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Abstract

Background: Machine learning (ML) and other applications of artificial intelligence (Al) are revolutionizing
medicine, particularly in the field of surgery. These models have the potential to outperform traditional predictive
tools, aiding clinicians in decision making and enhancing operative safety through improved patient selection.

Methods: A systematic search was conducted across PubMed/MEDLINE and Google Scholar, guided by the
preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement, to identify studies
employing ML and Al algorithms to predict postoperative complications following metabolic bariatric surgery
(MBS). The search included primary studies published in English up to November 2024. The area under the
receiver operating characteristic curve (AUROC) was used as a surrogate metric for algorithm performance, with
values exceeding 0.8 considered clinically significant; however, studies were not excluded based on AUROC
thresholds.

Results: The search identified 23 studies meeting the inclusion criteria. These were categorized into seven
domains: general complications (8 studies, 34.8%), readmissions after MBS (4 studies, 17.4%), hemorrhage (1
study, 4.3%), leaks (1 study, 4.3%), venous thromboembolism (3 studies, 13.0%), nutritional deficiencies (4
studies, 17.4%), and miscellaneous complications such as gastroesophageal reflux disease, gallbladder disease,
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and major adverse cardiovascular events (MACE) (3 studies, 13.0%). The studies spanned from 2007 to 2024,
with 87.0% (20/23) published in or after 2019. In total, 87 Al/ML algorithms were analyzed. While several studies
reported AUROC values exceeding 0.7, the highest achieved was 0.94. However, most studies exhibited
methodological limitations, including a lack of external validation and inadequate handling of imbalanced datasets,
where complication events were markedly fewer than non-events.

Conclusions: While Al and ML approaches generally outperform traditional predictive models in forecasting
postoperative complications following MBS, few algorithms demonstrated clinically significant performance with
AUROC values above 0.8. Future research should adopt more rigorous methodologies and implement strategies to
address imbalanced datasets, ensuring broader clinical applicability of Al/ML tools.

Keywords: Metabolic bariatric surgery, artificial intelligence, machine learning, postoperative complications, leak,
hemorrhage, bleeding, thromboembolism

INTRODUCTION

The integration of artificial intelligence (AI) and machine learning (ML) into healthcare has been
transformative, with their applications in surgery growing exponentially. ML is widely regarded as a subset
of AI, encompassing algorithms that improve performance through data exposure. In this review, we use Al
as an umbrella term that includes ML, deep learning (DL), and natural language processing (NLP). While
these terms are sometimes used interchangeably in the literature, we refer specifically to ML when
discussing algorithmic models for complication prediction, and reserve “AI” for broader decision-support
or data-driven systems. These technologies (primarily ML algorithms as the most widely implemented
subset of AI) are now leveraged for preoperative planning, intraoperative guidance, and postoperative
monitoring, significantly enhancing surgical precision and decision making. In the field of metabolic
bariatric surgery (MBS), ML models and other Al-based tools (e.g., DL or NLP applications) have shown
promise in areas such as patient selection, outcome prediction, and complication identification, paving the

way for a new era of personalized and data-driven surgical care”..

Over the years, the safety profile of MBS has markedly improved, thanks to advancements in surgical
techniques, optimization of perioperative protocols, and the evolution of surgical equipment. Accumulated
experience among bariatric surgeons has also contributed to reducing complications, leading to better
patient outcomes. Additionally, the widespread accreditation of dedicated metabolic and bariatric surgical
centers has further contributed to safety improvements by promoting standardization of care,
implementation of best practices, and multidisciplinary team-based approaches'®. As a result, procedures
such as sleeve gastrectomy and Roux-en-Y gastric bypass (RYGB) have become safer and more widely
accepted as effective interventions for managing obesity and its associated comorbidities. For instance,
according to a review published almost a decade ago, bariatric surgery has a safety profile comparable to
that of many operations deemed as “routine”, including laparoscopic cholecystectomy, appendectomy, and
colectomy, provided it is performed by specialized surgeons in accredited, high-volume centers. The
ASMBS/IFSO guidelines also report a perioperative mortality rate between 0.03% and 0.2%, confirming the
procedure’s overall safety profile'®.

Despite these advancements, the potential for complications persists, making postoperative monitoring and
risk stratification critical. Here, Al and ML present an exciting frontier. By analyzing vast datasets of patient
characteristics, surgical details, and outcomes, these technologies can identify patterns and predict
complications with remarkable accuracy. This predictive capability could enable early intervention and
better allocation of resources, ultimately improving patient safety and long-term outcomes.
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In this context, exploring the application of Al in predicting complications following MBS offers significant
potential. By systematically reviewing the current literature on this topic, we aim to synthesize evidence on
the utility of Al and ML in enhancing postoperative care for bariatric patients. This approach will help
identify gaps in existing knowledge, highlight promising applications, and provide a roadmap for future
research to optimize outcomes and further improve the safety profile of MBS in an era of rapidly advancing
medical technology.

METHODS

This systematic review and meta-analysis were conducted according to the preferred reporting items for
systematic reviews and meta-analyses (PRISMA) guidelines to investigate the utility of ML and other
applications of Al in predicting complications after MBS\ The study protocol was registered online with
Protocols.io.

The PICOS framework was employed to define the study eligibility criteria as follows:

Population (P): Individuals living with obesity, aged 18-65 years, who had undergone MBS of any type. This
included, but was not limited to, laparoscopic sleeve gastrectomy (LSG), RYGB, one anastomosis gastric
bypass (OAGB), single anastomosis duodenal switch with sleeve gastrectomy (SADI-S), and adjustable
gastric banding (AGB), except when AGB was the sole bariatric intervention studied. Both index or
revisional procedures were eligible.

Intervention (I): Application of ML (supervised and unsupervised) [Supervised learning refers to algorithms
that are trained on labeled datasets with known outcomes (e.g., presence or absence of complications), while
unsupervised learning involves identifying patterns or clusters in data without predefined outcome labels],
DL, or other AT algorithms to predict and analyze postoperative complications, either within 90 days (early
complications) or during a later phase (late complications). This classification is primarily
pathophysiological rather than strictly chronological, given that complications such as bleeding, leakage,
and venous thromboembolism (VTE) typically occur during the immediate postoperative period, whereas
nutritional deficiencies and gastroesophageal reflux disease (GERD) tend to arise in the later phase, and
typically beyond the first 90 postoperative days.

Comparison (C): Performance of the AI algorithm(s) compared with conventional or established predictive
tests was desirable but not mandatory.

Outcomes (O): Algorithm performance metrics, such as sensitivity, specificity, and area under the receiver
operating characteristic curve (AUROC), as reported in each study. Comparisons with conventional
predictive algorithms were desirable but not required. AUROC values were not used as an inclusion or
exclusion criterion. Nonetheless, values > 0.8 were considered clinically relevant during the interpretation of
model performance.

Study design (S): Retrospective and prospective studies involving any number of participants were included.

Literature search strategy
A systematic literature search of the electronic databases PubMed (MEDLINE) and Google Scholar was
conducted by two independent reviewers (AGP, PE). The search terms were organized into three groups:
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Group A: Terms related to MBS, including “bariatric”, “gastric band*”, “sleeve”, “gastric bypass”, “duodenal

switch”, and “SADI”.

Group B: Terms associated with postoperative complications, such as “complications”, “adverse events”,
“morbidity”, “leak*”, “erosion”, “hemorrhage”, “bleeding”, “chole*”, “fever”, “infect*”, “thrombosis”,
“embolism”, “pneumonia”, “respiratory”, “cardiovascular”, “infarction”, “kidney”, “renal”, “acute”,
“nutritional deficien*”, “anemia”, “calcium”, “vitamin”, “reflux”, “GERD”, “failure”, “hernia”, “weight

recurrence”, and “readmission”.

Group C: Terms relevant to Al algorithms, including “artificial intelligence”, “machine learning”, “deep
learning”, “natural language processing”, and “neural network”.

Search terms from Groups A, B, and C were combined using Boolean operators (AND and OR) to ensure a
comprehensive search strategy. Additionally, the reference lists of included studies were reviewed to identify
potentially eligible studies. The search was restricted to English-language publications and included studies
available up to November 30, 2024.

Study selection

We considered all studies published in English up to November 30, 2024, conducted on human populations.
Duplicate search results were removed before screening abstracts for eligibility. Only primary studies were
included; reviews (narrative, scoping, systematic, or meta-analyses), case reports, editorials, letters to the
editor, and commentaries were excluded. Additionally, only studies with accessible full texts were
considered, leading to the exclusion of conference abstracts.

Studies were excluded if they focused on topics unrelated to our scope, such as education and the learning
curve of bariatric procedures, comorbidities [e.g., major adverse cardiovascular events (MACE) as
comorbidities of obesity rather than postoperative complications], quality of life, bariatric outcomes (e.g.,
weight loss or resolution of obesity-related comorbidities), obesity in general (without bariatric surgery),
complications of endoscopic interventions (e.g., endoscopic sleeve gastroplasty), or computer vision
analysis. Studies focused exclusively on robotic surgery or the surgical learning curve were also excluded, as
their primary aim did not align with the prediction of postoperative complications.

Full texts of the remaining studies were retrieved for further evaluation by two independent reviewers
(AGP, PE). Any selection discrepancies were resolved through discussion, and if consensus could not be
reached, a third researcher (DPL) provided the final decision.

Risk of bias assessment

The PROBAST risk of bias (RoB) tool was independently applied by two reviewers (AGP, PE) to assess the
methodological quality of each study included in the analysis of ML and other AI models™. This tool
evaluates RoB across four domains: participant selection, predictors, outcomes, and analysis, providing an
overall RoB assessment based on these categories.

Data extraction

The included studies were referenced using Zotero (Corporation for Digital Scholarship), and Microsoft
Excel was utilized during the screening and data extraction process. Data were extracted by two
independent reviewers (AGP, PE) into an Excel spreadsheet for the following parameters: first author; year
of publication; country or countries of the institution(s) involved; DOI (or PMID if the DOI was
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unavailable); type of complication; type of surgery; study design (retrospective or prospective); purpose of
the prediction (prognostic or diagnostic); total cohort size; number of complications; sizes of the training,
test, and validation datasets; top-ranked variables (features); Al algorithms studied; methods used to address
data imbalance; and performance metrics, including accuracy, sensitivity, specificity, F1-score, AUROC,
area under the precision-recall curve (AUPRC), positive predictive value (PPV), and negative predictive
value (NPV).

Data synthesis

A descriptive summary was used to categorize the types of ML/AI models based on the type of complication
post-MBS. The discriminative ability of each algorithm was evaluated using metrics such as sensitivity,
specificity, accuracy, F1-score, PPV, NPV, AUROC, and AUPRC, as reported for each outcome. Among
these metrics, AUROC was considered the most reliable, as it accounts for the model’s true positive rate and
false positive rate across various cutoff thresholds. AUROC values range from 0.5 (indicating random
guessing) to 1.0 (indicating perfect classification), with values > 0.80 generally regarded as clinically
useful".

A comparative meta-analysis of the ML/AI models was not feasible due to heterogeneity in study
methodologies, outcome reporting, and the lack of comparisons between AI/ML algorithms and
conventional predictive models in most studies.

RESULTS

The search strategy identified a total of 1,398 articles after duplicates were removed. These studies were
screened for eligibility based on their titles and abstracts. Following this screening, 1,368 studies were
excluded, leaving 30 articles for full-text assessment. Ultimately, 23 studies met the criteria for inclusion in
the final review. The selection process is summarized in the flowchart presented in Figure 1. Supplementary
Table 1 provides details of the studies excluded during the eligibility phase (n = 7), along with the reasons
for their exclusion.

Of the 23 primary studies included, 20 (87.0%) were published from 2019 onward, with 10 (43.5%)
appearing between 2023 and 2024. Figure 2 illustrates the temporal evolution of the included studies. The
most common country of origin was the USA, contributing 10 studies (43.5%), followed by Sweden (4
studies, 17.4%), and Iran and China (2 studies each, 8.7%). Figure 3 shows the geographical distribution of
these studies.

In terms of AI/ML algorithms, 87 analyses were conducted across the included studies. The most frequently
used algorithm was logistic regression (LR), appearing in 16 analyses (18.4%), followed by neural networks
(NNs) (not otherwise specified) in 10 analyses (11.5%), random forest (RF) in 9 analyses (10.3%), multilayer
perceptron (MLP) in 8 analyses (9.2%), and support vector machine (SVM) and eXtreme gradient boosting
(XGB) in 7 analyses each (8.0%). Figure 4 summarizes the frequency of each algorithm’s implementation.

The included studies were further categorized based on the type of complication investigated, resulting in
seven groups: (1) complications in general (8 studies, 34.8%)""""; (2) readmissions after MBS (4 studies,
17.4%)""*; (3) hemorrhage (1 study, 4.3%)"; (4) leak (1 study, 4.3%)""; (5) VTE [including deep venous
thrombosis (DVT), pulmonary embolism (PE), and portomesenteric and splenic vein thrombosis
(PMSVT), 3 studies, 13.0%]"**; (6) nutritional deficiencies (including anemia, vitamin deficiencies,
micronutrient deficiencies, hypocalcemia, etc., 4 studies, 17.4%)*"; and (7) miscellaneous, including
GERD"", gallbladder disease”, and MACE (myocardial infarction, cerebrovascular accident, cardiac
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Figure 1. PRISMA flowchart, illustrating the process of selecting eligible publications for inclusion in the systematic review. MACE: Major
adverse cardiovascular events; ESG: endoscopic sleeve gastroplasty; PRISMA: preferred reporting items for systematic reviews and
meta-analyses.
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Figure 2. Temporal evolution of the included studies.

arrhythmias, congestive heart failure, cardiac arrest)”” (3 studies, 13.0%). Notably, one study belonged to 2
categories (leak and VTE)"*. Figure 5 summarizes the distribution of the included studies across categories.
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Figure 4. Types and frequency of algorithms implemented in the included studies. LR: Logistic regression; NN: neural network; ANN:
artificial neural network; MLP: multilayer perceptron; RF: random forest; SVM: support vector machine; XGB: eXtreme gradient
boosting; KNN: k-nearest neighbor; GBRT: gradient boosted regression tree; LDA: linear discriminant analysis; QDA: quadratic
discriminant analysis, CNN: convoluted neural network; RNN: recurrent neural network; BPN: backpropagation neural network; DT:
decision tree; ML: machine learning.

Complications of MBS in general

As highlighted in Figure 5, this category of complications, in general, included eight primary studies
that explored the utility of ML algorithms in predicting postoperative complications cumulatively, without
focusing on specific complications.

[11-18]

Cao et al. published two studies on this topic. The first evaluated the performance of 29 supervised ML
algorithms (both base and ensemble models) in predicting post-MBS complications in a cohort of 37,811
patients from the Scandinavian Obesity Surgery Registry (SOReg) database"". To address the significant
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Figure 5. Distribution of the included studies by category. VTE: Venous thromboembolism; def.: deficiency; miscellaneous included
gastroesophageal reflux disease, gallbladder disease, and major adverse cardiovascular events.

data imbalance between bariatric surgery outcomes and the occurrence of complications, they employed the
synthetic minority oversampling technique (SMOTE). The best-performing algorithms based on AUROC
were oversampling RF (0.99), oversampling AdaExtra Trees (0.98), oversampling AdaGradient Tree (0.97),
and oversampling bagging k-nearest neighbor (KNN, 0.94) for the training set. However, performance
dropped substantially in the test set, with the best algorithm (gradient regression tree and bagging MLP)
achieving an AUROC of only 0.58.

In their second study, Cao et al. assessed the performance of three supervised DL models [MLP,
convolutional neural network (CNN), and recurrent neural network (RNN)], individually and with
oversampling techniques (SMOTE), using the same SOReg population?. The best-performing algorithm
was oversampling MLP for the training set (AUROC: 0.84, 95%CI: 0.83-0.85). For the test set, MLP and
oversampling CNN performed best, each with an AUROC of 0.57 (95%CI: 0.55-0.59 for MLP and 0.55-0.61
for CNN). These studies highlighted that, despite good predictive performance in training datasets after
appropriate tuning, there remains significant room for improvement in the clinically relevant test datasets.
Notably, the same group of investigators published a relevant study in 2018 on severe complications'?.
However, that study primarily focused on features, and the analysis was conducted exclusively using
multivariate LR, without reporting the AUROC value.

Wise et al. published two studies examining the predictive value of LR and artificial neural networks (ANN)
for 30-day morbidity and mortality following LSG"® and duodenal switch"”. Using data from the Metabolic
and Bariatric Surgery Accreditation and Quality Improvement Program (MBSAQIP) database, the studies
analyzed populations of 101,721 and 2,907 patients, respectively. ANN outperformed LR in both cases, but
AUROC values ranged from 0.581 to 0.685 - below the clinically meaningful threshold of 0.80. The same
group also evaluated LR and ANN for predicting outcomes after revisional RYGB following LSG, with
AUROC values ranging from 0.587 to 0.604.



Pantelis et al. Art Int Surg. 2025;5:322-44 | https://dx.doi.org/10.20517/ais.2024.104 Page 330

Sheikhtaheri et al. utilized MLP models to predict complications following OAGB at 10-day, 1-month, and
3-month intervals postoperatively"?. In contrast to earlier findings, this study achieved an AUROC of 0.996
in the validation dataset at the 10-day mark. A notable limitation, however, was the use of data from only
five hospitals over five years, yielding a significantly smaller population compared to nationwide registries
such as SOReg and MBSAQIP.

More recently, Zucchini et al. conducted a retrospective analysis of several ML models (LR, SVM, RF, KNN,
MLP, and XGB) for predicting 30-day complications at their bariatric center"®. RF achieved an AUROC of
0.94 in the training set and 0.88 in the test set, both outperforming the MBSAQIP predictive tool (AUROC
0.64). Three models (KNN, XGB, and RF) had AUROC values above 0.80, but only XGB achieved 100%
sensitivity with a cutoff of 0.05, allowing it to accurately identify both high- and low-risk patients. The
authors noted that the study’s primary limitation was its small sample size (N = 424), which limits the
generalizability of the findings.

Table 1 provides a summary of the key characteristics of studies in this category.

Readmissions following MBS

Hospital readmissions within the immediate postoperative period (usually within 30 days after surgery) are
a recognized indicator of care quality and have been widely used to evaluate surgical and non-surgical
complications across various procedures®*. This review identified four studies**' that explored the
application of ML algorithms in predicting readmissions following MBS.

Two studies utilized the MBSAQIP database. Torquati et al. analyzed a cohort of 393,833 patients with a
3.9% readmission rate”. The study compared the super learner (SL) algorithm with LR, finding that SL
demonstrated superior predictive performance (AUROC: 0.674, 95%CI: 0.670-0.679 vs. LR: 0.252, 95%CI:
0.249-0.255). However, the predictive value of SL did not reach clinical utility.

Butler et al. examined 863,348 patients with a readmission rate of 4.52%"”, comparing four algorithms:
XGB, RF, NNs, and LR. XGB and RF performed equally well (AUROC: 0.785, 95%CI 0.784-0.786 for XGB;
0.784-0.785 for RF), followed by NN (AUROC: 0.754, 95%ClI: 0.753-0.754) and LR (AUROC: 0.620, 95%CI:
0.620-0.621; P < 0.001). Performance improved when algorithms incorporated all predischarge variables
rather than just preoperative and intraoperative factors. Nonetheless, none of the models achieved clinical
significance (AUROC > 0.8).

Zhang et al. explored ML algorithms for readmission prediction using lab test data from 1,262 patients with
a 7.69% readmission rate™. The study applied five algorithms - SVM, LR, MLP, RF, and XGB. AUROC
values ranged from 0.743 (95%CI: 0.641-0.845) for XGB to 0.784 (95%CI: 0.691-0.866) for GLM. Although
the models performed better than in larger datasets, the small sample size limited the study’s
generalizability.

Charles-Nelson et al. employed formal concept analysis (FCA), a data-mining method rather than an ML
algorithm, to analyze one-year readmissions post-MBS™. Using data from the Programme de M¢
dicalisation des Systemes d’Information (PMSI) database, the study included 198,389 procedures performed
on 196,323 patients. FCA identified 12 primary reasons for readmissions, including dysphagia (0.4%),
vomiting (0.4%), acute gastric hemorrhage (0.6%), ventral hernia (0.7%), medical abortion (0.7%), fistula
and acute peritonitis (1.3%), abdominal/pelvic pain (1.9%), cholelithiasis (2.2%), regular follow-up (14.9%),
and combinations of the above. While FCA enhances interpretability and clinical pattern recognition, it
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Table 1. Study characteristics for complications in general after MBS

First author Year of . Method of dealing with  Algorithms AUROC AUROC .
(citation no.) publication Country Population Database(s) imbalanced data examined (training) (test) Top-ranked features/variables
Cao Y™ 2019 Sweden 44,061 SOReg SMOTE LR 0.560 0.540 Training: age, BMI, HbAlc, HTN, DM,
LR"® 0.480 0.470 dyspepsia, previous VTE, RBS
LR® 0.430 0.510 Test: WC, HbATc, DLP, RBS
LDA 0.560 0.540
LDA® 0.560 0.540
LDA® 0.460 0.520
QDA 0.550 0.570
QDA® 0.540 0.560
QDA° 0.550 0.480
DT 0.500 0.500
RF 0.520 0.520
RF® 0.990 0.510
XTR 0.510 0.510
XTRA® 0.510 0.510
XTR 0.980 0.480
GRT 0.540 0.580
GRT"® 0.510 0.520
GRT® 0.970 0.510
KNN 0.520 0.540
KNN® 0.520 0.530
KNNC 0.940 0.540
SVM 0.460 0.500
SVM*® 0.520 0.490
svm° 0.440 0.490
MLP 0.530 0.500
MLP® 0.550 0.580
MLP° 0.370 0.540
DL-NN 0.550 0.540
DL-NN° 0.670 0.560
Cao Y™ 2020 Sweden 44,061 SOReg SMOTE MLP 0.600 0.570 Not specified (in total, 5 continuous, and 11
MLP° 0.840 0.540 dichotomous)
CNN 0.580 0.550
CNN° 0.790 0.570
RNN 0.580 0.560
RNNC 0.650 0.550
Scott AW 2024 USA 8,895 MBSAQIP N/A Multiv. LR - 0.587 Non-white race, initial BMI, therapeutic
ANN 0.601 0.600 anticoagulation
Sheikhtaheri A"’ 2019 Iran 1,493 5 regional SMOTE 10-dy MLP - 1.000 Not specified (in total 32)
hospitals 1-mo MLP - 1.000
3-mo MLP - 0.930
Stenberg gl 2018 Sweden 37,811 SOReg N/A LR - N/A RBS, age, BMI, WC, operation year, GERD,

dyspepsia
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Wise EST™® 2020 USA 101,721 MBSAQIP N/A Multiv. LR - 0.572 Age, non-white race, initial BMI, severe HTN,
ANN 0.581 0.590 DM, RBS, functional status

Wise £ 2023 USA 2,907 MBSAQIP N/A Multiv. LR - 0.619 Age, non-white race, cardiac Hx, HTN on = 3
ANN 0.656 0.690 medications, RBS, OSA, Cr

Zucchini N 2024 USA, 424 Local bariatric ~ N/A MLP 0.670 0.650 ALP, PLT, TG, HbATc, albumin

Italy center LR 0.700 0.650

SVM 0.790 0.780
KNN 0.840 0.820
XGB 0.850 0.830
RF ) 0.920 0.910
MBSAQIP 0.610 0.630

ABAdaBoost applied to previous algorithm. BBagging applied to previous algorithm. oOversampling applied to previous algorithm. QMBSAQIP perioperative risk calculator. Numbers in bold signify clinically meaningful
values of AUROC (> 0.80). MBS: Metabolic bariatric surgery; AUROC: area under the receiver operating characteristic curve; SOReg: Scandinavian Obesity Surgery Registry; MBSAQIP: Metabolic and Bariatric
Surgery Accreditation and Quality Improvement Program registry; SMOTE: synthetic minority oversampling technique; N/A: not available; LR: logistic regression; LDA: linear discriminant analysis; QDA: quadratic
discriminant analysis; DT: decision tree; RF: random forest; XTR: ExtRa trees; GRT: gradient regression trees; KNN: k-nearest neighbor; SVM: support vector machine; MLP: multilayer perceptron; DL-NN: deep-
learning neural network; ANN: artificial neural network; multiv.: multivariate; XGB: eXtreme gradient boosting; BMI: body mass index; HbAlc: glycated hemoglobin; HTN: hypertension; DM: diabetes mellitus; VTE:
venous thromboembolism; RBS: revisional bariatric surgery; WC: waist circumference; DLP: dyslipidemia; Hx: history; OSA: obstructive sleep apnea; Cr: creatinine; ALP: alkaline phosphatase; PLT: platelets; TG:
triglycerides.

does not generate AUROC values, precluding direct comparison with ML-based studies.

Notably, none of these studies addressed the issue of unbalanced data. Table 2 summarizes the key characteristics of studies investigating AI/ML for predicting
readmissions after MBS.

Hemorrhage after MBS

Our search identified only one relevant study”, which is noteworthy given that postoperative bleeding is the most commonly reported complication following
MBS, with an incidence ranging from 0.4%-4.4% after RYGB and 0.4%-3.4% after LSG"°. Post-MBS hemorrhage may be intraluminal, intraabdominal, or a
combination of both.

In this MBSAQIP-based study, Hsu et al. assessed the predictive performance of four ML algorithms - RF, XGB, deep neural networks (NN), and LR - for
postoperative gastrointestinal bleeding”!. Among these, RF demonstrated the highest predictive accuracy, with an AUROC of 0.764 (+0.019), while LR had the
lowest performance, with an AUROC of 0.709 (£0.018).
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Table 2. Study characteristics for readmissions after MBS

First author Year of Country Population Database(s) Method of dealing Algorithms AUROC AUROC

Top-ranked features/variables

(citation no.) publication with imbalanced data examined (training) (test)
Butler LR™™ 2024 USA 863,348 MBSAQIP N/A LR" - 0.620 Intervention or reoperation prior to discharge, unplanned
LR - 0.615 ICU admission, initial procedure, intraoperative
RF - 0.785 transfusion
RF” - 0.617
XGB’ - 0.785
XGB" - 0.640
f - 0.754
NN - 0.558
ClEmz%liIes—NeIson 2020 France 196,323 PMSI N/A FCA - - N/A
A
Torquati M?" 2023 USA 393,833 MBSAQIP N/A sL - 0.674 Bypass, change in BMI, sleeve, HTN on = 3 medications
LR - 0.650
Zhang M™? 2024 China 1262 Local bariatric ~ N/A SVM - 0.784 RBC, CRP, UA
center LR - 0.779
MLP - 0.778
RF - 0.751
XGB - 0.743

PAll predischarge variables. P‘Only preoperative and intraoperative variables. MBS: Metabolic bariatric surgery; AUROC: area under the receiver operating characteristic curve; MBSAQIP: Metabolic and Bariatric
Surgery Accreditation and Quality Improvement Program registry; PMSI: Programme de Médicalisation des Systémes d'Information; N/A: not available; LR: logistic regression; RF: random forest; XGB: eXtreme
gradient boosting; NN: neural network; FCA: formal concept analysis; SL: super learner; SVM: support vector machine; MLP: multilayer perceptron; ICU: intensive care unit; BMI: body mass index; HTN: hypertension;
RBC: red blood cell count; CRP: c-reactive protein; UA: uric acid.

Table 3 summarizes the characteristics and findings of this study.

Leak after MBS

Leaks and fistulas are among the most feared complications of bariatric surgery, with an incidence ranging from 0.5% to 2% in high-volume centers, depending
on the type of surgery and whether it is an index or revisional procedure®’. Despite the significance of these complications, our search identified only one
relevant study.

Specifically, Nudel et al. developed and validated three models (ANN, XGB, and LR) to predict two different types of complications post-MBS: leaks and VTE
(the latter analyzed in the next section), using the MBSAQIP database’”’. In this series, the incidence of leaks was 0.7%. ANN demonstrated the highest
predictive performance, with an AUROC of 0.75 (95%CI: 0.73-0.78), followed by XGB (0.70, 95%CI: 0.68-0.72) and LR (0.63, 95%CI: 0.61-0.65), with
significant differences among all models (P < 0.001).
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Table 3. Study characteristics for hemorrhage after MBS

First author Year of . Method of dealing with Algorithms AUROC AUROC .
(citation no.) publication Country Population Database(s) imbalanced data examined (training) (test) Top-ranked features/variables
Hsu JLZ 2023 USA 159,950 MBSAQIP N/A LR . 0.709 Procedure type, Hct, age, operation

RF - 0.764 length, Cr

XGB - 0.746

NN - 0.741

MBS: Metabolic bariatric surgery; AUROC: area under the receiver operating characteristic curve; MBSAQIP: Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program registry; N/A: not
available; LR: logistic regression; RF: random forest; XGB: eXtreme gradient boosting; NN: neural network; Hct: hematocrit; Cr: creatinine.

Table 4 summarizes the key points of this study.

Venous thromboembolic events after MBS

Bariatric patients are particularly vulnerable to VTE due to a combination of factors, including chronic inflammation that disrupts the venous intimal lining
and induces hypercoagulability, surgical stress, anatomical factors, limited mobility leading to venous stasis, the mechanics of laparoscopic surgery, and
prolonged operation times. According to a comprehensive meta-analysis of 87 studies with over 2.5 million patients, the cumulative in-hospital incidence of
VTE in the laparoscopic era is 0.15%, while the incidence within the first 30 postoperative days rises to 0.50%"". A rarer, yet potentially catastrophic form of
VTE unique to MBS is PMSVT, with an incidence of approximately 0.1%"".

In our analysis, we identified three relevant studies®". As mentioned earlier, Nudel et al. developed and validated a series of MBSAQIP-data-driven
algorithms to predict both leaks and VTE post-MBS"”*. For VTE prediction, they evaluated the performance of three ML algorithms (ANN, XGB, LR) and
Bariclot, a linear, forward regression statistical model that is less complex than typical ML algorithms. In their study, all three ML algorithms showed similar
performances (AUROC: 0.64-0.67, 95%CI: 0.61-0.70), which are clearly below the clinically useful threshold of 0.8, although they performed better than
Bariclot. Dang et al. compared Bariclot with clinical risk scores such as Caprini and Finks and found a slightly better performance for Bariclot (AUROC 0.602
vs. 0.553-0.582), still below clinical significance™.

In a more recent study, Ali et al. developed an MBSAQIP-data-driven supervised ML algorithm that incorporated the regression coefficients of six predictors
from a pool of 26 features”'. This risk model achieved an AUROC of 0.79 (95%CI: 0.63-0.81), which is considered borderline clinically significant but notably

better than the previous models.

Table 5 summarizes the key findings from the studies on VTE prediction.
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Table 4. Study characteristics for hemorrhage after MBS

First author Year of Method of dealing with  Algorithms AUROC AUROC

Country Population Database(s) Top-ranked features/variables

(citationno.)  publication imbalanced data examined (training) (test)

Nudel JP* 2021 USA 436,807  MBSAQIP Over-sampling ANN - 0.750 Age, preop BMI, change in BMI, weight, Hct, height,
w/imbalanced-learn Python ~ XGB - 0.700 1st assistant training (attending), albumin
library LR - 0.630

MBS: Metabolic bariatric surgery; AUROC: area under the receiver operating characteristic curve; MBSAQIP: Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program registry; ANN: artificial
neural network; XGB: eXtreme gradient boosting; LR: logistic regression; preope: preoperative; BMI: body mass index; Hct: hematocrit.

Table 5. Study characteristics for VTE after MBS

First author Year of Method of dealing with Algorithms AUROC AUROC

(citation no.) publication Country  Population Database(s) imbalanced data examined (training) (test) Top-ranked features/variables

Ali H#! 2024 USA, 6,526 MBSAQIP N/A Supervised ML COPD, length of stay, prior DVT, HbAc,
Pakistan -RYGB - 0.790 venous stasis, preop anti-coagulants
-LSG - 0.630
- ESG - 0.760
Dang JTiee 2019 Canada 274,221 MBSAQIP N/A Bariclot (multiv. - 0.602 Hx of VTE, operative time, functional status
LR) - 0.582
Finks - 0.553
Caprini
Nudel J©#¥ 2023 USA 436,807 MBSAQIP Over-sampling w/imbalanced- ANN - 0.650 Bypass, change in BMI, sleeve, HTN on =23
learn Python library XGB - 0.670 medications
LR - 0.640
Bariclot - 0.600

VTE: Venous thromboembolism; MBS: metabolic bariatric surgery; AUROC: area under the receiver operating characteristic curve; MBSAQIP: Metabolic and Bariatric Surgery Accreditation and Quality Improvement
Program registry; PMSI: Programme de Médicalisation des Systémes d'Information; N/A: not available; LR: logistic regression; RF: random forest; XGB: eXtreme gradient boosting; NN: neural network; FCA: formal
concept analysis; SL: super learner; SVM: support vector machine; MLP: multilayer perceptron; ICU: intensive care unit; BMI: body mass index; HTN: hypertension; RBC: red blood cell count; CRP: c-reactive protein;
UA: uric acid.

Nutritional deficiencies after MBS
All metabolic bariatric procedures, to varying extents, alter the anatomy and physiology of the gastrointestinal tract. These changes increase patients’

susceptibility to deficiencies in both macro- and micronutrients, potentially leading to serious conditions such as anemia, osteoporosis, and protein
malnutrition.
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Our search identified four relevant studies that met the inclusion criteria. One study published in 2014
explored the use of a Bayesian network decision-making system for predicting iron deficiency anemia
(IDA), folate deficiency, vitamin B12 deficiency, thiamine deficiency, and malnutrition®. While the
performance metrics of this study were strong, the small study population limits its generalizability.
Nonetheless, it represents pioneering work in the application of Al in healthcare.

In 2023, three studies were published, indicating increased scientific interest in this area. Lenér et al. applied
ML (RF) to assess the effectiveness of iron supplementation post-RYGB for preventing IDA”®. However,
neither AUROC values nor details on handling imbalanced data were provided in this study. Pan et al.
examined the predictive performance of ML for IDA after LSG in premenopausal women™'. Their
algorithm achieved an AUROC of 0.858 on the training dataset and 0.799 on the test dataset, showing
promising clinical potential. Finally, Parrott et al. used three ML models to analyze the incidence of vitamin
C deficiency in post-MBS patients, revealing a higher prevalence than previously reported in the
literature®. Of the three models (Bayesian network with 18 laboratory variables, Bayesian network with 47
demographic variables, and RF with 81 variables), the RF model demonstrated the best predictive
performance (AUROC 0.708).

Table 6 summarizes the key characteristics and findings of all four studies.

Miscellaneous complications after MBS
This category encompasses the remaining studies that utilized ML methods to predict complications
following MBS but do not fit into any of the previously described categories.

GERD is a well-documented long-term complication that may develop in a subset of patients who have
undergone LSG"". Emile ef al. developed an ensemble model to predict GERD after LSG in a cohort of 441
patients”'. Their algorithm achieved an AUROC of 0.93 (95%CI: 0.88-0.99), providing robust evidence of
the clinical applicability of AL One critique of this study is that it did not account for endoscopic findings in
a standardized manner, nor did it incorporate Hill’s classification. Nevertheless, it paves the way for
meaningful future research in the field.

It is well known that cholelithiasis develops in 30%-50% of patients after bariatric surgery, and these
individuals face an increased risk of complications, including biliary colic, acute cholecystitis, acute
pancreatitis, and bile duct stones">*!. Liew et al. were the first to report an ANN-based model for predicting
gallbladder disease after MBS Their model outperformed traditional LR, achieving an average correct
classification rate of 97.14% compared to 88.2%, with a lower type II error rate.

Bariatric patients are at increased risk for cardiovascular complications in the postoperative period due to
obesity and its sequelae, with a documented incidence of 1 in 1,000 procedures’. Romero-Velez et al.
compared three ML models (LR, a single-layer NN, and XGB) to predict MACE within the first 30
postoperative days after MBS, using the MBSAQIP database". The NN outperformed the other models,
with an AUROC close to the threshold of clinical significance (0.798).

Table 7 provides an overview of the key characteristics and findings from all three studies.

RoB assessment
As mentioned earlier, the included studies were evaluated across four domains (Participants, Predictors,
Outcome, Analysis). Each study was rated as having a low, unclear, or high probability of bias based on the
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Table 6. Study characteristics for nutritional deficiencies after MBS
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Firstauthor  Year of c . Method of dealing 5\ ivhms  AUROC  AUROC .
I s . ountry Population Database(s) with imbalanced . . Top-ranked features/variables
(citation no.) publication data examined (training)  (test)
Cruz MR 2014 Brazil 60 Shell Netica N/A Bayesian Gender, age, surgery time, Hgb, Hct, MCV, albumin, ferritin,
network - 0.839 vit-B12, THFA, food intake, physical signs and symptoms of
- IDA - 1.000 nutrient deficiency
- THFA - 1.000
- B12 - 0.982
-B1 - 1.000
Malnutrition
Lenér F181 2023 Sweden 971 Local bariatric N/A RF - N/A Hgb, TIBC, ferritin, vit-B12, THFA, ESR
center LR - N/A
Pan Y? 2023 China 407 Local bariatric ~ SMOTE Linear SMV 0.858 0.799 Preop ferritin, age, Hgb, Cr, FCP
center
Parrott IMP® 2023 UK, USA 187 Local bariatric  Random under-sampling ML models Fid 30-100, RDW, GFR, FID > 100, ALT, WBC, RBC, AST,
center - BN (18) - 0.700 MCHC, CRP, Hct
-BN (47) - 0.693 Ethnicity, race, domestic partner, BMI, primary procedure,
- RF (81) - 0.708 no. of surgeries

Numbers in bold signify clinically meaningful values of AUROC (> 0.80). MBS: Metabolic bariatric surgery; AUROC: area under the receiver operating characteristic curve; SMOTE: synthetic minority oversampling
technique; IDA: iron-deficiency anemia; THFA: folate; B12: vitamin B12; B1: vitamin B1; RF: random forest; LR: logistic regression; SMV: support vector machine; BN (18): Bayesian network with 18 lab variables; BN
(47): Bayesian network with 47 demographic variables; RF 81: random forest with 81 variables; Hgb: hemoglobin; Hct: hematocrit; MCV: mean corpuscular volume; TIBC: total iron-binding capacity; ESR: erythrocyte
sedimentation rate; preop.: preoperative; Cr: creatinine; FCP: fasting C-peptide; FID 30-100: functional iron deficiency with ferritin levels 30-100, FID > 100: functional iron deficiency with ferritin levels >100; RDW:
red cell distribution width; GFR: glomerular filtration rate; ALT: alanine aminotransferase; WBC: white blood cell; RBC: red blood cell; AST: aspartate aminotransferase; MCHC: mean corpuscular hemoglobin

concentration; CRP: C-reactive protein; BMI: body mass index; no.: number.

PROBAST criteria, as outlined in the relevant paper by Moons et al.”. The overall risk assessment was derived from these four domains, using the following

criteria:

« Low risk: All domains rated as low risk, or one domain rated as unclear and the rest low risk.

» Unclear risk:

m 2-4 domains rated as unclear, rest low risk;

= or one domain rated as high risk and the rest low risk;
= or one high risk, one unclear, and the rest low risk.

» High risk:

= One high risk + 2-3 unclear;

= or 2-4 domains rated as high risk.
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Table 7. Study characteristics for miscellaneous complications after MBS

First author y .. of . Method of Algorithms AUROC  AUROC .
(citation s e Country Population Database(s) dealing with . .. Top-ranked features/variables
publication . examined (training) (test)

no.) imbalanced data

Emile SH®" 2022 Egypt 441 Local bariatric = N/A Ensemble - 0.93 Age, weight, preop GERD, bougie size, distance of 1st stapler from pylorus
center model

Liew PLP? 2007 Taiwan 117 Local bariatric ~ BPN ANN - - Chronic inflammation, HbAlc, DBP
center

Romero- 2024 USA 755,506 MBSAQIP N/A LR - 0.790 Sex, ethnicity, HTN, GERD, COPD, DLP, chronic steroid use, renal

Velez GP¥ ANN - 0.798 insufficiency, dialysis, Hx of DVT/PE, venous stasis, therapeutic anticoag.,

XGB - 0.787 02-dependent, OSA, need for mobility device, Hx of MI/PCI, previous

cardiac surgery, IDDM, type of surgery, age, BMI, albumin, operative time

Numbers in bold signify clinically meaningful values of AUROC (> 0.80). MBS: Metabolic bariatric surgery; AUROC: area under the receiver operating characteristic curve; MBSAQIP: Metabolic and Bariatric Surgery
Accreditation and Quality Improvement Program registry; BPN: backpropagation; ANN: artificial neural network; LR: logistic regression; XBG: eXtreme gradient boosting; preop: preoperative; GERD: gastroesophageal
reflux disease; HbAlc: glycated hemoglobin; DBP: diastolic blood pressure; HTN: hypertension; COPD: chronic obstructive pulmonary disease; DLP: dyslipidemia; Hx: history; DVT: deep venous thrombosis; PE:
pulmonary embolism; anticoag.: anticoagulation; O,: oxygen; OSA: obstructive sleep apnea; MI: myocardial infarction; PCI: percutaneous coronary intervention; IDDM: insulin-dependent diabetes mellitus; BMI: body
mass index.

The majority of studies (N = 18, 78.2%) were rated as having an unclear risk, primarily due to a high number of studies (N = 17, 73.9%) being assessed as
having a high probability of bias in the “Analysis” domain. This was largely attributable to the fact that many studies did not employ methods to address
imbalanced data, an inherent limitation of studying rare phenomena such as postoperative complications. Notably, three studies were assessed as having an
overall “low risk” of bias”*****.. The detailed results of the RoB assessment for the included studies are presented in Figure 6.

DISCUSSION

This systematic review highlights the evolving role of Al and ML in predicting postoperative complications following MBS. By synthesizing data from diverse
studies, our findings reveal key trends, challenges, and opportunities for the integration of these technologies into clinical practice.

AI/ML models have shown promising predictive performance across various postoperative complications, with AUROC values frequently exceeding 0.7 and
peaking at 0.94 in certain models. These results emphasize the potential utility of AI/ML in the early identification of high-risk patients, enabling personalized
perioperative management strategies. Specific findings, such as robust predictions for VTE and infections, underscore the feasibility of targeted interventions
to mitigate complications. Importantly, while we focused on AUROC for consistency and comparability, several of the included studies also reported
sensitivity, specificity, or accuracy, while only one reported the F1-score”. In line with current recommendations for reporting ML models in biomedical
research, such as those outlined by Luo et al, future studies should aim for more consistent inclusion of complementary metrics to enhance clinical

[45]

interpretability and support meaningful comparisons
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Figure 6. RoB in the included studies, according to the PROBAST tool. The X-axis represents the number of included studies (N = 23).
RoB: Risk of bias.

Notably, cardiovascular complications, often multifactorial and influenced by patient comorbidities, were
associated with high predictive accuracy in studies using large datasets. This aligns with the critical need for
enhanced cardiovascular risk stratification in MBS patients, a population inherently predisposed to
cardiovascular events due to obesity-related pathophysiology.

Despite these promising results, significant limitations exist in the current body of research. Several studies
suffered from small sample sizes or imbalanced datasets, particularly in predicting rare complications. This
may lead to biased models and reduced generalizability. Some studies also demonstrated signs of
overfitting""'?, with models performing well in training but significantly worse in test datasets, suggesting
that they captured noise rather than generalizable patterns*’. Future studies should mitigate this by
employing techniques such as cross-validation, regularization, or dropout in DL models'*”. This issue
underscores the importance of applying mitigation techniques such as cross-validation, regularization, and
dropout, particularly in DL models. Importantly, we did not exclude studies based on AUROC thresholds;
models with values below 0.8 were retained when they addressed clinically relevant outcomes or introduced
novel methodological approaches. The difficulty of achieving generalizable predictions was particularly
evident in algorithms predicting miscellaneous complications, which demonstrated inconsistent
performance, likely due to sparse data. Moreover, the issue of imbalanced data has been addressed by
several authors""">*". The rarity of postoperative complications underscores the need for future research to
address this challenge by employing appropriate methods, such as SMOTE. This issue was a key concern
regarding methodological quality and the potential for bias in the included studies. Several authors
employed mitigation strategies such as SMOTE, which is widely regarded as an appropriate method to
address class imbalance by synthetically generating minority class examples, thus enhancing algorithm
learning and reducing bias toward the majority class.

Additionally, a notable gap was the lack of external validation in most studies, raising concerns about the
applicability of these models across different clinical settings. Only a few studies employed multi-center data
or tested models on independent cohorts. Without external validation, it is difficult to determine whether a
model trained on a specific patient population will perform equally well in another clinical context. As a
result, most of the included models remain investigational and cannot yet be implemented in routine
decision making. Notably, the majority of the included studies drew from large, well-established registries
such as MBSAQIP and SOReg, which enhances the relevance and generalizability of the findings; however,
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even registry-based studies often lacked external validation. To bridge this gap, future research should
emphasize prospective validation in independent and diverse cohorts, ideally across multiple institutions.
Finally, while advanced algorithms like DL were associated with higher accuracy, their “black-box” nature
presents challenges in clinical adoption. Interpretability remains a critical hurdle, as clinicians require clear
explanations of predictions to trust and act on model outputs.

Our findings align with prior reviews that underscore the promise of AI/ML in surgical outcome prediction.
AI/ML is a promising tool that outperforms traditional predictive tools and may assist decision making**.
In a recent meta-analysis in the field of gastrointestinal surgery, Wang et al. compared 62 LR models with
143 ML models, reporting that the ML models demonstrated superior mean performance (difference in

AUROC: 0.07; 95%CI: 0.004-0.009; P < 0.001)",

Our review uniquely focuses on MBS, highlighting its distinct challenges, such as heterogeneity in patient
profiles and surgical techniques. Compared to other surgical fields, MBS research on AI/ML appears to lag
in terms of external validation and real-world implementation, reflecting a need for concerted efforts to
standardize methodologies. A recent review in the field of MBS focused on the application of ML in
predicting postoperative complications”. The author identified seven studies, four of which were also
included in our analysis. However, this review did not distinguish between complications arising from MBS
and those related to obesity itself. Additionally, it excluded studies addressing readmissions and those
focused on specific complications such as leaks, hemorrhage, VTE, and GERD. Along the same lines,
another recent review investigated the role of Al in predicting bariatric surgery complications™. This
review also included seven studies, with significant overlap with the previous one. Notably, at least one of
the included studies did not focus on postoperative complications but rather on long-term outcomes, such
as weight loss and remission of obesity-related health problems. We believe our study offers a broader yet
more focused perspective by incorporating a larger number of studies specifically dedicated to both short-
and long-term complications.

Another important methodological consideration is the heterogeneity of surgical procedures across the
included studies. However, we found that the overwhelming majority focused on LSG and RYGB, either
explicitly or as part of registry-based cohorts where these procedures dominate (e.g., MBSAQIP, SOReg).
Only two studies exclusively examined other operations: Sheikhtaheri et al. focused on OAGB"Y, and Wise
et al. analyzed outcomes after duodenal switch"”. Although some studies included a small proportion of
other procedures, such as gastric banding, their findings are still highly relevant to LSG/RYGB
populations”. Conversely, other studies that included procedures such as single-anastomosis sleeve-jejunal
bypass and transit bipartition were considered outliers and interpreted accordingly”. While this variability
is a limitation, it does not substantially compromise the generalizability of our conclusions for the two
dominant procedures globally. Supplementary Table 2 has also been provided to list the subset of studies
that focused exclusively on LSG and/or RYGB.

A related but distinct source of heterogeneity is the inclusion of revisional bariatric procedures. Revisional
surgeries are known to carry higher perioperative risk and may affect model performance if not explicitly
accounted for®™”. In our review, several studies excluded revisional cases altogether'”>****¥, while others
included them as covariates but did not report stratified performance metrics""*'*.. Only one study (Scott et
al.) focused exclusively on revisional procedures and reported separate predictive values”. The lack of
stratification in the remainder of the studies limited our ability to evaluate the impact of revisional status on
model accuracy. This introduces an additional layer of complexity in interpreting pooled findings and
highlights the need for future models to either stratify or develop dedicated predictive tools for revisional
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bariatric surgery.

The clinical relevance of ML in bariatric surgery is growing, with early successes pointing toward both
preoperative and postoperative applications. A notable example is the SOPHIA study, which developed and
externally validated a ML-based calculator using data from 10 prospective cohorts and 2 randomized trials
to predict 5-year postoperative weight trajectories”. This tool exemplifies how interpretable models can
inform patient selection, support shared decision making, and guide long-term follow-up. In parallel,
embedded systems enhanced by AT and connected through the Internet of Things are emerging as real-time
supports during the perioperative course. These include tools capable of recognizing surgical steps through
computer vision, predicting remaining surgery duration, or analyzing postoperative physiological data (e.g.,
heart rate patterns) via wearable devices to detect complications such as leaks. Our recent work outlines
how such technologies may enhance both the safety and personalization of MBS, while also highlighting the
ethical and implementation challenges involved. For these tools to reach clinical maturity, future efforts
must focus on prospective validation, seamless EHR integration, and multidisciplinary collaboration that
ensures clinical interpretability and accountability.

AI/ML holds the potential to revolutionize perioperative care in MBS by enabling risk stratification,
optimizing resource allocation, and guiding tailored interventions. However, clinicians and researchers
must address the limitations highlighted to realize this potential fully. Future efforts should prioritize the
use of multi-center datasets to enhance model robustness and generalizability, integration of explainable AI
frameworks to improve transparency and clinical acceptance, and rigorous validation studies that assess the
impact of these models on clinical outcomes and cost-effectiveness. The field is poised for significant
advancements with the adoption of newer techniques such as federated learning*®), which allows
collaborative model development without data sharing, and transformer-based models'*’, known for their
superior contextual understanding. Additionally, research must expand to explore the ethical implications
of AI/ML in MBS, particularly concerning patient consent and data privacy.

In conclusion, in this review, we provide a comprehensive overview of AI/ML applications in predicting
complications after MBS. While the findings are encouraging, substantial work remains to translate these
advancements into clinical practice. Future research should focus on addressing the identified limitations
and leveraging emerging technologies to enhance predictive accuracy, interpretability, and real-world
utility. By doing so, AI/ML can become a cornerstone in improving the safety and outcomes of MBS.
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