from the bulk modulus (B) and shear modulus (G), the next step is to determine the
Griineisen parameter, which quantifies the anharmonicity of the material*”. The speed of sound serves as an
indicator of the strength of atomic interactions, with weaker interactions generally leading to lower sound
velocities. It has been shown that the relationship between Poisson’s ratio (v) and y is as follows""*:
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(6)

X =" 3(1+v)

To2-2 YT 3l273,

where x represents the ratio of longitudinal to transverse sound velocity, x = v/v,.

Using the above method, both v, and y can be estimated quickly from elastic properties, particularly the
shear and bulk modulus. Previous studies indicate that this approach aligns well with experimental results
for cubic, isotropic, and quasi-isotropic structures**>*,

Deployment of PINK for x,

Streamlit is an open-source Python library that simplifies the creation of custom web apps for data-driven
applications. It facilitates rapid development of interactive apps by converting Python scripts into shareable
web applications in just a few minutes. Figure 2 illustrates the process of deploying an app: first, upload the
project code to GitHub, and then create the application on the Streamlit platform by selecting the relevant
project branch and Python file (e.g., app.py) to run. Setting up the application environment can be
challenging, as web applications typically require multiple Python packages with specific versions.
Fortunately, our code streamlines this process by including a requirements.txt file to ensure all
dependencies are installed correctly. This allows the application to be deployed entirely in Python without
requiring front-end experience. By leveraging Equation (2) and the CGCNN model, we developed the «;
calculation application based on this framework.

After deploying the application, users can quickly calculate a material’s elastic properties, x;, and other
relevant outputs by uploading CIF files. The results are displayed on the website in a DataFrame format, and
users can download them as CSV files. An illustration of the program’s interface is shown in Figure 3.
Importantly, the app supports uploading single or multiple CIF files simultaneously, running the entire
framework in parallel to provide results for all materials at once.

Our application, PINK, is easily accessible via the following link: https://kappap-ai.streamlit.app, which can
be used both on your phone and on your local computer. If you prefer to deploy it locally or on Streamlit’s
server, please refer to the README.md for detailed instructions on setting up the software.

Calculating «, using ab initio study

We implemented ab initio study through the Vienna Ab-initio Simulation Package (VASP)". The
calculations incorporated the projector augmented-wave (PAW) approach combined with the Perdew-
Burke-Ernzerhof (PBE) functional for exchange-correlation* ™. To achieve high computational precision,
we selected a 520 eV planewave cutoff energy alongside a Monkhorst-Pack sampling with a 4 x 4 x 4 k-
mesh. The computational parameters were optimized with convergence thresholds of 10® eV for total
energy and 10 eV/A for atomic forces. In determining the second-order IFCs, our calculations utilized a
supercell configuration of 2 x 2 x 2, employing the finite displacement methodology with a 4 x 4 x 4 k-point
mesh. The third-order software package*’ was subsequently used to extract the third-order IFCs. The «,
calculations, which account for three-phonon scattering processes, were performed using ShengBTE with a
dense 20 x 20 x 20 g-point sampling"'’.

RESULTS

To streamline the time-intensive process of learning CGCNN for predicting material properties and
handling file processing, we developed a high-throughput framework encapsulated in a user-friendly
application. The interface allows researchers to input single or multiple CIF files simultaneously, generating
instantaneous «, predictions for the specified compounds. The efficiency of this framework arises from its


https://kappap-ai.streamlit.app
https://github.com/Jack-Liu0227/AI4Kappa/blob/master/README.md

Liu et al. J. Mater. Inf. 2025, 5, 12 | https://dx.doi.org/10.20517/jmi.2024.86 Page 7 of 21

Streamlit

Upload platform

Figure 2. PINK code deployment process. To deploy and run the web application, one first uploads the code - along with the “app.py”,
“requirements.txt”, and any other necessary files to GitHub. Then, we use the Streamlit platform to deploy the application online. PINK:
Physical-informed kappa.
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Figure 3. The web page for our PINK app is divided into two panels. The left panel allows users to upload files, while the right panel
displays the results. The output includes a DataFrame that lists various properties such as the number of atoms, density (g/cm™),
volume (A?), atomic mass (amu), bulk modulus (GPa), shear modulus (GPa), transverse and longitudinal wave sound velocities (m/s),
speed of sound (m/s), Poisson’s ratio (v), Griineisen parameter (y), acoustic Debye temperature (6,,K), and lattice thermal conductivity
(W-m™K™). For detailed instructions on using PINK, please refer to the PINK_tutorial.mp4. Additionally, the app supports custom
functions for calculating bulk modulus (GPa), shear modulus (GPa), and Griineisen parameter, with a separate tutorial available in PINK_
Custom_Parameters_tutorial.mp4. PINK: Physical-informed kappa.

integration of pre-trained CGCNN models with Equation (2), providing rapid assessments of thermal
transport properties.

Given that thermoelectric performance is strongly influenced by materials with low x;, we conducted a high-
throughput screening across material dataset. This systematic evaluation successfully identified 11,869
potential candidates with promising thermal transport characteristics. To validate our screening approach,
we selected Ag.Te X (X = W, Ta) from a specific ternary system and performed detailed ab initio
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calculations to verify their properties.

Data collection

For evaluating ML performance in materials science applications, we utilized the Matbench Vo.1?. Our
analysis focused on two specific datasets within this collection that address elastic properties:
“matbench_log_gvrh” and “matbench_log_kvrh”. These elastic modulus datasets contain identical material
entries (10,987 in total) and are specifically designed to predict the logarithmic values of shear modulus (G)
and bulk modulus (B) using the Voigt-Reuss-Hill (VRH) averaging methodology. The comprehensive
nature of these standardized collections makes them ideal for training our ML models to predict key elastic
characteristics. A detailed analysis of the dataset is presented in Figure 4, which illustrates the statistical
distribution across three key aspects: the classification of crystal systems, the number of atoms in the
primitive cell, and the distribution of chemical elements. The dataset exhibits remarkable diversity,
incorporating materials from all seven fundamental crystal systems and 84 different elements in various
structural arrangements.

For predicting x, we utilized datasets obtained from the AFLOW database™ and relevant
publications”***”, which include both experimentally measured values and computationally derived
properties. The AFLOW database provides comprehensive information on crystal structures and thermal
characteristics, with «, values calculated using the methodologies outlined in®***. To construct a test dataset
for evaluating our application, we collected crystal structures, Griineisen parameters (y), and their
corresponding «; values from AFLOW and other literature.

Obtaining high-throughput datasets for computational materials science can be challenging. However,
recent advancements in ML have significantly enhanced the discovery of stable materials. Merchant et al.
employed deep learning and GNNss to scale materials discovery, particularly for inorganic crystals®®. Their
work expanded the known set of stable materials by adding 381,000 new entries to the convex hull, resulting
in a total of 377,221 stable crystal structures - a tenfold increase over previous datasets.

We accessed their extensive dataset through GitHub: https://github.com/google-deepmind/materials_
discovery. The repository includes 377,221 valid CIF files in the “by_composition” folder, compatible with
CGCNN, and a summary CSV file containing bandgap, crystal symmetry, and decomposition energy data.
These materials encompass compositions ranging from two to six elements, with atomic numbers spanning
from 2 to 106. Additional data from the Materials Project further complements these datasets, enabling the
targeted retrieval of material properties through its open-source API. Together, these resources provide a
robust foundation for high-throughput computations and analyses.

Model evaluation of CGCNN

The interpretable formula, detailed in the methods section, elucidates the correlation between elastic
modulus and «;,. In ML, MAE and R* (R-squared) are standard metrics for evaluating regression models.
MAE quantifies the average magnitude of prediction errors and is defined as:

1< .
MAE =~} [y - 5il. )
i=1

where y, denotes the actual values and y, the predicted values. Lower MAE values denote higher prediction
accuracy. R* assesses the proportion of variance in the dependent variable explained by:
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Figure 4. Statistical analysis of the training dataset. (A) The distribution of seven crystal systems, with cubic being the most common
(3,847 structures), followed by tetragonal (2,055 structures), while triclinic is the least one (199 structures); (B) Distribution of range of
number of atoms in the primitive cell (1-160 atoms) across the dataset; (C) Elemental distribution that illustrates the frequency of 84
distinct elements. The dataset encompasses transition metals, main group elements, and rare earth elements, with oxygen showing the

highest frequency.
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where y represents the mean of the actual values. R* values approaching 1 indicate a better model fit.

R>=1- (8)

The performance of the embedded CGCNN model on the test dataset is illustrated in Figure 5. The MAE
for both the shear and bulk moduli is below 13, with R* values approaching 1, indicating a strong correlation
between the predicted and DFT-calculated elastic modulus. These results demonstrate the model’s reliability

and predictive accuracy.

Model evaluation of «,
After predicting the shear and bulk moduli using the trained CGCNN model, the approximate average

speed of sound was estimated. Utilizing known crystal structure information, we applied Equation (2) to
approximate the material’s «;. To validate the PINK application, we compared its predictions with «, values
calculated via DFT for 2,535 materials from the AFLOW database™ and 46 experimentally measured values
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Figure 5. The comparison of predicted vs. DFT-calculated values for (A) bulk modulus and (B) shear modulus across the test dataset of
10,987 structures. DFT: Density functional theory.

from the literature®**”. The Griineisen parameters were obtained from the AFLOW database and
experimental data, respectively.

Figure 6 presents scatter plots comparing «, predictions by PINK with calculated and experimentally
measured values. In Figure 6A, each point represents a material, with the solid diagonal line indicating
perfect agreement between predicted and calculated values. The dashed lines denote an acceptable range of
deviation. Within the dataset, 2,415 points (95.27%) fall within this range, highlighting the model’s high
accuracy. The clustering of points near the diagonal line further confirms a strong correlation between
PINK predictions and DFT calculations. Deviations are likely attributable to the inapplicability of certain
materials to the Slack model or inaccuracies in the elastic modulus predictions'*.

In Figure 6B, «; predictions from PINK are compared with experimental values, with each point labeled by
the corresponding material. Similar to Figure 6A, the solid diagonal line represents perfect agreement, and
the dashed lines denote acceptable deviation boundaries. The model achieves a MAE of 0.526 and an R?
value of 0.881, indicating a close correspondence between PINK predictions and experimental results. The
clustering of data points near the diagonal line demonstrates that PINK effectively predicts x; across diverse
materials and crystal symmetries.

For additional validation, Table 1 presents the predicted «, values alongside their experimental counterparts
for 46 materials. These results further substantiate the reliability and effectiveness of PINK in predicting «;,
showing close alignment with both DFT-calculated and experimentally measured values. Notably, the
accuracy of x, predictions could be significantly enhanced with more precise Griineisen parameters and
improved predictions of shear and bulk moduli™.

Comparison of calculation time for x;
To demonstrate «, the efficiency of prediction application, PINK, we compared its computational time

against other commonly used methods. Traditional approaches, such as solving the PBTE with second- and
third-order force constants'®’ or employing the equilibrium MD Green-Kubo, typically require several
hours for simple systems and days to weeks for complex ones.
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[20,54-57]

Table 1. Predicted and experimental room-temperature x, values for compounds from the literature are presented

Materials ID-number n p(g-em®) V(A®) G(GPa) v,(ms™) 7 Kop (W-m™K™) s (WemK"™)
AgCI®  mp-22922 2 5583 42.631 8.801 1,423.597 1900 1 1.091
AIAS?Y mp-2172 2 3591 47126 40510  3,733.087 0.660 98 47.054
AISbP? mp-2624 2 4078 60.561 28.808  2,959.047 0.600 56 30.620
BNY mp-1639 2 3458 11919  350.203 10,995.529 0.700 760 727.981
P mp-1479 2 2953 23500 201292 9,011.073  0.923 [by Equation (6)] 350 344.207
c mp-66 2 3.496 11410 547.436 13,613.398 0.750 3,000 1,320.871
Ca0™  mp-2605 2 3287 28332 63316  4,863.622 1570 27 32,552
CdTe®™  mp-406 2 5473 72.827 14349 1818434 0520 75 10.797
GaAs®!  mp-2534 2 5053 47532 45152 3291363 0.750 45 42.381
Gap™” mp-3490 2 4006 41737 48296  3,846.005 0.750 100 50.725
Gasb®  mp-1156 2 5288 60133 28.033 2557.748 0.750 40 22115
GeP” mp-32 2 5042 47.847 47734 3362109 1.060 65 33.219
InAs?®® mp-20305 2 5336 59.050 23.662 2,355.122 0.570 30 20.454
Inp”! mp-20351 2 4582 52.840 27.554  2,742.762 0.600 93 25.940
InSb”? mp-20012 2 5384 72965 17.668  2,026.668 0.560 20 14.244
KBrt*% mp-23251 2 2624 75294  6.156 1,709.446 1450 34 1737
KBrt2! mp-570891 2 2.989 66111 8.391 1,885.943 1450 3.4 2.502
Kt mp-23193 2 1.904 65.033 6387  2,050.803 1450 7.1 2.059
K2 mp-22898 2 2972 92743 5790 1546914 1450 26 1585
LiF?” mp-1009009 2 2.569 16768 58174 5236933 1500 17.6 28.999
LiH™ mp-23703 2 0.825 16.002 39346  7,537.234 1280 15 34.630
MgO™  mp-1265 2 347 19279 123811  6,564.689 1.440 60 86.060
NaBr®™  mp-22916 2 321 54749 14.495 2392521 1500 28 4.897
NaCl®?  mp-22862 2 2105 46.096 16650  3,123.706  1.560 7.1 6.531
NaF?” mp-682 2 2693 25894 21929 3171392 1500 18.4 7.651
Nal™”! mp-23268 2 3.572 69.675 6.823  1547.000 1560 18 1521
Pbst mp-21276 2 7334 54174 26485 21102  2.000 29 4772
Pbse®  mp-2201 2 7.886 60.254 22618 1876743 1500 2 6.189
RbBr?® mp-22867 2 3164 86.781 6905 1651509 1450 3.8 1974
RbCI®® mp-23295 2 2672 75148 7337  1,854222 1450 2.8 2244
RbI?* mp-22903 2 3.360 104.957 6228  1517.862 1410 23 1.814
5t mp-149 2 2281 40.888 55.828  5480.852 1.060 166 60.869
sic” mp-8062 2 3227 20.635 222879 9107.212  0.750 490 438312
Siokat mp-2472 2 4878 35277 47864 3,468152 1520 12 19.845
TePb?®  mp-19717 2 7857 70.758 17.5M1 1,674.996  2.009 [by Equation (6)] 2.5 2.7M
Znst? mp-10695 2 3.999 40.476 32768 3191504  0.750 27 28.268
ZnSe™  mp-1190 2 5064 47338 31048  2,763.063 0.750 19 24.432
ZnTe®”  mp-2176 2 5419 59146 25383  2,416126  0.970 18 15.097
AINP mp-661 4 3201 42527 135549 7,197.895 0.700 350 140.931
BeO™" mp-2542 4 2967 27.992 123309 7,116.682  0.750 370 104.885
cdst? mp-672 4 4576 104.863 16.885  2,166.455 0.750 16 6.790
GaN"”  mp-804 4 5924 46.943 110.843  4,794.507 0.700 210 79333
Zno"%”! mp-2133 4 5438 49719 33376  2,790.196 0.750 60 13.479
Bi,Te,”  mp-34202 5 7315 181767 10.489  1,339.685 1490 16 1196
ALOSPY mp-1143 10 3.873 87.420 132798 6,501.426 1340 30 33.445
Znsb™”?  mp-753 16 6.347 391759 32.387  2,518.332  1.681[by Equation (6)] 3.5 2315

The CIFs for these materials were obtained from the Materials Project. Here, n, p,V and G are the number of atoms in the primitive cell, the
density, the volume of the primitive cell and the shear modulus predicted by CGCNN, respectively. v, represents the average speed of sound
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calculated from Equation (5), y is the experimental Griineisen parameter, ,,, denotes the experimentally measured values, and xpy is the
calculated x, from Equation (2). PINK: Physical-informed kappa; CIFs: crystallographic information file; CGCNN: crystal graph convolutional neural

network.
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kappa.

Even semi-empirical models, such as the Slack model, require time-consuming calculations or experimental
data to determine the necessary input parameters, often taking several hours to complete. In contrast, PINK
offers a significant advantage by predicting «; and related physical properties directly from a CIF file in just
a few seconds, regardless of the material’s complexity.

While traditional methods such as PBTE and Green-Kubo can perform efficiently for single-element
systems, their computational cost increases exponentially with the number of atoms in the primitive cell,
especially when calculating force constants'***.. PINK, which leverages the CGCNN model in combination
with the Slack approximation, provides a highly efficient solution. This allows for rapid pre-screening of
complex binary, ternary, and quaternary systems. As a result, PINK is an invaluable tool for identifying
materials with high or low ;.

High-throughput screening

The detailed workflow for high-throughput screening using empirical calculations is illustrated in Figure 7.
The screening process commenced with 377,221 compounds sourced from the Materials Discovery
Database. Initial predictions of x, were made for these compounds, along with bulk modulus (GPa), shear
modulus (GPa), transverse and longitudinal wave sound velocities (m/s), speed of sound (m/s), Poisson’s
ratio (v), Griineisen parameter (y), acoustic Debye temperature (6,, K), and x, (W/m-K) can be downloaded
at the link: https://github.com/Jack-Liu0227/Al4Kappa/tree/master/JMI_Supporting_Information.

To refine the dataset, preliminary screening criteria were applied. Since thermoelectric materials are
semiconductors, band gaps were restricted to the range of 0.1-3.0 eV. To ensure stability, the energy above
the convex hull was limited to zero or less”. This initial filtering reduced the dataset to 30,199 materials.
Further exclusion of materials containing radioactive elements resulted in 26,305 candidates.


https://github.com/google-deepmind/materials_discovery
https://github.com/google-deepmind/materials_discovery
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Figure 7. Flowchart of the high-throughput screening process, illustrating steps from data acquisition to filtering and empirical
calculations for x, prediction.

Subsequently, the CGCNN model was utilized to predict shear and bulk moduli, which were then employed
to estimate «, using the Slack model at 300 K. Materials with «, values below 1 W-m"-K" were identified as
promising candidates for thermoelectric applications. This filtering yielded 11,869 materials, documented in
Nature-filtered-low-Kappa.csv.

Additionally, using the Materials Project API, 54,359 structures with band gaps between 0.1-3.0 ¢V and no
radioactive elements were extracted. PINK was employed to predict «;, resulting in a refined dataset of
21,001 low x; materials, detailed in MP-semiconductor-low-kappa.csv.
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Statistical analysis of screening results

The process of screening 11,869 materials with low «; values (x;, £ 1 W-m™K") has been detailed in a
separate CSV file (Nature-filtered-low-kappa.csv), which also includes the associated material data.
Statistical results for materials that have passed this screening are shown in Figure 8. The histogram in
Figure 8A shows the distribution of «; values, with the majority between 0.1 and 0.5, highlighting a
promising subset of high-performance thermoelectric materials. Meanwhile, Figure 8B represents the
distribution of crystal structures among these screened materials, specifying the number of space groups for
cubic systems. The analysis reveals an inverse trend between symmetry and material count - fewer materials
are found with higher symmetry, as in cubic systems (262 materials), while lower symmetry, such as in
triclinic systems, is associated with a larger count. For cubic structures, the relevant space group numbers
include 198, 205, 214, 215, 216, 217, 225, 227, 229, and 230. Low «, values are widely acknowledged as critical
for improving the efficiency of thermoelectric materials in converting waste heat to electrical energy.

To analyze the compositional distribution of promising thermoelectric materials, a histogram was generated
to display the elemental distribution within the screened materials, as shown in Figure 8C. This diagram
underscores the importance of the 20 most common elements in compounds with «; values less than 1.
Cesium bromine, rubidium, and adenosine oxide emerge as the elements most frequently encountered.
Additionally, elements such as oxygen (O) and selenium (Se) are also prevalent in materials with low «;
values. The corresponding electronegativity values of these elements are provided at the top of each column
in Figure 7C. A thorough examination of the electronegativity data reveals that elements with higher
electronegativity are more likely to form stronger ionic bonds. Among the ten elements that occur most
frequently, the majority exhibit electronegativity values greater than 2.5. Interestingly, elements often
associated with low thermal conductivity, such as cesium and selenium, are part of this group. Moreover,
fluorine, characterized by its high electronegativity, readily forms ionic compounds with alkali metals,
including cesium, rubidium, potassium, and sodium.

First-principle validation

On the basis of the results from our high-throughput screening and prior experience, we observed that
compounds containing heavy elements and Group VIA elements generally exhibit lower thermal
conductivity. Given the structural feasibility and computational efficiency, we selected the cubic structure
for our study. Consequently, Ag,Te, W and Ag,Te, Ta were chosen as validation targets. To calculate «; for a
given material with a specific structure, a series of DFT calculations are performed within the volume of the
primitive cell. To validate the materials screened by the PINK, including those with low «;, we have selected
Ag Te W and Ag,Te,Ta as case studies for detailed analysis. Both crystals belong to space group 215. As
illustrated in Figure 9A, X (W, Ta) atoms are tetrahedrally coordinated by four Te atoms, while Ag atoms
occupy interstitial sites between neighboring tetrahedra. Phonon spectra calculations for these materials
[Figure 9B and C] reveal no imaginary frequencies, confirming their dynamic stability and theoretical
viability.

The «, values of these compounds were calculated using the 3-phonon (3ph) method. Notably, Ag,Te X (X
= W, Ta) exhibits ultralow x;, comparable to benchmark thermoelectric materials such as PbQ (Q = Te, Se)
and SnSel**l. Figure 10A compares the temperature-dependent x, of Ag,Te, X with state-of-the-art
systems including SnSe, T1,SbTe,”, and PbQ. At 300 K, Ag,Te,W and Ag,Te,Ta demonstrate x, values of
0.267 and 0.478 W-m™*-K™', respectively. By comparison, PbTe, PbSe, SnSe, and T1,SbTe, exhibit «, values of
2.3,2.64, 0.62, and 0.143 W-m K" at the same temperature, respectively [Table 2]. The exceptionally low «,
of Ag,Te X positions these materials as promising candidates for thermoelectric applications.
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Table 2. The predicted «, values from PINK were compared with those computed using DFT at 300 K

Materials n V(A® G(GPa) B(GPa) o, (ms") 7 Ko (W-m™K™) Kper (W-m™K™)
PbTe 2 699891 24 38 1,927.318 2180" 35914 2.300 (Experiment)
Pbsel*®! 2 59.0544 27 24 2,035.793 2,660 2.493 2.640 (Experiment)
Snset® 8 226257 15 24 1,783.133 2.300 0.681 0.680 (Experiment)
Ag,Te,Ta 8 250951  13.776 45133 3074950  2.231 0.628 0.478 (DFT)
Ag;Te,W 8 248111 12.406 42316 2,939.400 2276 0.507 0.267 (DFT)

In this comparison, n stands for the number of atoms in the primitive cell, V is the volume of the primitive cell, and G and B are the shear modulus
and bulk modulus from Materials Project database for PbTe, PbSe and SnSe or our CGCNN model for Ag;Te,Ta and Ag;Te,W. Additionally, v,
refers to the average speed of sound, as defined in Equation (5), while y signifies the Griineisen parameter, as given in Equation (6). PINK:
Physical-informed kappa; DFT: density functional theory; CGCNN: crystal graph convolutional neural network.
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Figure 8. Statistical results of 11,869 screened candidates. (A) Distribution of x, and corresponding count; (B) Distribution of crystal
symmetry, with space group details for cubic symmetry shown in the inset; (C) Histogram of elemental distribution in 11,869
compounds, with electronegativity values indicated at the top of each column. The electronegativity results are as follows: Cs: 0.79, Br:
2.96,Rb: 0.82, |: 2.66, O: 3.44, Se: 2.55, F: 3.98, K: 0.82, Cl: 3.16, S: 2.58, Tb: 1.1, Na: 0.93, P: 2.19, As: 2.18, Y: 1.22, Co: 1.88, Sb: 2.05, Pr:
113, Te: 2.1, Dy: 1.22. The inset in the top-right corner is the counting number excluding lanthanide-containing materials.

Acoustic phonons typically serve as the dominant contributors to thermal transport in materials. As
illustrated in Figures 9B and C and Figure 10B, acoustic phonon branches predominantly occupy low-
frequency regimes, with low-frequency acoustic modes dominating the contribution to x;. To unravel the
microscopic mechanisms underlying the ultralow «;, we systematically examined key parameters governing
thermal conductivity - including heat capacity, phonon group velocities, weighted phase space, and
scattering rates - for Ag,Te,X (X = W, Ta) and TL,SbTe,”. These analyses, presented in Figure 10B-F,
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Figure 10. (A) k, as a function of temperature for Ag;Te,X (X =W, Ta), TIQSbTeé[m, SnSet® and PbQ (Q = Te, Se)m].Comparison of
microscopy heat transport parameters for Ag;Te,X and TlngTe6[62] at 300 K; (B) Cumulative x, using 3ph methods; (C) Specific heat

capacity (C,) at constant volume; (D) Squared phonon group velocities (v”) in the harmonic approximation; (E) Weighted phonon
scattering phase space of 3ph; (F) Phonon scattering rates of 3ph.

provide critical insights into the interplay of phonon dynamics and thermal transport.

The specific heat capacity (C,) of solids at elevated temperatures approximates the Dulong—Petit limit,
defined as 3Nk, (N,/M), where N denotes the number of atoms per formula unit, k; is the Boltzmann
constant, N, the Avogadro constant, and M the molar mass. DFT calculations yield C, values of 0.196,
0.197, and 0.146 J-g"-K" for Ag,Te,W, Ag.Te,Ta, and TL,SbTe,, respectively, closely aligning with Dulong-
Petit predictions. Notably, the C, values for Ag,Te X (X = W, Ta) exceed those of TI,SbTe, and marginally
surpass the 0.156 J-g"-K "' reported for PbTe!*”.

Given the proportionality x, = v*, we analyzed the frequency-dependent squared phonon group velocities
(v*) of Ag.Te X (X = W, Ta) and TLSbTe,, as illustrated in Figure 10D. Within the frequency range
dominant for «;, Ag,Te,Ta displays the highest v* (2 km*s?), an order of magnitude lower than PbTe’s



Liu et al. J. Mater. Inf. 2025, 5, 12 | https://dx.doi.org/10.20517/jmi.2024.86 Page 17 of 21

reported v of 14 km®>s? (x, =2 W-m™-K" at 300 K)"*’. Ag,Te,W exhibits intermediate values, while TL,SbTe,
shows the lowest v,

To elucidate phonon scattering mechanisms, we calculated the weighted phonon scattering phase space
(W,), which quantifies available phonon-phonon interaction pathways. As shown in Figure 10E, Ag,Te,Ta
has the smallest W,, contrasting sharply with the largest W, observed in T1,SbTe,. Similarly, phonon
scattering rates [Figure 10F] are significantly higher for TL,SbTe, than for Ag,Te,Ta. These results
collectively underpin the ultralow x, of Ag,Te X (X =W, Ta).

Discussions

In this work, we present PINK, a high-throughput computational framework designed to enhance the
prediction of «, across diverse materials. Building on this platform, several strategic directions emerge for
future refinement and application. First, integrating PINK with experimental databases and materials
informatics platforms could accelerate the discovery of novel materials for thermoelectrics, thermal
management in microelectronics, and energy conversion systems. Coupling high-throughput predictions'*”
with experimental validation would enable rapid identification of high-performance materials, narrowing
the gap between computational insights and functional material synthesis. Additionally, synergizing PINK
with tools such as BoltzTraP® and TransOpt'® could enable concurrent optimization of thermal and
electrical transport properties in semiconductors.

A second critical opportunity lies in the precise engineering of multifunctional materials. By investigating
the interaction between «;, mechanical properties (e.g., strength, elasticity), and environmental stability,
researchers could design materials that simultaneously achieve thermal, mechanical, and operational
demands in sectors such as aerospace, renewable energy, and advanced electronics. Such integration of
properties would advance applications requiring both efficient heat regulation and structural resilience.

CONCLUSIONS

We have developed a high-throughput framework, packaged as an application named PINK, designed to
rapidly predict the x; of materials based on the CIF files. The material space for x, was expanded
significantly, increasing by an order of magnitude, through predictions for 377,221 newly reported
materials®®. Through high-throughput screening, several materials with ultralow «, were identified, and
their predictions were validated using first-principles calculations.

Although first-principle calculations of «, require significant computational resources, especially for phonon
spectra and third-order force constant matrices, there are existing databases related to phonons and «,. For
instance, Togo developed an automated workflow interfaced with Phonopy, which calculated phonon
spectra, density of states, entropy, and heat capacity for over 11,000 materials, creating a phonon database
available at https://github.com/atztogo/phonondb/blob/main/mdr/phonondb/README.md. AFLOW®™, a
comprehensive database, includes thermal property data for 5,664 materials, though this represents only a
small fraction of the total material space. PINK addresses this gap by extending «, predictions to hundreds
of thousands of materials, with accuracy contingent on the performance of its embedded CGCNN for elastic
modulus prediction.

To enhance prediction accuracy, future advancements could integrate advanced crystal graph convolutional
networks. Examples include the orbital graph convolutional neural network (OGCNN), which considers
orbital roles™; the materials graph network (MEGNet), incorporating outfield information”; the
geometric-information-enhanced crystal graph neural network (GeoCGNN), which integrates topological
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and geometric structure data””; and the atomistic line graph neural network (ALIGNN), which includes
bond angle details””. Other notable approaches include the graph-attention graph neural network
(GATGNN), utilizing attention mechanisms"”", and the scalable global graph attention neural network
model DeeperGATGNN, featuring differentiable group normalization (DGN) and skip connections”.
Moreover, powerful descriptors such as SOAP" and Voronoi tessellations”” could be employed to further
elucidate the link between crystal structures and material properties. Ruff et al. introduced a connection-
optimized crystal graph network (coGN/coNGN), leveraging message passing and line graph templates”.
Their model demonstrated exceptional performance on the MatBench benchmark dataset™, outperforming
other models and establishing itself as the leading general-purpose model in the benchmark.
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