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Abstract

Background: The exponential growth of perioperative data generated by monitors, electronic health records
(EHRs), and wearable devices (WD) represents a significant promise for improving risk assessment, preventing
complications, and personalizing perioperative care. Perioperative care produces a wide range of data types from
diverse sources (e.g., intraoperative monitors, EHRs, and WD) that can be analyzed using machine learning (ML)
techniques. The use of data-driven techniques to big data from perioperative medicine is being extended to
different settings of perioperative care, including risk prediction, intraoperative monitoring, complication reduction,
and decision support. However, the quality of these data often remains uncertain, potentially limiting the
effectiveness of even the most advanced models.

Objective: This scoping review maps the current literature on perioperative data quality. It explores common
quality challenges (such as missing, inaccurate, or non-standardized data) and highlights tools, frameworks, and
methodologies, from harmonization standards to ML-based imputation techniques. We address the challenges of
ensuring adequate data collection, data accuracy, and consistency. We emphasize the importance of data
standardization and harmonization through common models to facilitate interaction and integration among
different hospitals, systems, and countries. Such efforts aim to enhance external validation and bridge the
translational gap from bench to bedside.

Design: We included English-language publications that addressed perioperative data quality issues. We searched
PubMed and reviewed the reference lists of relevant articles. Two independent reviewers selected studies and
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extracted data. Our analysis focused on four key topics: data accuracy, handling of missing data, standardization,
and harmonization.

Results: Of the 342 publications, many highlight that perioperative data derive from multiple sources, including
intraoperative monitors, ICU systems, EHRs, registries, and WD. Missing values, artifacts, and uneven
documentation were common challenges. Studies reported that using advanced filtering and imputation
algorithms, standard vocabularies (like SNOMED CT and LOINC), and common data models (CDMs, such as
OMOP) improved data sharing and use. Initiatives like the Multicenter Perioperative Outcomes Group (MPOG)
demonstrated how harmonized datasets could drive multi-institutional quality improvement and research.

Conclusions: This review focuses on perioperative data quality; we translate technical methods into practical
strategies for data-driven perioperative care. It highlights the strong link between data quality and improved
perioperative care. Achieving the diffusion of reliable and standardized data calls for strategic efforts on regulatory
alignment, staff training, and the development of large collaborative networks. As perioperative medicine evolves,
high-quality data will serve as the foundation for reliable predictive modeling, safer anesthesia management, and
more patient-centered approaches.

Keywords: Data quality, perioperative care, machine learning, data standardization, data harmonization, predictive
modeling, interoperability

INTRODUCTION

In recent years, a large volume of perioperative data has become available from sources such as
intraoperative monitors, anesthesia records, and bedside devices. Researchers and clinicians can leverage
this volume of data to advance personalized and patient-centered perioperative care. There are two main
factors driving this revolution. On one side, the rapid integration of data science into perioperative
medicine is transforming clinical practice, enabling doctors to use these data for research and quality
improvement purposes.

On the other side, there is an increasing prevalence of elderly and frail patients undergoing surgery, and this
in turn increases the need for advanced monitoring. Advanced monitoring systems generate high-resolution
data", offering further potential for analysis and decision making.

However, leveraging these data is neither straightforward nor without risks. The effective use of data
depends mainly on the reliability of data sources and the quality and integrity of the collected data, as data
are often riddled with inaccuracies, missing values, and incompatible formats™”. Without high-quality data
collection, even the most advanced analytic model will fail.

This scoping review maps out the current landscape of perioperative data quality initiatives, highlighting
challenges, exploring current strategies, and identifying opportunities for future growth.

METHODS

Study protocol

A study protocol was developed in accordance with the Joanna Briggs Institute (JBI) methodology for
scoping reviews and the PRISMA-ScR reporting guidelines. The protocol is available upon reasonable
request. The completed PRISMA-ScR checKklist is available as Supplementary Materials.


https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202507/ais40100-SupplementaryMaterials.pdf
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Eligibility criteria

We included peer-reviewed articles, reports, and frameworks addressing perioperative data quality. Eligible
studies addressed one or more data quality dimensions such as accuracy, completeness, standardization,
harmonization, or interoperability. We did not restrict the search to any specific perioperative setting, data
type, or phase of clinical care.

Information sources
The literature search was conducted on PubMed, using relevant keywords (e.g., “perioperative”, “data

» o«

quality”, “missing data”, “EHR”, “standardization”, “interoperability”).

Search strategy
The search covered literature published between January 1, 2000, and December 31, 2024. Additional filters
restricted the search to English-language articles and excluded preprints.

The following query was used to search for relevant articles:

(“big data”[Title] OR dataset[Title] OR “remote monitoring”[Title] OR wearable[Title] OR “data
standardization”[Title/Abstract] OR “missing data”[Title/Abstract] OR “data imputation”[Title] OR “data
harmonization”[Title/Abstract] OR FHIR|[Title/abstract] OR EHR|[Title/Abstract] OR Common Data
Models[Title/Abstract]) AND (anesthesiology|[Title] OR preoperative[Title] OR perioperative[Title] OR
postoperative[Title]) AND (excludepreprints[Filter]) AND (2000/1/1:2024/12/24[pdat]) AND
(english[Filter]).

In addition to the primary search conducted, the references from the initial studies were examined to
include relevant articles. This cross-referencing approach helped capture studies that were not retrieved
through the database search. Articles identified by the authors as relevant were included.

Selection and charting process

Two reviewers independently screened all retrieved references. A third reviewer resolved conflicts. We
charted relevant information, including data sources, identified quality issues, and proposed interventions.
The selection of articles was based on the following criteria:

Inclusion criteria:

» English-language publications from January 2000 to December 2024

» Methodological papers, observational studies, registry reports, and narrative reviews

» Studies conducted in any perioperative phase (preoperative, intraoperative, postoperative)

» Focus on perioperative data quality, missing data, standardization, or harmonization

» Articles addressing data integration, interoperability, or common data models (CDMs) in perioperative
care

Exclusion criteria:

« Non-English language publications

- Studies not focused on perioperative settings

« Articles that did not address any aspect of data quality

« Preprints and non-peer-reviewed publications

« Studies in which data quality was neither a primary nor a secondary outcome
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Figure 1. Study flow chart.

The study flow chart is reported in Figure 1.

Synthesis of results

We organized findings into thematic clusters: (1) perioperative data sources and inherent challenges,
including missing data and imputation; (2) standardization and interoperability frameworks; and (3) impact
of data quality on patient safety and outcomes.

RESULTS

After excluding 345 articles from the database search, we included 15 articles encompassing observational
studies, methodological papers, registry reports, conference papers, and narrative reviews. An additional 53
papers were identified from sources beyond the database search. In total, we included 68 papers, mostly
published after 2010.

Sources of data in perioperative medicine

The operating room is among the most intensively monitored environments in the hospital. Each operating
room typically includes ECG monitoring, pulse oximetry, cutaneous or core temperature measurement,
invasive or non-invasive blood pressure monitoring, respiratory rate, and capnography (EtCO,).

Monitoring the depth of anesthesia helps to avoid excessive use of hypnotics by relying on continuous
electroencephalogram (EEG) analysis. Predictive models have also been used to avoid hypotension, alerting
physicians several minutes before it becomes apparent. These monitoring tools enable anesthesiologists to
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detect and manage complications at an early stage. Figure 2 reports distinct types of monitoring systems,
grouped by clinical setting. Continuous postoperative vital parameter monitoring can also be applied in
standard wards. This is useful for detecting and preventing clinical deterioration in patients who are at risk
for complications, even if they do not require intensive unit-level monitoring"”. In contrast, when surgical
patients experience complications or need the highest level of assistance, they are admitted to the ICU. In
the ICU, advanced monitoring techniques are used besides continuous monitoring, including calibrated
pulse-contour monitoring devices and pulmonary artery catheters, which enable therapeutic interventions
targeted at cardiac output, preload, and afterload. Both hemodynamic monitors and ventilators provide
time-series data with high temporal resolution, ranging from 125 to 500 Hz. These data allow the
development of computational models to guide optimal treatment decisions, including the use of vasoactive

[2]

drugs and fluid therapy'™.

A promising advancement is the use of wearable devices (WD) to monitor vital parameters and detect
clinical deterioration. Typically, vital signs are monitored intermittently in hospital wards (e.g., every 8 h),
which may result in missed episodes of clinical deterioration in high-risk patients. In contrast, WDs allow
continuous data collection, potentially reducing the necessity for ICU admissions and facilitating high-level
monitoring in standard wards or even at home. WD could also be employed to replace parts of the
traditional preoperative assessment, such as cardiovascular fitness assessment, relying on data collected by
patients at home without direct clinician supervision. Another advantage of WD is that they enable patient
mobility without the discomfort of being tethered to stationary monitors. In general, further studies are
needed to assess and validate the role of WD in the perioperative setting, also considering how their low
cost is facilitating their adoption” "\,

The electronic health record (EHR) system typically manually records monitoring data, clinical evaluations,
radiology, and laboratory data. Originally designed as a tool for clinical documentation and billing, the EHR
has evolved into a valuable tool for clinical research and quality improvement!"”.

Prior to the widespread adoption of modern EHR systems, most epidemiological data were derived from
multicenter registries or healthcare claims databases, while other sources of data came from administrative
databases for reimbursement purposes. This was particularly relevant when considering rare events.
Singapore’s SingHealth Perioperative and Anesthesia Subject Area Registry (PASAR), one of these registries,
had collected data on approximately 153,312 patient admissions, spanning from preoperative evaluation to
postoperative treatment"?.

More recently, the Multicenter Perioperative Outcomes Group (MPOG) has collected over 489 million
medical records and 10.7 million anesthesia records from dozens of hospitals. The achieved numbers
indicate the importance of multicentric collaborations in research and quality improvement projects. These
datasets allowed studying postoperative outcomes such as opioid use, the efficiency of multimodal pain
management strategies, and the efficacy of regional anesthesia*.

While these registries were created to collect data for scientific research and quality purposes, EHRs were
designed primarily to document clinical information for internal use and thus may lack the quality,
standardization, and harmonization needed for research use. Accordingly, we need to improve the quality
of EHR data to ensure reproducibility, external validity, and data harmonization among different centers.

Data accuracy and consistency: automatic labeling of artifacts and false readings
A model can only be as accurate as the data on which it is based. Consequently, the quality of the data is
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Figure 2. Monitoring system used in the hospitals to collect data.

crucial for allowing validation, reliability, and the concrete application of any artificial intelligence (AI)
system in clinical practice. Different manufacturers, device specifications, and software versions within each
class of devices result in differences in quality, resolution, and dictionary of collected data, as well as
compatibility issues"”. Furthermore, the large volume of data, considering thousands of physiological
observations per anesthetic record, can further complicate the analytical procedure!"..

Physiological monitoring devices, such as arterial lines or pulse oximetry, are prone to mechanical
distortions or interferences, leading to inaccurate readings. For instance, catheter damping can lead to an
underestimation of blood pressure, while resonance effects can cause an overestimation”. Very low or very
high values are often caused by incorrect readings, detachment, and distortion, and while readily recognized
by the perioperative team, these alterations can be difficult to recognize later in time when considering
massive amounts of data. In other words, while clinical staff can often identify artifacts during real-time
monitoring, retrospective detection of inaccurate reading - known as labeling - is labor-intensive and
resource-consuming. Advanced algorithms can help mitigate these inaccuracies by filtering out noise and
detecting the artifacts generated during data collection. This can be a significant contribution to the
advancement of the analysis of high-frequency data.

Another issue is related to the prevalence of missing or incomplete data, which constitutes a significant
challenge"*'!. They may result in the introduction of uncontrolled biases, particularly when used in clinical
research, leading to reduced performance of predictive algorithms. Missing data in EHR may arise primarily
due to (1) technical issues, where the data does not appear in the system due to device errors or faults in
data transmission; and (2) clinical issues, where the data are not entered into the EHR because they are
considered unnecessary by the physicians or due to time constraints. Missing data can be classified into
three categories, which influence the choice of analysis strategies:



Greco et al. Art Int Surg. 2025;5:361-76 | https://dx.doi.org/10.20517/ais.2024.100 Page 367

« Missing completely at random (MCAR): where there is no systemic pattern behind the missing values,
which could be related to observed or non-observed data.

 Missing at random (MAR): where the missing values are related to the observed data, not to the
unobserved. Here, the probability of missingness is related to observed data. An example is when missing
data or inaccurate monitoring data are present in less critical patients due to human intervention focused
on more critical cases.

« Missing not at random (MNAR): refers to situations where the missing values arise from a consistent bias
associated with unobserved data, which can influence the results.

Multiple studies have shown the impact of missing data on perioperative care and how these significantly
impact the accuracy and further reliability of perioperative research, as well as patient recovery. In a study
conducted by DeCrane et al., incomplete datasets introduced biases in postoperative cognitive disfunction
(POCD), leading to misinterpretation of the true estimation of the associated risk factors related to POCD
prevalence!”. Similarly, a recent study by Aziz et al. showed how missing data hinder the identification of
risk factors in postoperative complications, which in turn affects the clinical decision making and patient
outcomes"?.

Selecting an appropriate imputation method is critical, as simple removal of records with missing values
leads to data loss. Several approaches have been developed:

(a) Simple imputation methods:

These methods substitute the missing data points with single statistical estimates.

+ Mean/median/mode imputation: These simple imputation methods use the mean, median, or mode to fill
in the missing values. While computationally efficient, these methods reduce variance in the dataset and fail
to maintain the relations between variables".

« Forward fill (FFILL): This method replaces a missing value with the last non-missing value. Suitable for
time-series physiological data and still computationally efficient, it may introduce bias in longer gaps®.

« Last observation carried forward (LOCF): As the name implies, this method uses the last known non-
missing value to fill in all the gaps in the data. Effective for short-term missing intervals™.

(b) Advanced statistical and machine learning (ML) methods:

Advanced statistical methods fill in the data by estimating the uncertainty associated with the missing
values, while ML approaches use predictive modeling to approximate the missing values'’.

+ Multiple imputation by chained equations (MICE): creates multiple imputations over a single imputation
to account for statistical uncertainty*.

+ K-nearest neighbours (k-NN) imputation: imputes missing values by identifying the k most similar
instances (called “neighbors”) and using their value (mean, median, or most frequent value) for
imputation.

» Random forest (RF) imputation: demonstrates reliable performance for mixed-type data with the ability to
capture non-linear relationships®..

(c) Deep learning approaches:

+ Generative adversarial networks (GANs): operate on the principle of generative modeling, learning
probabilistic data distributions through adversarial training with deep neural networks™!. It shows promise
for complex multivariate time-series data™’.

« Recurrent neural networks (RNNs): a neural network that learns from past data to estimate weights
without requiring domain knowledge to predict new data”. This model excels at capturing temporal
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dependencies in physiological data®.
« Variational autoencoders (VAEs): provide uncertainty quantification alongside imputation, which is

crucial for clinical decision making"*”.

While imputing missing values with summary statistics is a simple and straightforward approach, the
. No single rule
applies, so the choice of imputation depends on the pattern of missingness, the complexity of the dataset,

[30

method is often inadequate for the more complex data, including intraoperative data

the computational requirements, and the intended use of data”!. For real-time applications, summary
statistics methods can be used for computational efficiency, while for research applications, other
approaches provide better accuracy in quantifying uncertainty’. When the proportion of missing data
approaches 80%-90%, it is advisable to exclude the variable, since any imputation technique will introduce
bias.

Data standardization and harmonization: challenges in interoperability and external validity

Data standardization is pivotal for consistent data collection across centers””. In perioperative medicine,
some efforts have been made to promote data standardization, such as the development of a minimum set
of data for comprehensive geriatric assessments™.

Standardization allows merging data from multiple sources, including EHRs from different manufacturers,
imaging and monitoring systems. It works by applying a common data structure, such as a predefined data
dictionary, consistent units of measure, and predefined sampling rates. Harmonization goes a step further
by aligning data from many sources for integration and analysis"™. To answer these needs, the Health Level
Seven (HL7) standards and Digital Imaging And Communications In Medicine (DICOM) were proposed to
grant interoperability”™. In 2011, HL7 created the Fast Healthcare Interoperability Resources (FHIR), a new
standard aimed at improving how healthcare information is shared, using technologies such as
Representational State Transfer (REST) architecture, application programming interfaces (APIs), XML
format, JSON format, and Open Authorization tools"”. Similarly, the DICOM standard is designed to
maintain interoperability in medical imaging across hospitals. In addition to creating standards for storage,
DICOM also ensures uniformity in metadata and imaging acquisition protocols®.

As reported by Guglielminotti et al. (2015), consistency in reporting and methodology in multivariable
analysis for prognostic observational studies is needed for reproducing research findings and increasing the
reliability of research™. Data integration and harmonization have also been reported to enhance the
prediction of postoperative cardiac events from decision support systems'*’. Standardization facilitates
international data collection and enhances the quality of care by enabling benchmarking across institutions.
An example is postoperative pain'*.

Medical records include specific data types, from clinical observations to insurance claims, which vary
widely in their organization, structure, and dictionary. Consequently, CDMs were created to merge data
from sources and to store information systematically using predefined syntax'*>*!. Several CDMs have been
developed; among these, the most used are the observational medical outcomes partnership (OMOP), the
sentinel CDM (SCDM), the national patient-centered clinical research network CDM (PCORnet CDM),
and Informatics for Integrating Biology in the Bedside (i2b2)™**.

In particular, OMOP has gained the largest diffusion. OMOP has been successfully employed in key
projects such as the European health data and evidence network (EHDEN), which aims to harmonize
patient data across European countries to improve patient care and medical research*”. It demonstrated
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superior performance due to the extensive vocabulary, which allows us to handle complex, heterogeneous
data in healthcare®!. Table 1 presents the most widely used CDMs proposed to enhance the quality of data
collection in perioperative care.

Health data are standardized to a CDM through an extract, transform, and load (ETL) process, which is
defined by multidisciplinary teams comprising clinicians, data engineers, and data managers. In 2017, Ong
et al. isolated 24 technical problems, categorized into six core topics, encompassing challenges from data
sources (e.g., heterogeneity and accessibility) to data management (e.g., code maintenance and sharing)*.

Standardization of temporal resolution and image data

High-frequency data collected by monitoring devices have temporal resolutions on the order of
milliseconds, reaching up to 500 Hz. This is necessary to visualize waveforms. Filtering techniques, derived
from physics and mathematics, include low-pass and high-pass filters. These are often applied to preserve
the most critical information and to rule out noise".. Filtering, especially low-pass filters, has traditionally
been used to reduce noise and improve data quality. With the advent of A, filtering is even more necessary
to handle data analysis even under high-noise conditions.

Several techniques have been developed to reduce noise in pictures, achieving sharper images, a principle
that can also apply to complex medical signals. As for handling of missing data, the choice of filters depends
on the type of noise and data addressed. Some techniques are:

» Low-Pass Filters: remove high-frequency noises while preserving low-frequency features such as general
shape and contrast.

» High-Pass Filters: the opposite of low-pass filters.

» Median Filters: preserves edges using the median values.

» Mean Filters: a simple method used to remove less severe noise by taking the average pixel values.

» Weiner Filter: an adaptive filter that minimizes the difference between the estimated and original signal.

- Bilateral Filter: preserves edges by replacing the intensity of a pixel with the weighted average of the
intensities of its neighboring pixels.

For medical images, specific types of noise and appropriate filters are:

+ Gaussian noise: follows a standard bell-shaped curve, best addressed by the Wiener filter.

- Salt and Pepper noise: appears as black and white pixels on an image, and is effectively eliminated by the
Median Filter.

« Speckle noise: exhibits a granular pattern, and needs Bilateral filters!

51,52]

The performance of these filters can be assessed using the peak signal-to-noise ratio (PSNR) metric.

Convoluted neural networks (CNNs) have emerged as leaders in the analysis of healthcare imaging data,
achieving significant performance even in the presence of significant noise'””. An example is ClarifyNet, an
end-to-end trainable CNN model developed by Susladkar et al. for dehazing photos”. ClarifyNet was
originally developed for computer vision applications and not specifically for perioperative care.
Nonetheless, the underlying principles of noise reduction and image enhancement using high-pass (to
detect sharp edges and finer details) and low-pass filters (for color and contrast) are highly relevant to noise
reduction and image enhancement. CNNs have been used for noise and artifacts removal and have
outperformed traditional techniques in published studies. They have been used to eliminate eye blink
artifacts from electroencephalography signals®, while in the context of ultra-high-resolution photon-
counting detector computed tomography (UHR-PCD-CT), they achieved up to 89% performance in noise

56]

reduction!
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Table 1. Description of commonly adopted CDMs

CDMs Funding agency Mission Characteristic™” Advantages
Reagan Udall Systematic analysis of disparate Java-based toolset for user queries; Open source; extensive
cDM™  Foundation for the  observational databases using a standard vocabulary EAV style terminologies; global
FDA (RUF) common format and vocabularies for a collaborations; highly
standardized model for data sharing standardized
SCDM™®" US Food and Drug  Creation and operation of a national Standard querying mechanism and  Secure network of distribution;
Administration public health surveillance system to code library protect patient confidentiality;
(FDA) monitor FDA-regulated products analytical flexibility and
transparency
PCORnet Patient-Centered Standardization of a million data points  Standard querying mechanism and  Protect patient confidentiality;
cDM™? Outcomes Research from diverse clinical information code library promote multi-site patient-
Institute (PCORI) systems into a common format to centric research; analyze data
provide a clear, consistent answer for quickly; ease of access, use,
the same question asked across and distribution

different systems
Based on SCDM

i2b2M®! National Institutes ~ Creation of software to help Modeled on star schema, a central  Open source; include genomic
of Health (NIH) researchers’ genomics with clinical data “fact” table containing patient findings relevant to human
National Centers for to improve personalized medicine and  observation surrounded by one or  health; promote translational
Biomedical patient care more “dimension” tables providing  research; star schema makes it
Computing (NCBC) The goal is to enable clinical researchers additional information flexible and fast

to conduct research incorporating
genomics and biomedical informatics
into clinical research

CDMs: Common data models; OMOP: observational medical outcomes partnership; EAV: entity-attribute-value; SCDM: sentinel common data
model; PCORnet CDM: national patient—centered clinical research network CDM; i2b2: Informatics for Integrating Biology in the Bedside.

Standardized dictionaries

An important aspect of data standardization mentioned above is the use of a standard dictionary as a
common language across different centers. An example is the International Classification of Diseases (ICD)
coding system, developed by the World Health Organization (WHO). This system uses alphanumeric codes
for disease classification and reimbursement purposes”””. The ICD has been adopted for recoding diseases
and sharing disease data across regions, thereby supporting benchmarking and evidence-based decision
making.

The Standard Nomenclature of Medicine Clinical Terms (SNOMED CT) was deployed to provide a
standardized clinical dictionary for different EHRs"". In perioperative care, SNOMED CT standardizes the
terminology used for surgical procedures, techniques, and complications. On the other hand, the logical
observation identifiers names and codes (LOINC) standardizes terminology of clinical observations,
including vital parameters and lab results, and is the preferred standard used by HL7 to attain

interoperability"™.

Other standards used include RxNORM for drug delivery systems, providing standardized drug names for
pharmacy systems and drug interaction databases'”; current procedural terminology (CPT), which serves as
the standard language for the communication of healthcare procedures'®’; and Unified Code For Units Of

Measurement (UCUM) for expressing quantities across domains ranging from medicine to business'.

There is ongoing collaboration among various organizations to make standards more consistent,
interoperable, and user-friendly for both clinicians and researchers. SNOMED, which encodes patient
clinical information, must interoperate with LOINC, which covers laboratory results, to ensure
comprehensive EHR integration. This is achieved through the Unified Medical Language System (UMLS),



Greco et al. Art Int Surg. 2025;5:361-76 | https://dx.doi.org/10.20517/ais.2024.100 Page 371

providing semantic mapping and links between terminologies'”. There has been ongoing collaboration
between the two organizations, SNOMED International and LOINC, for cooperative work in linking the
terminologies and reducing redundancy'".

Impact of data quality on patient safety and outcomes

Safety and quality are pivotal aspects of perioperative medicine, both of which can be significantly
influenced by the quality of collected data’. A study by Fu et al. compared the quality of data extracted
from two EHR systems in relation to the incidence of postoperative complications. The findings
demonstrated that data quality can negatively impact patient outcomes and hinder clinical decision making.
Similarly, inconsistent or incomplete documentation may lead to errors in therapeutic management'*”.

A Delphi study investigating the safety indicators in surgical patients showed that 74% of 73 key indicators
considered crucial by the experts were related to the care quality, including effective monitoring and
communication'””. Clear and effective communication is critical in perioperative care, especially during
handovers from the operating room to the wards or between different intraoperative teams. The use of
formal checklists has been shown to significantly enhance patient safety'*”. Conversely, a lack of
standardization in postoperative handovers has been associated with compromised postoperative care!*.

Documentation errors are common and can also lead to complications, longer stay, and lower quality of life.
Documentation is not only a clinical necessity but also a legal requirement. In a study on hand trauma cases,
only 18.3% of the perioperative data were available for extraction, with some procedures exhibiting up to
38% missing data*”. High-quality documentation ensures that all relevant information is available for

[70]

clinical decision making”, whereas omissions, errors, and inconsistencies can impair care delivery and

complicate the investigation of adverse events”.

Such documentation and quality issues are also prevalent in open datasets. Initiatives like the Perioperative
Risk Assessment Dataset (PRAD) integrate multi-view clinical data with pairwise comparison labels to
improve the reliability of surgical risk prediction models””. However, the effective use of these datasets for
research is often limited by poor data quality, including inconsistencies and non-standardized formats”.

Challenges and future directions

As reported above, further efforts to ensure compatibility between different platforms are needed”. One of
the main challenges is related to regulations and privacy issues across countries, which hinder the
harmonization of data from different jurisdictions”. Regional differences in healthcare practice and in
population can also affect the harmonization process. These can lead to ethical issues and socioeconomic
bias, resulting in models being trained on incomplete, biased datasets that underrepresent certain
populations. For example, a model trained on data from the US Veteran Health Administration may not
generalize well to populations in other countries. To facilitate global intensive care data collection,
initiatives such as the massive BlendedICU dataset have been proposed. The BlendedICU dataset merges
data from prominent open critical care databases, including Amsterdam UMCdb, eICU, HiRID, and
MIMIC-1V, and harmonizes them using the OMOP CDM format”. Similarly, the INDICATE initiative by
ESICM is designed to create a standardized ICU dataset across a network of European ICUs.

The creation process of these datasets reveals significant real-world challenges. First, the source databases
exhibit high variability in data collection methods, recording formats, and treatment policies, reflecting
diverse clinical practices and patient populations worldwide. To minimize bias and errors, merging these
datasets requires meticulous expert mapping - a lengthy and resource-intensive task. Another example is the
Chinese Anesthesiology Benchmark (CAB), a database developed to evaluate medical LLMs in a non-
English context. Findings showed that even the top-performing models struggled to achieve clinician-level
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accuracy regarding safety. This challenge likely stems from the lack of high-quality, domain-specific datasets
in non-English languages, posing an additional obstacle for multicentric datasets””.

Among future challenges, we should also consider the educational initiatives needed to bridge the gap
between data science and clinical practice. A solid clinical understanding is essential to effectively leverage
the vast amount of available data, while a strong grasp of data science is equally important to facilitate the
adoption of data-driven tools and technologies'™. Al is increasingly integrated across medical fields,
including anesthesiology, where it enhances patient outcomes by enabling real-time risk prediction and
personalized perioperative care. As AI becomes a routine part of clinical practice, training healthcare staff to
manage Al systems and to generate and maintain high-quality data is crucial for improving patient
outcomes””. The METRIC framework, proposed by Schwabe ef al., is a 15-dimensional checklist designed
to evaluate medical training data and could serve this purpose. This framework includes clusters that assess
data quality dimensions such as Measurement process, Timeliness, Representativeness, Informativeness,
and Consistency, enabling thorough evaluation of data prior to their use in training predictive models™".

DISCUSSION

In this review, we emphasize the principle that reliable, high-quality data are fundamental to perioperative
care. From preoperative assessment to intraoperative monitoring and post-discharge care, the quality of
data directly influences our ability to detect early warning signs of deterioration, personalize treatment
plans, and benchmark performance and quality across institutions.

The exponential growth of perioperative data presents unprecedented opportunities but also substantial
challenges. While the volume and variety of available data are expanding rapidly, the quality and reliability
of these data remain inconsistent across institutions and systems. Anesthesiologists and other perioperative
clinicians should be familiar with strategies to improve data quality, such as artifact filtering, imputation
methods, standardized dictionaries, and CDMs.

Considerations for real-world application

This review highlights the need for standardized vocabularies (SNOMED CT, LOINC) and harmonization
frameworks to assure data quality and facilitate collaboration across institutions. However, implementation
remains challenging due to differences in institutional capabilities, regulatory requirements, and resource
availability. The adoption of standard data models, particularly the OMOP CDM, represents a crucial step
toward achieving interoperability across diverse data systems.

There is no universal solution to achieving high data quality and harnessing its full potential for efficient,
sustainable data collection. Each center must weigh factors such as computational complexity,
implementation costs, and optimal workflow integration, recognizing that different hospitals may require
tailored approaches to data quality management.

We propose that this process can be enhanced through the formation of interdisciplinary teams comprising
data scientists, informaticians, and healthcare professionals such as doctors and nurses. In this context, it is
imperative to structure the training and education of healthcare professionals in data science, data analysis,
and data quality management. Increasing awareness of international standards and regulatory frameworks
within the medical community is equally important. Moreover, fostering and effectively disseminating
international collaborations should be a priority.
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Limitations of this review

This study did not include a formal quality evaluation of the reviewed studies, in line with the methodology
of a scoping review. Although the initial search covered Google Scholar and Scopus, we ultimately relied on
PubMed to maintain a focused and manageable scope specifically on perioperative data quality. This
approach may have limited the comprehensiveness of literature identification and selection. Additionally,
restricting sources to English-language publications may have excluded relevant non-English literature.
Nonetheless, we think that the references provided by our scoping reviewer provide a solid foundation for
understanding the current landscape of data quality in the perioperative context.

Conclusions

Data quality is a cornerstone for advancing clinical quality, patient safety, and research in perioperative care.
Amid the ongoing data revolution, clinicians and researchers have access to an ever-increasing volume of
data. This review underscores the importance of robust data cleaning, effective handling of missing data,
and the adoption of standardization and harmonization strategies as critical components for both clinical
care and research. Future initiatives should prioritize promoting standards, unified data formats and
dictionaries, improving validation methods, and ensuring compliance with privacy and security regulations.
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