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Abstract
Background: Machine learning (ML) and other applications of artificial intelligence (AI) are revolutionizing 
medicine, particularly in the field of surgery. These models have the potential to outperform traditional predictive 
tools, aiding clinicians in decision making and enhancing operative safety through improved patient selection.

Methods: A systematic search was conducted across PubMed/MEDLINE and Google Scholar, guided by the 
preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement, to identify studies 
employing ML and AI algorithms to predict postoperative complications following metabolic bariatric surgery 
(MBS). The search included primary studies published in English up to November 2024. The area under the 
receiver operating characteristic curve (AUROC) was used as a surrogate metric for algorithm performance, with 
values exceeding 0.8 considered clinically significant; however, studies were not excluded based on AUROC 
thresholds.

Results: The search identified 23 studies meeting the inclusion criteria. These were categorized into seven 
domains: general complications (8 studies, 34.8%), readmissions after MBS (4 studies, 17.4%), hemorrhage (1 
study, 4.3%), leaks (1 study, 4.3%), venous thromboembolism (3 studies, 13.0%), nutritional deficiencies (4 
studies, 17.4%), and miscellaneous complications such as gastroesophageal reflux disease, gallbladder disease, 
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and major adverse cardiovascular events (MACE) (3 studies, 13.0%). The studies spanned from 2007 to 2024, 
with 87.0% (20/23) published in or after 2019. In total, 87 AI/ML algorithms were analyzed. While several studies 
reported AUROC values exceeding 0.7, the highest achieved was 0.94. However, most studies exhibited 
methodological limitations, including a lack of external validation and inadequate handling of imbalanced datasets, 
where complication events were markedly fewer than non-events.

Conclusions: While AI and ML approaches generally outperform traditional predictive models in forecasting 
postoperative complications following MBS, few algorithms demonstrated clinically significant performance with 
AUROC values above 0.8. Future research should adopt more rigorous methodologies and implement strategies to 
address imbalanced datasets, ensuring broader clinical applicability of AI/ML tools.

Keywords: Metabolic bariatric surgery, artificial intelligence, machine learning, postoperative complications, leak, 
hemorrhage, bleeding, thromboembolism

INTRODUCTION
The integration of artificial intelligence (AI) and machine learning (ML) into healthcare has been 
transformative, with their applications in surgery growing exponentially. ML is widely regarded as a subset 
of AI, encompassing algorithms that improve performance through data exposure. In this review, we use AI 
as an umbrella term that includes ML, deep learning (DL), and natural language processing (NLP). While 
these terms are sometimes used interchangeably in the literature, we refer specifically to ML when 
discussing algorithmic models for complication prediction, and reserve “AI” for broader decision-support 
or data-driven systems. These technologies (primarily ML algorithms as the most widely implemented 
subset of AI) are now leveraged for preoperative planning, intraoperative guidance, and postoperative 
monitoring, significantly enhancing surgical precision and decision making. In the field of metabolic 
bariatric surgery (MBS), ML models and other AI-based tools (e.g., DL or NLP applications) have shown 
promise in areas such as patient selection, outcome prediction, and complication identification, paving the 
way for a new era of personalized and data-driven surgical care[1-3].

Over the years, the safety profile of MBS has markedly improved, thanks to advancements in surgical 
techniques, optimization of perioperative protocols, and the evolution of surgical equipment. Accumulated 
experience among bariatric surgeons has also contributed to reducing complications, leading to better 
patient outcomes. Additionally, the widespread accreditation of dedicated metabolic and bariatric surgical 
centers has further contributed to safety improvements by promoting standardization of care, 
implementation of best practices, and multidisciplinary team-based approaches[4]. As a result, procedures 
such as sleeve gastrectomy and Roux-en-Y gastric bypass (RYGB) have become safer and more widely 
accepted as effective interventions for managing obesity and its associated comorbidities. For instance, 
according to a review published almost a decade ago, bariatric surgery has a safety profile comparable to 
that of many operations deemed as “routine”, including laparoscopic cholecystectomy, appendectomy, and 
colectomy, provided it is performed by specialized surgeons in accredited, high-volume centers[5]. The 
ASMBS/IFSO guidelines also report a perioperative mortality rate between 0.03% and 0.2%, confirming the 
procedure’s overall safety profile[6].

Despite these advancements, the potential for complications persists, making postoperative monitoring and 
risk stratification critical. Here, AI and ML present an exciting frontier. By analyzing vast datasets of patient 
characteristics, surgical details, and outcomes, these technologies can identify patterns and predict 
complications with remarkable accuracy. This predictive capability could enable early intervention and 
better allocation of resources, ultimately improving patient safety and long-term outcomes.
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In this context, exploring the application of AI in predicting complications following MBS offers significant 
potential. By systematically reviewing the current literature on this topic, we aim to synthesize evidence on 
the utility of AI and ML in enhancing postoperative care for bariatric patients. This approach will help 
identify gaps in existing knowledge, highlight promising applications, and provide a roadmap for future 
research to optimize outcomes and further improve the safety profile of MBS in an era of rapidly advancing 
medical technology.

METHODS
This systematic review and meta-analysis were conducted according to the preferred reporting items for 
systematic reviews and meta-analyses (PRISMA) guidelines to investigate the utility of ML and other 
applications of AI in predicting complications after MBS[7]. The study protocol was registered online with 
Protocols.io.

The PICOS framework was employed to define the study eligibility criteria as follows:

Population (P): Individuals living with obesity, aged 18-65 years, who had undergone MBS of any type. This 
included, but was not limited to, laparoscopic sleeve gastrectomy (LSG), RYGB, one anastomosis gastric 
bypass (OAGB), single anastomosis duodenal switch with sleeve gastrectomy (SADI-S), and adjustable 
gastric banding (AGB), except when AGB was the sole bariatric intervention studied. Both index or 
revisional procedures were eligible.

Intervention (I): Application of ML (supervised and unsupervised) [Supervised learning refers to algorithms 
that are trained on labeled datasets with known outcomes (e.g., presence or absence of complications), while 
unsupervised learning involves identifying patterns or clusters in data without predefined outcome labels], 
DL, or other AI algorithms to predict and analyze postoperative complications, either within 90 days (early 
complications) or during a later phase (late complications). This classification is primarily 
pathophysiological rather than strictly chronological, given that complications such as bleeding, leakage, 
and venous thromboembolism (VTE) typically occur during the immediate postoperative period, whereas 
nutritional deficiencies and gastroesophageal reflux disease (GERD) tend to arise in the later phase, and 
typically beyond the first 90 postoperative days.

Comparison (C): Performance of the AI algorithm(s) compared with conventional or established predictive 
tests was desirable but not mandatory.

Outcomes (O): Algorithm performance metrics, such as sensitivity, specificity, and area under the receiver 
operating characteristic curve (AUROC), as reported in each study. Comparisons with conventional 
predictive algorithms were desirable but not required. AUROC values were not used as an inclusion or 
exclusion criterion. Nonetheless, values > 0.8 were considered clinically relevant during the interpretation of 
model performance.

Study design (S): Retrospective and prospective studies involving any number of participants were included.

Literature search strategy
A systematic literature search of the electronic databases PubMed (MEDLINE) and Google Scholar was 
conducted by two independent reviewers (AGP, PE). The search terms were organized into three groups:

https://www.protocols.io/
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Group A: Terms related to MBS, including “bariatric”, “gastric band*”, “sleeve”, “gastric bypass”, “duodenal 
switch”, and “SADI”.

Group B: Terms associated with postoperative complications, such as “complications”, “adverse events”, 
“morbidity”, “leak*”, “erosion”, “hemorrhage”, “bleeding”, “chole*”, “fever”, “infect*”, “thrombosis”, 
“embolism”, “pneumonia”, “respiratory”, “cardiovascular”, “infarction”, “kidney”, “renal”, “acute”, 
“nutritional deficien*”, “anemia”, “calcium”, “vitamin”, “reflux”, “GERD”, “failure”, “hernia”, “weight 
recurrence”, and “readmission”.

Group C: Terms relevant to AI algorithms, including “artificial intelligence”, “machine learning”, “deep 
learning”, “natural language processing”, and “neural network”.

Search terms from Groups A, B, and C were combined using Boolean operators (AND and OR) to ensure a 
comprehensive search strategy. Additionally, the reference lists of included studies were reviewed to identify 
potentially eligible studies. The search was restricted to English-language publications and included studies 
available up to November 30, 2024.

Study selection
We considered all studies published in English up to November 30, 2024, conducted on human populations. 
Duplicate search results were removed before screening abstracts for eligibility. Only primary studies were 
included; reviews (narrative, scoping, systematic, or meta-analyses), case reports, editorials, letters to the 
editor, and commentaries were excluded. Additionally, only studies with accessible full texts were 
considered, leading to the exclusion of conference abstracts.

Studies were excluded if they focused on topics unrelated to our scope, such as education and the learning 
curve of bariatric procedures, comorbidities [e.g., major adverse cardiovascular events (MACE) as 
comorbidities of obesity rather than postoperative complications], quality of life, bariatric outcomes (e.g., 
weight loss or resolution of obesity-related comorbidities), obesity in general (without bariatric surgery), 
complications of endoscopic interventions (e.g., endoscopic sleeve gastroplasty), or computer vision 
analysis. Studies focused exclusively on robotic surgery or the surgical learning curve were also excluded, as 
their primary aim did not align with the prediction of postoperative complications.

Full texts of the remaining studies were retrieved for further evaluation by two independent reviewers 
(AGP, PE). Any selection discrepancies were resolved through discussion, and if consensus could not be 
reached, a third researcher (DPL) provided the final decision.

Risk of bias assessment
The PROBAST risk of bias (RoB) tool was independently applied by two reviewers (AGP, PE) to assess the 
methodological quality of each study included in the analysis of ML and other AI models[8,9]. This tool 
evaluates RoB across four domains: participant selection, predictors, outcomes, and analysis, providing an 
overall RoB assessment based on these categories.

Data extraction
The included studies were referenced using Zotero (Corporation for Digital Scholarship), and Microsoft 
Excel was utilized during the screening and data extraction process. Data were extracted by two 
independent reviewers (AGP, PE) into an Excel spreadsheet for the following parameters: first author; year 
of publication; country or countries of the institution(s) involved; DOI (or PMID if the DOI was 
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unavailable); type of complication; type of surgery; study design (retrospective or prospective); purpose of 
the prediction (prognostic or diagnostic); total cohort size; number of complications; sizes of the training, 
test, and validation datasets; top-ranked variables (features); AI algorithms studied; methods used to address 
data imbalance; and performance metrics, including accuracy, sensitivity, specificity, F1-score, AUROC, 
area under the precision-recall curve (AUPRC), positive predictive value (PPV), and negative predictive 
value (NPV).

Data synthesis
A descriptive summary was used to categorize the types of ML/AI models based on the type of complication 
post-MBS. The discriminative ability of each algorithm was evaluated using metrics such as sensitivity, 
specificity, accuracy, F1-score, PPV, NPV, AUROC, and AUPRC, as reported for each outcome. Among 
these metrics, AUROC was considered the most reliable, as it accounts for the model’s true positive rate and 
false positive rate across various cutoff thresholds. AUROC values range from 0.5 (indicating random 
guessing) to 1.0 (indicating perfect classification), with values > 0.80 generally regarded as clinically 
useful[10].

A comparative meta-analysis of the ML/AI models was not feasible due to heterogeneity in study 
methodologies, outcome reporting, and the lack of comparisons between AI/ML algorithms and 
conventional predictive models in most studies.

RESULTS
The search strategy identified a total of 1,398 articles after duplicates were removed. These studies were 
screened for eligibility based on their titles and abstracts. Following this screening, 1,368 studies were 
excluded, leaving 30 articles for full-text assessment. Ultimately, 23 studies met the criteria for inclusion in 
the final review. The selection process is summarized in the flowchart presented in Figure 1. Supplementary 
Table 1 provides details of the studies excluded during the eligibility phase (n = 7), along with the reasons 
for their exclusion.

Of the 23 primary studies included, 20 (87.0%) were published from 2019 onward, with 10 (43.5%) 
appearing between 2023 and 2024. Figure 2 illustrates the temporal evolution of the included studies. The 
most common country of origin was the USA, contributing 10 studies (43.5%), followed by Sweden (4 
studies, 17.4%), and Iran and China (2 studies each, 8.7%). Figure 3 shows the geographical distribution of 
these studies.

In terms of AI/ML algorithms, 87 analyses were conducted across the included studies. The most frequently 
used algorithm was logistic regression (LR), appearing in 16 analyses (18.4%), followed by neural networks 
(NNs) (not otherwise specified) in 10 analyses (11.5%), random forest (RF) in 9 analyses (10.3%), multilayer 
perceptron (MLP) in 8 analyses (9.2%), and support vector machine (SVM) and eXtreme gradient boosting 
(XGB) in 7 analyses each (8.0%). Figure 4 summarizes the frequency of each algorithm’s implementation.

The included studies were further categorized based on the type of complication investigated, resulting in 
seven groups: (1) complications in general (8 studies, 34.8%)[11-18]; (2) readmissions after MBS (4 studies, 
17.4%)[19-22]; (3) hemorrhage (1 study, 4.3%)[23]; (4) leak (1 study, 4.3%)[24]; (5) VTE [including deep venous 
thrombosis (DVT), pulmonary embolism (PE), and portomesenteric and splenic vein thrombosis 
(PMSVT), 3 studies, 13.0%][24-26]; (6) nutritional deficiencies (including anemia, vitamin deficiencies, 
micronutrient deficiencies, hypocalcemia, etc., 4 studies, 17.4%)[27-30]; and (7) miscellaneous, including 
GERD[31], gallbladder disease[32], and MACE (myocardial infarction, cerebrovascular accident, cardiac 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202506/ais40104-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202506/ais40104-SupplementaryMaterials.pdf
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Figure 1. PRISMA flowchart, illustrating the process of selecting eligible publications for inclusion in the systematic review. MACE: Major 
adverse cardiovascular events; ESG: endoscopic sleeve gastroplasty; PRISMA: preferred reporting items for systematic reviews and 
meta-analyses.

Figure 2. Temporal evolution of the included studies.

arrhythmias, congestive heart failure, cardiac arrest)[33] (3 studies, 13.0%). Notably, one study belonged to 2 
categories (leak and VTE)[24]. Figure 5 summarizes the distribution of the included studies across categories.
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Figure 3. Geographical distribution of the included studies.

Figure 4. Types and frequency of algorithms implemented in the included studies. LR: Logistic regression; NN: neural network; ANN: 
artificial neural network; MLP: multilayer perceptron; RF: random forest; SVM: support vector machine; XGB: eXtreme gradient 
boosting; KNN: k-nearest neighbor; GBRT: gradient boosted regression tree; LDA: linear discriminant analysis; QDA: quadratic 
discriminant analysis, CNN: convoluted neural network; RNN: recurrent neural network; BPN: backpropagation neural network; DT: 
decision tree; ML: machine learning.

Complications of MBS in general
As highlighted in Figure 5, this category of complications, in general, included eight primary studies[11-18] 
that explored the utility of ML algorithms in predicting postoperative complications cumulatively, without 
focusing on specific complications.

Cao et al. published two studies on this topic. The first evaluated the performance of 29 supervised ML 
algorithms (both base and ensemble models) in predicting post-MBS complications in a cohort of 37,811 
patients from the Scandinavian Obesity Surgery Registry (SOReg) database[11]. To address the significant 
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Figure 5. Distribution of the included studies by category. VTE: Venous thromboembolism; def.: deficiency; miscellaneous included 
gastroesophageal reflux disease, gallbladder disease, and major adverse cardiovascular events.

data imbalance between bariatric surgery outcomes and the occurrence of complications, they employed the 
synthetic minority oversampling technique (SMOTE). The best-performing algorithms based on AUROC 
were oversampling RF (0.99), oversampling AdaExtra Trees (0.98), oversampling AdaGradient Tree (0.97), 
and oversampling bagging k-nearest neighbor (KNN, 0.94) for the training set. However, performance 
dropped substantially in the test set, with the best algorithm (gradient regression tree and bagging MLP) 
achieving an AUROC of only 0.58.

In their second study, Cao et al. assessed the performance of three supervised DL models [MLP, 
convolutional neural network (CNN), and recurrent neural network (RNN)], individually and with 
oversampling techniques (SMOTE), using the same SOReg population[12]. The best-performing algorithm 
was oversampling MLP for the training set (AUROC: 0.84, 95%CI: 0.83-0.85). For the test set, MLP and 
oversampling CNN performed best, each with an AUROC of 0.57 (95%CI: 0.55-0.59 for MLP and 0.55-0.61 
for CNN). These studies highlighted that, despite good predictive performance in training datasets after 
appropriate tuning, there remains significant room for improvement in the clinically relevant test datasets. 
Notably, the same group of investigators published a relevant study in 2018 on severe complications[15]. 
However, that study primarily focused on features, and the analysis was conducted exclusively using 
multivariate LR, without reporting the AUROC value.

Wise et al. published two studies examining the predictive value of LR and artificial neural networks (ANN) 
for 30-day morbidity and mortality following LSG[16] and duodenal switch[17]. Using data from the Metabolic 
and Bariatric Surgery Accreditation and Quality Improvement Program (MBSAQIP) database, the studies 
analyzed populations of 101,721 and 2,907 patients, respectively. ANN outperformed LR in both cases, but 
AUROC values ranged from 0.581 to 0.685 - below the clinically meaningful threshold of 0.80. The same 
group also evaluated LR and ANN for predicting outcomes after revisional RYGB following LSG, with 
AUROC values ranging from 0.587 to 0.604[13].
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Sheikhtaheri et al. utilized MLP models to predict complications following OAGB at 10-day, 1-month, and 
3-month intervals postoperatively[14]. In contrast to earlier findings, this study achieved an AUROC of 0.996 
in the validation dataset at the 10-day mark. A notable limitation, however, was the use of data from only 
five hospitals over five years, yielding a significantly smaller population compared to nationwide registries 
such as SOReg and MBSAQIP.

More recently, Zucchini et al. conducted a retrospective analysis of several ML models (LR, SVM, RF, KNN, 
MLP, and XGB) for predicting 30-day complications at their bariatric center[18]. RF achieved an AUROC of 
0.94 in the training set and 0.88 in the test set, both outperforming the MBSAQIP predictive tool (AUROC 
0.64). Three models (KNN, XGB, and RF) had AUROC values above 0.80, but only XGB achieved 100% 
sensitivity with a cutoff of 0.05, allowing it to accurately identify both high- and low-risk patients. The 
authors noted that the study’s primary limitation was its small sample size (N = 424), which limits the 
generalizability of the findings.

Table 1 provides a summary of the key characteristics of studies in this category.

Readmissions following MBS
Hospital readmissions within the immediate postoperative period (usually within 30 days after surgery) are 
a recognized indicator of care quality and have been widely used to evaluate surgical and non-surgical 
complications across various procedures[34,35]. This review identified four studies[19-22] that explored the 
application of ML algorithms in predicting readmissions following MBS.

Two studies utilized the MBSAQIP database. Torquati et al. analyzed a cohort of 393,833 patients with a 
3.9% readmission rate[21]. The study compared the super learner (SL) algorithm with LR, finding that SL 
demonstrated superior predictive performance (AUROC: 0.674, 95%CI: 0.670-0.679 vs. LR: 0.252, 95%CI: 
0.249-0.255). However, the predictive value of SL did not reach clinical utility.

Butler et al. examined 863,348 patients with a readmission rate of 4.52%[19], comparing four algorithms: 
XGB, RF, NNs, and LR. XGB and RF performed equally well (AUROC: 0.785, 95%CI 0.784-0.786 for XGB; 
0.784-0.785 for RF), followed by NN (AUROC: 0.754, 95%CI: 0.753-0.754) and LR (AUROC: 0.620, 95%CI: 
0.620-0.621; P < 0.001). Performance improved when algorithms incorporated all predischarge variables 
rather than just preoperative and intraoperative factors. Nonetheless, none of the models achieved clinical 
significance (AUROC > 0.8).

Zhang et al. explored ML algorithms for readmission prediction using lab test data from 1,262 patients with 
a 7.69% readmission rate[22]. The study applied five algorithms - SVM, LR, MLP, RF, and XGB. AUROC 
values ranged from 0.743 (95%CI: 0.641-0.845) for XGB to 0.784 (95%CI: 0.691-0.866) for GLM. Although 
the models performed better than in larger datasets, the small sample size limited the study’s 
generalizability.

Charles-Nelson et al. employed formal concept analysis (FCA), a data-mining method rather than an ML 
algorithm, to analyze one-year readmissions post-MBS[20]. Using data from the Programme de Mé
dicalisation des Systèmes d’Information (PMSI) database, the study included 198,389 procedures performed 
on 196,323 patients. FCA identified 12 primary reasons for readmissions, including dysphagia (0.4%), 
vomiting (0.4%), acute gastric hemorrhage (0.6%), ventral hernia (0.7%), medical abortion (0.7%), fistula 
and acute peritonitis (1.3%), abdominal/pelvic pain (1.9%), cholelithiasis (2.2%), regular follow-up (14.9%), 
and combinations of the above. While FCA enhances interpretability and clinical pattern recognition, it 
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Table 1. Study characteristics for complications in general after MBS

First author 
(citation no.)

Year of 
publication Country Population Database(s) Method of dealing with 

imbalanced data
Algorithms 
examined

AUROC 
(training)

AUROC 
(test) Top-ranked features/variables

Cao Y[11] 2019 Sweden 44,061 SOReg SMOTE LR 
LRAB 
LRO 
LDA 
LDAB 
LDAO 
QDA 
QDAB 
QDAO 
DT 
RF 
RFO 
XTR 
XTRAB 
XTRO 
GRT 
GRTAB 
GRTO 
KNN 
KNNB 
KNNO 
SVM 
SVMAB 
SVMO 
MLP 
MLPB 
MLPO 
DL-NN 
DL-NNO

0.560 
0.480 
0.430 
0.560 
0.560 
0.460 
0.550 
0.540 
0.550 
0.500 
0.520 
0.990 
0.510 
0.510 
0.980 
0.540 
0.510 
0.970 
0.520 
0.520 
0.940 
0.460 
0.520 
0.440 
0.530 
0.550 
0.370 
0.550 
0.670

0.540 
0.470 
0.510 
0.540 
0.540 
0.520 
0.570 
0.560 
0.480 
0.500 
0.520 
0.510 
0.510 
0.510 
0.480 
0.580 
0.520 
0.510 
0.540 
0.530 
0.540 
0.500 
0.490 
0.490 
0.500 
0.580 
0.540 
0.540 
0.560

Training: age, BMI, HbA1c, HTN, DM, 
dyspepsia, previous VTE, RBS 
Test: WC, HbA1c, DLP, RBS

Cao Y[12] 2020 Sweden 44,061 SOReg SMOTE MLP 
MLPO 
CNN 
CNNO 
RNN 
RNNO

0.600 
0.840 
0.580 
0.790 
0.580 
0.650

0.570 
0.540 
0.550 
0.570 
0.560 
0.550

Not specified (in total, 5 continuous, and 11 
dichotomous)

Scott AW[13] 2024 USA 8,895 MBSAQIP N/A Multiv. LR 
ANN

- 
0.601

0.587 
0.600

Non-white race, initial BMI, therapeutic 
anticoagulation

Sheikhtaheri A[14] 2019 Iran 1,493 5 regional 
hospitals

SMOTE 10-dy MLP 
1-mo MLP 
3-mo MLP

- 
- 
-

1.000 
1.000 
0.930

Not specified (in total 32)

Stenberg E[15] 2018 Sweden 37,811 SOReg N/A LR - N/A RBS, age, BMI, WC, operation year, GERD, 
dyspepsia
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Wise ES[16] 2020 USA 101,721 MBSAQIP N/A Multiv. LR 
ANN

- 
0.581

0.572 
0.590

Age, non-white race, initial BMI, severe HTN, 
DM, RBS, functional status

Wise E[17] 2023 USA 2,907 MBSAQIP N/A Multiv. LR 
ANN

- 
0.656

0.619 
0.690

Age, non-white race, cardiac Hx, HTN on ≥ 3 
medications, RBS, OSA, Cr

Zucchini N[18] 2024 USA, 
Italy

424 Local bariatric 
center

N/A MLP 
LR 
SVM 
KNN 
XGB 
RF 
MBSAQIP*

0.670 
0.700 
0.790 
0.840 
0.850 
0.920 
0.610

0.650 
0.650 
0.780 
0.820 
0.830 
0.910 
0.630

ALP, PLT, TG, HbA1c, albumin

ABAdaBoost applied to previous algorithm. BBagging applied to previous algorithm. OOversampling applied to previous algorithm. *MBSAQIP perioperative risk calculator. Numbers in bold signify clinically meaningful 
values of AUROC (> 0.80). MBS: Metabolic bariatric surgery; AUROC: area under the receiver operating characteristic curve; SOReg: Scandinavian Obesity Surgery Registry; MBSAQIP: Metabolic and Bariatric 
Surgery Accreditation and Quality Improvement Program registry; SMOTE: synthetic minority oversampling technique; N/A: not available; LR: logistic regression; LDA: linear discriminant analysis; QDA: quadratic 
discriminant analysis; DT: decision tree; RF: random forest; XTR: ExtRa trees; GRT: gradient regression trees; KNN: k-nearest neighbor; SVM: support vector machine; MLP: multilayer perceptron; DL-NN: deep-
learning neural network; ANN: artificial neural network; multiv.: multivariate; XGB: eXtreme gradient boosting; BMI: body mass index; HbA1c: glycated hemoglobin; HTN: hypertension; DM: diabetes mellitus; VTE: 
venous thromboembolism; RBS: revisional bariatric surgery; WC: waist circumference; DLP: dyslipidemia; Hx: history; OSA: obstructive sleep apnea; Cr: creatinine; ALP: alkaline phosphatase; PLT: platelets; TG: 
triglycerides.

does not generate AUROC values, precluding direct comparison with ML-based studies.

Notably, none of these studies addressed the issue of unbalanced data. Table 2 summarizes the key characteristics of studies investigating AI/ML for predicting 
readmissions after MBS.

Hemorrhage after MBS
Our search identified only one relevant study[23], which is noteworthy given that postoperative bleeding is the most commonly reported complication following 
MBS, with an incidence ranging from 0.4%-4.4% after RYGB and 0.4%-3.4% after LSG[36]. Post-MBS hemorrhage may be intraluminal, intraabdominal, or a 
combination of both.

In this MBSAQIP-based study, Hsu et al. assessed the predictive performance of four ML algorithms - RF, XGB, deep neural networks (NN), and LR - for 
postoperative gastrointestinal bleeding[23]. Among these, RF demonstrated the highest predictive accuracy, with an AUROC of 0.764 (±0.019), while LR had the 
lowest performance, with an AUROC of 0.709 (±0.018).
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Table 2. Study characteristics for readmissions after MBS

First author 
(citation no.)

Year of 
publication Country Population Database(s) Method of dealing 

with imbalanced data
Algorithms 
examined

AUROC 
(training)

AUROC 
(test) Top-ranked features/variables

Butler LR[19] 2024 USA 863,348 MBSAQIP N/A LRP 
LRPI 
RFP 
RFPI 
XGBP 
XGBPI 
NNP 
NNPI

- 
- 
- 
- 
- 
- 
- 
-

0.620 
0.615 
0.785 
0.617 
0.785 
0.640 
0.754 
0.558

Intervention or reoperation prior to discharge, unplanned 
ICU admission, initial procedure, intraoperative 
transfusion

Charles-Nelson 
A[20]

2020 France 196,323 PMSI N/A FCA - - N/A

Torquati M[21] 2023 USA 393,833 MBSAQIP N/A SL 
LR

- 
-

0.674 
0.650

Bypass, change in BMI, sleeve, HTN on ≥ 3 medications

Zhang M[22] 2024 China 1,262 Local bariatric 
center

N/A SVM 
LR 
MLP 
RF 
XGB

- 
- 
- 
- 
-

0.784 
0.779 
0.778 
0.751 
0.743

RBC, CRP, UA

PAll predischarge variables. PIOnly preoperative and intraoperative variables. MBS: Metabolic bariatric surgery; AUROC: area under the receiver operating characteristic curve; MBSAQIP: Metabolic and Bariatric 
Surgery Accreditation and Quality Improvement Program registry; PMSI: Programme de Médicalisation des Systèmes d’Information; N/A: not available; LR: logistic regression; RF: random forest; XGB: eXtreme 
gradient boosting; NN: neural network; FCA: formal concept analysis; SL: super learner; SVM: support vector machine; MLP: multilayer perceptron; ICU: intensive care unit; BMI: body mass index; HTN: hypertension; 
RBC: red blood cell count; CRP: c-reactive protein; UA: uric acid.

Table 3 summarizes the characteristics and findings of this study.

Leak after MBS
Leaks and fistulas are among the most feared complications of bariatric surgery, with an incidence ranging from 0.5% to 2% in high-volume centers, depending 
on the type of surgery and whether it is an index or revisional procedure[37]. Despite the significance of these complications, our search identified only one 
relevant study.

Specifically, Nudel et al. developed and validated three models (ANN, XGB, and LR) to predict two different types of complications post-MBS: leaks and VTE 
(the latter analyzed in the next section), using the MBSAQIP database[24]. In this series, the incidence of leaks was 0.7%. ANN demonstrated the highest 
predictive performance, with an AUROC of 0.75 (95%CI: 0.73-0.78), followed by XGB (0.70, 95%CI: 0.68-0.72) and LR (0.63, 95%CI: 0.61-0.65), with 
significant differences among all models (P < 0.001).
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Table 3. Study characteristics for hemorrhage after MBS

First author 
(citation no.)

Year of 
publication Country Population Database(s) Method of dealing with 

imbalanced data
Algorithms 
examined

AUROC 
(training)

AUROC 
(test) Top-ranked features/variables

Hsu JL[23] 2023 USA 159,950 MBSAQIP N/A LR 
RF 
XGB 
NN

- 
- 
- 
-

0.709 
0.764 
0.746 
0.741

Procedure type, Hct, age, operation 
length, Cr

MBS: Metabolic bariatric surgery; AUROC: area under the receiver operating characteristic curve; MBSAQIP: Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program registry; N/A: not 
available; LR: logistic regression; RF: random forest; XGB: eXtreme gradient boosting; NN: neural network; Hct: hematocrit; Cr: creatinine.

Table 4 summarizes the key points of this study.

Venous thromboembolic events after MBS
Bariatric patients are particularly vulnerable to VTE due to a combination of factors, including chronic inflammation that disrupts the venous intimal lining 
and induces hypercoagulability, surgical stress, anatomical factors, limited mobility leading to venous stasis, the mechanics of laparoscopic surgery, and 
prolonged operation times. According to a comprehensive meta-analysis of 87 studies with over 2.5 million patients, the cumulative in-hospital incidence of 
VTE in the laparoscopic era is 0.15%, while the incidence within the first 30 postoperative days rises to 0.50%[38]. A rarer, yet potentially catastrophic form of 
VTE unique to MBS is PMSVT, with an incidence of approximately 0.1%[39].

In our analysis, we identified three relevant studies[24-26]. As mentioned earlier, Nudel et al. developed and validated a series of MBSAQIP-data-driven 
algorithms to predict both leaks and VTE post-MBS[24]. For VTE prediction, they evaluated the performance of three ML algorithms (ANN, XGB, LR) and 
Bariclot, a linear, forward regression statistical model that is less complex than typical ML algorithms. In their study, all three ML algorithms showed similar 
performances (AUROC: 0.64-0.67, 95%CI: 0.61-0.70), which are clearly below the clinically useful threshold of 0.8, although they performed better than 
Bariclot. Dang et al. compared Bariclot with clinical risk scores such as Caprini and Finks and found a slightly better performance for Bariclot (AUROC 0.602 
vs. 0.553-0.582), still below clinical significance[26].

In a more recent study, Ali et al. developed an MBSAQIP-data-driven supervised ML algorithm that incorporated the regression coefficients of six predictors 
from a pool of 26 features[25]. This risk model achieved an AUROC of 0.79 (95%CI: 0.63-0.81), which is considered borderline clinically significant but notably 
better than the previous models.

Table 5 summarizes the key findings from the studies on VTE prediction.
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Table 4. Study characteristics for hemorrhage after MBS

First author 
(citation no.)

Year of 
publication Country Population Database(s) Method of dealing with 

imbalanced data
Algorithms 
examined

AUROC 
(training)

AUROC 
(test) Top-ranked features/variables

Nudel J[24] 2021 USA 436,807 MBSAQIP Over-sampling 
w/imbalanced-learn Python 
library

ANN 
XGB 
LR

- 
- 
-

0.750 
0.700 
0.630

Age, preop BMI, change in BMI, weight, Hct, height, 
1st assistant training (attending), albumin

MBS: Metabolic bariatric surgery; AUROC: area under the receiver operating characteristic curve; MBSAQIP: Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program registry; ANN: artificial 
neural network; XGB: eXtreme gradient boosting; LR: logistic regression; preope: preoperative; BMI: body mass index; Hct: hematocrit.

Table 5. Study characteristics for VTE after MBS

First author 
(citation no.)

Year of 
publication Country Population Database(s) Method of dealing with 

imbalanced data
Algorithms 
examined

AUROC 
(training)

AUROC 
(test) Top-ranked features/variables

Ali H[25] 2024 USA, 
Pakistan

6,526 MBSAQIP N/A Supervised ML 
- RYGB 
- LSG 
- ESG

 
- 
- 
-

 
0.790 
0.630 
0.760

COPD, length of stay, prior DVT, HbA1c, 
venous stasis, preop anti-coagulants

Dang JT[26] 2019 Canada 274,221 MBSAQIP N/A Bariclot (multiv. 
LR) 
Finks 
Caprini

- 
- 
-

0.602 
0.582 
0.553

Hx of VTE, operative time, functional status

Nudel J[24] 2023 USA 436,807 MBSAQIP Over-sampling w/imbalanced-
learn Python library

ANN 
XGB 
LR 
Bariclot

- 
- 
- 
-

0.650 
0.670 
0.640 
0.600

Bypass, change in BMI, sleeve, HTN on ≥ 3 
medications

VTE: Venous thromboembolism; MBS: metabolic bariatric surgery; AUROC: area under the receiver operating characteristic curve; MBSAQIP: Metabolic and Bariatric Surgery Accreditation and Quality Improvement 
Program registry; PMSI: Programme de Médicalisation des Systèmes d’Information; N/A: not available; LR: logistic regression; RF: random forest; XGB: eXtreme gradient boosting; NN: neural network; FCA: formal 
concept analysis; SL: super learner; SVM: support vector machine; MLP: multilayer perceptron; ICU: intensive care unit; BMI: body mass index; HTN: hypertension; RBC: red blood cell count; CRP: c-reactive protein; 
UA: uric acid.

Nutritional deficiencies after MBS
All metabolic bariatric procedures, to varying extents, alter the anatomy and physiology of the gastrointestinal tract. These changes increase patients’ 
susceptibility to deficiencies in both macro- and micronutrients, potentially leading to serious conditions such as anemia, osteoporosis, and protein 
malnutrition[40].
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Our search identified four relevant studies that met the inclusion criteria. One study published in 2014 
explored the use of a Bayesian network decision-making system for predicting iron deficiency anemia 
(IDA), folate deficiency, vitamin B12 deficiency, thiamine deficiency, and malnutrition[27]. While the 
performance metrics of this study were strong, the small study population limits its generalizability. 
Nonetheless, it represents pioneering work in the application of AI in healthcare.

In 2023, three studies were published, indicating increased scientific interest in this area. Lenér et al. applied 
ML (RF) to assess the effectiveness of iron supplementation post-RYGB for preventing IDA[28]. However, 
neither AUROC values nor details on handling imbalanced data were provided in this study. Pan et al. 
examined the predictive performance of ML for IDA after LSG in premenopausal women[29]. Their 
algorithm achieved an AUROC of 0.858 on the training dataset and 0.799 on the test dataset, showing 
promising clinical potential. Finally, Parrott et al. used three ML models to analyze the incidence of vitamin 
C deficiency in post-MBS patients, revealing a higher prevalence than previously reported in the 
literature[30]. Of the three models (Bayesian network with 18 laboratory variables, Bayesian network with 47 
demographic variables, and RF with 81 variables), the RF model demonstrated the best predictive 
performance (AUROC 0.708).

Table 6 summarizes the key characteristics and findings of all four studies.

Miscellaneous complications after MBS
This category encompasses the remaining studies that utilized ML methods to predict complications 
following MBS but do not fit into any of the previously described categories.

GERD is a well-documented long-term complication that may develop in a subset of patients who have 
undergone LSG[41]. Emile et al. developed an ensemble model to predict GERD after LSG in a cohort of 441 
patients[31]. Their algorithm achieved an AUROC of 0.93 (95%CI: 0.88-0.99), providing robust evidence of 
the clinical applicability of AI. One critique of this study is that it did not account for endoscopic findings in 
a standardized manner, nor did it incorporate Hill’s classification. Nevertheless, it paves the way for 
meaningful future research in the field.

It is well known that cholelithiasis develops in 30%-50% of patients after bariatric surgery, and these 
individuals face an increased risk of complications, including biliary colic, acute cholecystitis, acute 
pancreatitis, and bile duct stones[42,43]. Liew et al. were the first to report an ANN-based model for predicting 
gallbladder disease after MBS[32]. Their model outperformed traditional LR, achieving an average correct 
classification rate of 97.14% compared to 88.2%, with a lower type II error rate.

Bariatric patients are at increased risk for cardiovascular complications in the postoperative period due to 
obesity and its sequelae, with a documented incidence of 1 in 1,000 procedures[44]. Romero-Velez et al. 
compared three ML models (LR, a single-layer NN, and XGB) to predict MACE within the first 30 
postoperative days after MBS, using the MBSAQIP database[33]. The NN outperformed the other models, 
with an AUROC close to the threshold of clinical significance (0.798).

Table 7 provides an overview of the key characteristics and findings from all three studies.

RoB assessment
As mentioned earlier, the included studies were evaluated across four domains (Participants, Predictors, 
Outcome, Analysis). Each study was rated as having a low, unclear, or high probability of bias based on the 
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Table 6. Study characteristics for nutritional deficiencies after MBS

First author 
(citation no.)

Year of 
publication Country Population Database(s)

Method of dealing 
with imbalanced 
data

Algorithms 
examined

AUROC 
(training)

AUROC 
(test) Top-ranked features/variables

Cruz MR[27] 2014 Brazil 60 Shell Netica N/A Bayesian 
network 
- IDA 
- THFA 
- B12 
- B1 
Malnutrition

 
- 
- 
- 
- 
-

 
0.839 
1.000 
1.000 
0.982 
1.000

Gender, age, surgery time, Hgb, Hct, MCV, albumin, ferritin, 
vit-B12, THFA, food intake, physical signs and symptoms of 
nutrient deficiency

Lenér F[28] 2023 Sweden 971 Local bariatric 
center

N/A RF 
LR

- 
-

N/A 
N/A

Hgb, TIBC, ferritin, vit-B12, THFA, ESR

Pan Y[29] 2023 China 407 Local bariatric 
center

SMOTE Linear SMV 0.858 0.799 Preop ferritin, age, Hgb, Cr, FCP

Parrott JM[30] 2023 UK, USA 187 Local bariatric 
center

Random under-sampling ML models 
- BN (18) 
- BN (47) 
- RF (81)

 
- 
- 
-

 
0.700 
0.693 
0.708

Fid 30-100, RDW, GFR, FID > 100, ALT, WBC, RBC, AST, 
MCHC, CRP, Hct 
Ethnicity, race, domestic partner, BMI, primary procedure, 
no. of surgeries

Numbers in bold signify clinically meaningful values of AUROC (> 0.80). MBS: Metabolic bariatric surgery; AUROC: area under the receiver operating characteristic curve; SMOTE: synthetic minority oversampling 
technique; IDA: iron-deficiency anemia; THFA: folate; B12: vitamin B12; B1: vitamin B1; RF: random forest; LR: logistic regression; SMV: support vector machine; BN (18): Bayesian network with 18 lab variables; BN 
(47): Bayesian network with 47 demographic variables; RF 81: random forest with 81 variables; Hgb: hemoglobin; Hct: hematocrit; MCV: mean corpuscular volume; TIBC: total iron-binding capacity; ESR: erythrocyte 
sedimentation rate; preop.: preoperative; Cr: creatinine; FCP: fasting C-peptide; FID 30-100: functional iron deficiency with ferritin levels 30-100, FID > 100: functional iron deficiency with ferritin levels > 100; RDW: 
red cell distribution width; GFR: glomerular filtration rate; ALT: alanine aminotransferase; WBC: white blood cell; RBC: red blood cell; AST: aspartate aminotransferase; MCHC: mean corpuscular hemoglobin 
concentration; CRP: C-reactive protein; BMI: body mass index; no.: number.

PROBAST criteria, as outlined in the relevant paper by Moons et al.[9]. The overall risk assessment was derived from these four domains, using the following
criteria:
• Low risk: All domains rated as low risk, or one domain rated as unclear and the rest low risk.
• Unclear risk:
■ 2-4 domains rated as unclear, rest low risk;
   or one domain rated as high risk and the rest low risk;
   or one high risk, one unclear, and the rest low risk.
• High risk:
   One high risk + 2-3 unclear;
   or 2-4 domains rated as high risk.

■

■■

■■

■■

■■
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Table 7. Study characteristics for miscellaneous complications after MBS

First author 
(citation 
no.)

Year of 
publication Country Population Database(s)

Method of 
dealing with 
imbalanced data

Algorithms 
examined

AUROC 
(training)

AUROC 
(test) Top-ranked features/variables

Emile SH[31] 2022 Egypt 441 Local bariatric 
center

N/A Ensemble 
model

- 0.93 Age, weight, preop GERD, bougie size, distance of 1st stapler from pylorus

Liew PL[32] 2007 Taiwan 117 Local bariatric 
center

BPN ANN - - Chronic inflammation, HbA1c, DBP

Romero-
Velez G[33]

2024 USA 755,506 MBSAQIP N/A LR 
ANN 
XGB

- 
- 
-

0.790 
0.798 
0.787

Sex, ethnicity, HTN, GERD, COPD, DLP, chronic steroid use, renal 
insufficiency, dialysis, Hx of DVT/PE, venous stasis, therapeutic anticoag., 
O2-dependent, OSA, need for mobility device, Hx of MI/PCI, previous 
cardiac surgery, IDDM, type of surgery, age, BMI, albumin, operative time

Numbers in bold signify clinically meaningful values of AUROC (> 0.80). MBS: Metabolic bariatric surgery; AUROC: area under the receiver operating characteristic curve; MBSAQIP: Metabolic and Bariatric Surgery 
Accreditation and Quality Improvement Program registry; BPN: backpropagation; ANN: artificial neural network; LR: logistic regression; XBG: eXtreme gradient boosting; preop: preoperative; GERD: gastroesophageal 
reflux disease; HbA1c: glycated hemoglobin; DBP: diastolic blood pressure; HTN: hypertension; COPD: chronic obstructive pulmonary disease; DLP: dyslipidemia; Hx: history; DVT: deep venous thrombosis; PE: 
pulmonary embolism; anticoag.: anticoagulation; O2: oxygen; OSA: obstructive sleep apnea; MI: myocardial infarction; PCI: percutaneous coronary intervention; IDDM: insulin-dependent diabetes mellitus; BMI: body 
mass index.

The majority of studies (N = 18, 78.2%) were rated as having an unclear risk, primarily due to a high number of studies (N = 17, 73.9%) being assessed as 
having a high probability of bias in the “Analysis” domain. This was largely attributable to the fact that many studies did not employ methods to address 
imbalanced data, an inherent limitation of studying rare phenomena such as postoperative complications. Notably, three studies were assessed as having an 
overall “low risk” of bias[24,29,30]. The detailed results of the RoB assessment for the included studies are presented in Figure 6.

DISCUSSION
This systematic review highlights the evolving role of AI and ML in predicting postoperative complications following MBS. By synthesizing data from diverse 
studies, our findings reveal key trends, challenges, and opportunities for the integration of these technologies into clinical practice.

AI/ML models have shown promising predictive performance across various postoperative complications, with AUROC values frequently exceeding 0.7 and 
peaking at 0.94 in certain models. These results emphasize the potential utility of AI/ML in the early identification of high-risk patients, enabling personalized 
perioperative management strategies. Specific findings, such as robust predictions for VTE and infections, underscore the feasibility of targeted interventions 
to mitigate complications. Importantly, while we focused on AUROC for consistency and comparability, several of the included studies also reported 
sensitivity, specificity, or accuracy, while only one reported the F1-score[18]. In line with current recommendations for reporting ML models in biomedical 
research, such as those outlined by Luo et al., future studies should aim for more consistent inclusion of complementary metrics to enhance clinical 
interpretability and support meaningful comparisons[45].
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Figure 6. RoB in the included studies, according to the PROBAST tool. The X-axis represents the number of included studies (N = 23). 
RoB: Risk of bias.

Notably, cardiovascular complications, often multifactorial and influenced by patient comorbidities, were 
associated with high predictive accuracy in studies using large datasets. This aligns with the critical need for 
enhanced cardiovascular risk stratification in MBS patients, a population inherently predisposed to 
cardiovascular events due to obesity-related pathophysiology.

Despite these promising results, significant limitations exist in the current body of research. Several studies 
suffered from small sample sizes or imbalanced datasets, particularly in predicting rare complications. This 
may lead to biased models and reduced generalizability. Some studies also demonstrated signs of 
overfitting[11,12], with models performing well in training but significantly worse in test datasets, suggesting 
that they captured noise rather than generalizable patterns[46]. Future studies should mitigate this by 
employing techniques such as cross-validation, regularization, or dropout in DL models[47]. This issue 
underscores the importance of applying mitigation techniques such as cross-validation, regularization, and 
dropout, particularly in DL models. Importantly, we did not exclude studies based on AUROC thresholds; 
models with values below 0.8 were retained when they addressed clinically relevant outcomes or introduced 
novel methodological approaches. The difficulty of achieving generalizable predictions was particularly 
evident in algorithms predicting miscellaneous complications, which demonstrated inconsistent 
performance, likely due to sparse data. Moreover, the issue of imbalanced data has been addressed by 
several authors[11,12,48]. The rarity of postoperative complications underscores the need for future research to 
address this challenge by employing appropriate methods, such as SMOTE. This issue was a key concern 
regarding methodological quality and the potential for bias in the included studies. Several authors 
employed mitigation strategies such as SMOTE, which is widely regarded as an appropriate method to 
address class imbalance by synthetically generating minority class examples, thus enhancing algorithm 
learning and reducing bias toward the majority class.

Additionally, a notable gap was the lack of external validation in most studies, raising concerns about the 
applicability of these models across different clinical settings. Only a few studies employed multi-center data 
or tested models on independent cohorts. Without external validation, it is difficult to determine whether a 
model trained on a specific patient population will perform equally well in another clinical context. As a 
result, most of the included models remain investigational and cannot yet be implemented in routine 
decision making. Notably, the majority of the included studies drew from large, well-established registries 
such as MBSAQIP and SOReg, which enhances the relevance and generalizability of the findings; however, 
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even registry-based studies often lacked external validation. To bridge this gap, future research should 
emphasize prospective validation in independent and diverse cohorts, ideally across multiple institutions. 
Finally, while advanced algorithms like DL were associated with higher accuracy, their “black-box” nature 
presents challenges in clinical adoption. Interpretability remains a critical hurdle, as clinicians require clear 
explanations of predictions to trust and act on model outputs.

Our findings align with prior reviews that underscore the promise of AI/ML in surgical outcome prediction. 
AI/ML is a promising tool that outperforms traditional predictive tools and may assist decision making[49-53]. 
In a recent meta-analysis in the field of gastrointestinal surgery, Wang et al. compared 62 LR models with 
143 ML models, reporting that the ML models demonstrated superior mean performance (difference in 
AUROC: 0.07; 95%CI: 0.004-0.009; P < 0.001)[53].

Our review uniquely focuses on MBS, highlighting its distinct challenges, such as heterogeneity in patient 
profiles and surgical techniques. Compared to other surgical fields, MBS research on AI/ML appears to lag 
in terms of external validation and real-world implementation, reflecting a need for concerted efforts to 
standardize methodologies. A recent review in the field of MBS focused on the application of ML in 
predicting postoperative complications[54]. The author identified seven studies, four of which were also 
included in our analysis. However, this review did not distinguish between complications arising from MBS 
and those related to obesity itself. Additionally, it excluded studies addressing readmissions and those 
focused on specific complications such as leaks, hemorrhage, VTE, and GERD. Along the same lines, 
another recent review investigated the role of AI in predicting bariatric surgery complications[55]. This 
review also included seven studies, with significant overlap with the previous one. Notably, at least one of 
the included studies did not focus on postoperative complications but rather on long-term outcomes, such 
as weight loss and remission of obesity-related health problems. We believe our study offers a broader yet 
more focused perspective by incorporating a larger number of studies specifically dedicated to both short- 
and long-term complications.

Another important methodological consideration is the heterogeneity of surgical procedures across the 
included studies. However, we found that the overwhelming majority focused on LSG and RYGB, either 
explicitly or as part of registry-based cohorts where these procedures dominate (e.g., MBSAQIP, SOReg). 
Only two studies exclusively examined other operations: Sheikhtaheri et al. focused on OAGB[14], and Wise 
et al. analyzed outcomes after duodenal switch[17]. Although some studies included a small proportion of 
other procedures, such as gastric banding, their findings are still highly relevant to LSG/RYGB 
populations[20]. Conversely, other studies that included procedures such as single-anastomosis sleeve-jejunal 
bypass and transit bipartition were considered outliers and interpreted accordingly[22]. While this variability 
is a limitation, it does not substantially compromise the generalizability of our conclusions for the two 
dominant procedures globally. Supplementary Table 2 has also been provided to list the subset of studies 
that focused exclusively on LSG and/or RYGB.

A related but distinct source of heterogeneity is the inclusion of revisional bariatric procedures. Revisional 
surgeries are known to carry higher perioperative risk and may affect model performance if not explicitly 
accounted for[56,57]. In our review, several studies excluded revisional cases altogether[22-26,28-33], while others 
included them as covariates but did not report stratified performance metrics[11,12,15]. Only one study (Scott et 
al.) focused exclusively on revisional procedures and reported separate predictive values[13]. The lack of 
stratification in the remainder of the studies limited our ability to evaluate the impact of revisional status on 
model accuracy. This introduces an additional layer of complexity in interpreting pooled findings and 
highlights the need for future models to either stratify or develop dedicated predictive tools for revisional 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202506/ais40104-SupplementaryMaterials.pdf
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bariatric surgery.

The clinical relevance of ML in bariatric surgery is growing, with early successes pointing toward both 
preoperative and postoperative applications. A notable example is the SOPHIA study, which developed and 
externally validated a ML-based calculator using data from 10 prospective cohorts and 2 randomized trials 
to predict 5-year postoperative weight trajectories[58]. This tool exemplifies how interpretable models can 
inform patient selection, support shared decision making, and guide long-term follow-up. In parallel, 
embedded systems enhanced by AI and connected through the Internet of Things are emerging as real-time 
supports during the perioperative course. These include tools capable of recognizing surgical steps through 
computer vision, predicting remaining surgery duration, or analyzing postoperative physiological data (e.g., 
heart rate patterns) via wearable devices to detect complications such as leaks. Our recent work outlines 
how such technologies may enhance both the safety and personalization of MBS, while also highlighting the 
ethical and implementation challenges involved. For these tools to reach clinical maturity, future efforts 
must focus on prospective validation, seamless EHR integration, and multidisciplinary collaboration that 
ensures clinical interpretability and accountability.

AI/ML holds the potential to revolutionize perioperative care in MBS by enabling risk stratification, 
optimizing resource allocation, and guiding tailored interventions. However, clinicians and researchers 
must address the limitations highlighted to realize this potential fully. Future efforts should prioritize the 
use of multi-center datasets to enhance model robustness and generalizability, integration of explainable AI 
frameworks to improve transparency and clinical acceptance, and rigorous validation studies that assess the 
impact of these models on clinical outcomes and cost-effectiveness. The field is poised for significant 
advancements with the adoption of newer techniques such as federated learning[59,60], which allows 
collaborative model development without data sharing, and transformer-based models[61], known for their 
superior contextual understanding. Additionally, research must expand to explore the ethical implications 
of AI/ML in MBS, particularly concerning patient consent and data privacy.

In conclusion, in this review, we provide a comprehensive overview of AI/ML applications in predicting 
complications after MBS. While the findings are encouraging, substantial work remains to translate these 
advancements into clinical practice. Future research should focus on addressing the identified limitations 
and leveraging emerging technologies to enhance predictive accuracy, interpretability, and real-world 
utility. By doing so, AI/ML can become a cornerstone in improving the safety and outcomes of MBS.
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