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Abstract
Background: The exponential growth of perioperative data generated by monitors, electronic health records 
(EHRs), and wearable devices (WD) represents a significant promise for improving risk assessment, preventing 
complications, and personalizing perioperative care. Perioperative care produces a wide range of data types from 
diverse sources (e.g., intraoperative monitors, EHRs, and WD) that can be analyzed using machine learning (ML) 
techniques. The use of data-driven techniques to big data from perioperative medicine is being extended to 
different settings of perioperative care, including risk prediction, intraoperative monitoring, complication reduction, 
and decision support. However, the quality of these data often remains uncertain, potentially limiting the 
effectiveness of even the most advanced models.

Objective: This scoping review maps the current literature on perioperative data quality. It explores common 
quality challenges (such as missing, inaccurate, or non-standardized data) and highlights tools, frameworks, and 
methodologies, from harmonization standards to ML-based imputation techniques. We address the challenges of 
ensuring adequate data collection, data accuracy, and consistency. We emphasize the importance of data 
standardization and harmonization through common models to facilitate interaction and integration among 
different hospitals, systems, and countries. Such efforts aim to enhance external validation and bridge the 
translational gap from bench to bedside.

Design: We included English-language publications that addressed perioperative data quality issues. We searched 
PubMed and reviewed the reference lists of relevant articles. Two independent reviewers selected studies and 
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extracted data. Our analysis focused on four key topics: data accuracy, handling of missing data, standardization, 
and harmonization.

Results: Of the 342 publications, many highlight that perioperative data derive from multiple sources, including 
intraoperative monitors, ICU systems, EHRs, registries, and WD. Missing values, artifacts, and uneven 
documentation were common challenges. Studies reported that using advanced filtering and imputation 
algorithms, standard vocabularies (like SNOMED CT and LOINC), and common data models (CDMs, such as 
OMOP) improved data sharing and use. Initiatives like the Multicenter Perioperative Outcomes Group (MPOG) 
demonstrated how harmonized datasets could drive multi-institutional quality improvement and research.

Conclusions: This review focuses on perioperative data quality; we translate technical methods into practical 
strategies for data-driven perioperative care. It highlights the strong link between data quality and improved 
perioperative care. Achieving the diffusion of reliable and standardized data calls for strategic efforts on regulatory 
alignment, staff training, and the development of large collaborative networks. As perioperative medicine evolves, 
high-quality data will serve as the foundation for reliable predictive modeling, safer anesthesia management, and 
more patient-centered approaches.

Keywords: Data quality, perioperative care, machine learning, data standardization, data harmonization, predictive 
modeling, interoperability

INTRODUCTION
In recent years, a large volume of perioperative data has become available from sources such as 
intraoperative monitors, anesthesia records, and bedside devices. Researchers and clinicians can leverage 
this volume of data to advance personalized and patient-centered perioperative care. There are two main 
factors driving this revolution. On one side, the rapid integration of data science into perioperative 
medicine is transforming clinical practice, enabling doctors to use these data for research and quality 
improvement purposes.

On the other side, there is an increasing prevalence of elderly and frail patients undergoing surgery, and this 
in turn increases the need for advanced monitoring. Advanced monitoring systems generate high-resolution 
data[1], offering further potential for analysis and decision making.

However, leveraging these data is neither straightforward nor without risks. The effective use of data 
depends mainly on the reliability of data sources and the quality and integrity of the collected data, as data 
are often riddled with inaccuracies, missing values, and incompatible formats[2,3]. Without high-quality data 
collection, even the most advanced analytic model will fail.

This scoping review maps out the current landscape of perioperative data quality initiatives, highlighting 
challenges, exploring current strategies, and identifying opportunities for future growth.

METHODS
Study protocol
A study protocol was developed in accordance with the Joanna Briggs Institute (JBI) methodology for 
scoping reviews and the PRISMA-ScR reporting guidelines. The protocol is available upon reasonable 
request. The completed PRISMA-ScR checklist is available as Supplementary Materials.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202507/ais40100-SupplementaryMaterials.pdf
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Eligibility criteria
We included peer-reviewed articles, reports, and frameworks addressing perioperative data quality. Eligible 
studies addressed one or more data quality dimensions such as accuracy, completeness, standardization, 
harmonization, or interoperability. We did not restrict the search to any specific perioperative setting, data 
type, or phase of clinical care.

Information sources
The literature search was conducted on PubMed, using relevant keywords (e.g., “perioperative”, “data 
quality”, “missing data”, “EHR”, “standardization”, “interoperability”).

Search strategy
The search covered literature published between January 1, 2000, and December 31, 2024. Additional filters 
restricted the search to English-language articles and excluded preprints.

The following query was used to search for relevant articles: 
(“big data”[Title] OR dataset[Title] OR “remote monitoring”[Title] OR wearable[Title] OR “data 
standardization”[Title/Abstract] OR “missing data”[Title/Abstract] OR “data imputation”[Title] OR “data 
harmonization”[Title/Abstract] OR FHIR[Title/abstract] OR EHR[Title/Abstract] OR Common Data 
Models[Title/Abstract]) AND (anesthesiology[Title] OR preoperative[Title] OR perioperative[Title] OR 
postoperative[Title]) AND (excludepreprints[Filter]) AND (2000/1/1:2024/12/24[pdat]) AND 
(english[Filter]).

In addition to the primary search conducted, the references from the initial studies were examined to 
include relevant articles. This cross-referencing approach helped capture studies that were not retrieved 
through the database search. Articles identified by the authors as relevant were included.

Selection and charting process
Two reviewers independently screened all retrieved references. A third reviewer resolved conflicts. We 
charted relevant information, including data sources, identified quality issues, and proposed interventions. 
The selection of articles was based on the following criteria:

Inclusion criteria: 
• English-language publications from January 2000 to December 2024 
• Methodological papers, observational studies, registry reports, and narrative reviews 
• Studies conducted in any perioperative phase (preoperative, intraoperative, postoperative) 
• Focus on perioperative data quality, missing data, standardization, or harmonization 
• Articles addressing data integration, interoperability, or common data models (CDMs) in perioperative 
care

Exclusion criteria: 
• Non-English language publications 
• Studies not focused on perioperative settings 
• Articles that did not address any aspect of data quality 
• Preprints and non-peer-reviewed publications 
• Studies in which data quality was neither a primary nor a secondary outcome
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Figure 1. Study flow chart.

The study flow chart is reported in Figure 1.

Synthesis of results
We organized findings into thematic clusters: (1) perioperative data sources and inherent challenges, 
including missing data and imputation; (2) standardization and interoperability frameworks; and (3) impact 
of data quality on patient safety and outcomes.

RESULTS
After excluding 345 articles from the database search, we included 15 articles encompassing observational 
studies, methodological papers, registry reports, conference papers, and narrative reviews. An additional 53 
papers were identified from sources beyond the database search. In total, we included 68 papers, mostly 
published after 2010.

Sources of data in perioperative medicine
The operating room is among the most intensively monitored environments in the hospital. Each operating 
room typically includes ECG monitoring, pulse oximetry, cutaneous or core temperature measurement, 
invasive or non-invasive blood pressure monitoring, respiratory rate, and capnography (EtCO2).

Monitoring the depth of anesthesia helps to avoid excessive use of hypnotics by relying on continuous 
electroencephalogram (EEG) analysis. Predictive models have also been used to avoid hypotension, alerting 
physicians several minutes before it becomes apparent. These monitoring tools enable anesthesiologists to 
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detect and manage complications at an early stage. Figure 2 reports distinct types of monitoring systems, 
grouped by clinical setting. Continuous postoperative vital parameter monitoring can also be applied in 
standard wards. This is useful for detecting and preventing clinical deterioration in patients who are at risk 
for complications, even if they do not require intensive unit-level monitoring[4-7]. In contrast, when surgical 
patients experience complications or need the highest level of assistance, they are admitted to the ICU. In 
the ICU, advanced monitoring techniques are used besides continuous monitoring, including calibrated 
pulse-contour monitoring devices and pulmonary artery catheters, which enable therapeutic interventions 
targeted at cardiac output, preload, and afterload. Both hemodynamic monitors and ventilators provide 
time-series data with high temporal resolution, ranging from 125 to 500 Hz. These data allow the 
development of computational models to guide optimal treatment decisions, including the use of vasoactive 
drugs and fluid therapy[2].

A promising advancement is the use of wearable devices (WD) to monitor vital parameters and detect 
clinical deterioration. Typically, vital signs are monitored intermittently in hospital wards (e.g., every 8 h), 
which may result in missed episodes of clinical deterioration in high-risk patients. In contrast, WDs allow 
continuous data collection, potentially reducing the necessity for ICU admissions and facilitating high-level 
monitoring in standard wards or even at home. WD could also be employed to replace parts of the 
traditional preoperative assessment, such as cardiovascular fitness assessment, relying on data collected by 
patients at home without direct clinician supervision. Another advantage of WD is that they enable patient 
mobility without the discomfort of being tethered to stationary monitors. In general, further studies are 
needed to assess and validate the role of WD in the perioperative setting, also considering how their low 
cost is facilitating their adoption[7-11].

The electronic health record (EHR) system typically manually records monitoring data, clinical evaluations, 
radiology, and laboratory data. Originally designed as a tool for clinical documentation and billing, the EHR 
has evolved into a valuable tool for clinical research and quality improvement[12].

Prior to the widespread adoption of modern EHR systems, most epidemiological data were derived from 
multicenter registries or healthcare claims databases, while other sources of data came from administrative 
databases for reimbursement purposes. This was particularly relevant when considering rare events. 
Singapore’s SingHealth Perioperative and Anesthesia Subject Area Registry (PASAR), one of these registries, 
had collected data on approximately 153,312 patient admissions, spanning from preoperative evaluation to 
postoperative treatment[13].

More recently, the Multicenter Perioperative Outcomes Group (MPOG) has collected over 489 million 
medical records and 10.7 million anesthesia records from dozens of hospitals. The achieved numbers 
indicate the importance of multicentric collaborations in research and quality improvement projects. These 
datasets allowed studying postoperative outcomes such as opioid use, the efficiency of multimodal pain 
management strategies, and the efficacy of regional anesthesia[14].

While these registries were created to collect data for scientific research and quality purposes, EHRs were 
designed primarily to document clinical information for internal use and thus may lack the quality, 
standardization, and harmonization needed for research use. Accordingly, we need to improve the quality 
of EHR data to ensure reproducibility, external validity, and data harmonization among different centers.

Data accuracy and consistency: automatic labeling of artifacts and false readings
A model can only be as accurate as the data on which it is based. Consequently, the quality of the data is 
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Figure 2. Monitoring system used in the hospitals to collect data.

crucial for allowing validation, reliability, and the concrete application of any artificial intelligence (AI) 
system in clinical practice. Different manufacturers, device specifications, and software versions within each 
class of devices result in differences in quality, resolution, and dictionary of collected data, as well as 
compatibility issues[12]. Furthermore, the large volume of data, considering thousands of physiological 
observations per anesthetic record, can further complicate the analytical procedure[1].

Physiological monitoring devices, such as arterial lines or pulse oximetry, are prone to mechanical 
distortions or interferences, leading to inaccurate readings. For instance, catheter damping can lead to an 
underestimation of blood pressure, while resonance effects can cause an overestimation[12]. Very low or very 
high values are often caused by incorrect readings, detachment, and distortion, and while readily recognized 
by the perioperative team, these alterations can be difficult to recognize later in time when considering 
massive amounts of data. In other words, while clinical staff can often identify artifacts during real-time 
monitoring, retrospective detection of inaccurate reading - known as labeling - is labor-intensive and 
resource-consuming. Advanced algorithms can help mitigate these inaccuracies by filtering out noise and 
detecting the artifacts generated during data collection. This can be a significant contribution to the 
advancement of the analysis of high-frequency data[3].

Another issue is related to the prevalence of missing or incomplete data, which constitutes a significant 
challenge[15,16]. They may result in the introduction of uncontrolled biases, particularly when used in clinical 
research, leading to reduced performance of predictive algorithms. Missing data in EHR may arise primarily 
due to (1) technical issues, where the data does not appear in the system due to device errors or faults in 
data transmission; and (2) clinical issues, where the data are not entered into the EHR because they are 
considered unnecessary by the physicians or due to time constraints. Missing data can be classified into 
three categories, which influence the choice of analysis strategies:
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• Missing completely at random (MCAR): where there is no systemic pattern behind the missing values, 
which could be related to observed or non-observed data. 
• Missing at random (MAR): where the missing values are related to the observed data, not to the 
unobserved. Here, the probability of missingness is related to observed data. An example is when missing 
data or inaccurate monitoring data are present in less critical patients due to human intervention focused 
on more critical cases. 
• Missing not at random (MNAR): refers to situations where the missing values arise from a consistent bias 
associated with unobserved data, which can influence the results.

Multiple studies have shown the impact of missing data on perioperative care and how these significantly 
impact the accuracy and further reliability of perioperative research, as well as patient recovery. In a study 
conducted by DeCrane et al., incomplete datasets introduced biases in postoperative cognitive disfunction 
(POCD), leading to misinterpretation of the true estimation of the associated risk factors related to POCD 
prevalence[17]. Similarly, a recent study by Aziz et al. showed how missing data hinder the identification of 
risk factors in postoperative complications, which in turn affects the clinical decision making and patient 
outcomes[18].

Selecting an appropriate imputation method is critical, as simple removal of records with missing values 
leads to data loss. Several approaches have been developed:

(a) Simple imputation methods: 
These methods substitute the missing data points with single statistical estimates. 
• Mean/median/mode imputation: These simple imputation methods use the mean, median, or mode to fill 
in the missing values. While computationally efficient, these methods reduce variance in the dataset and fail 
to maintain the relations between variables[19]. 
• Forward fill (FFILL): This method replaces a missing value with the last non-missing value. Suitable for 
time-series physiological data and still computationally efficient, it may introduce bias in longer gaps[20]. 
• Last observation carried forward (LOCF): As the name implies, this method uses the last known non-
missing value to fill in all the gaps in the data. Effective for short-term missing intervals[20].

(b) Advanced statistical and machine learning (ML) methods: 
Advanced statistical methods fill in the data by estimating the uncertainty associated with the missing 
values, while ML approaches use predictive modeling to approximate the missing values[21]. 
• Multiple imputation by chained equations (MICE): creates multiple imputations over a single imputation 
to account for statistical uncertainty[22]. 
• K-nearest neighbours (k-NN) imputation: imputes missing values by identifying the k most similar 
instances (called “neighbors”) and using their value (mean, median, or most frequent value) for 
imputation[23]. 
• Random forest (RF) imputation: demonstrates reliable performance for mixed-type data with the ability to 
capture non-linear relationships[24].

(c) Deep learning approaches: 
• Generative adversarial networks (GANs): operate on the principle of generative modeling, learning 
probabilistic data distributions through adversarial training with deep neural networks[25]. It shows promise 
for complex multivariate time-series data[26]. 
• Recurrent neural networks (RNNs): a neural network that learns from past data to estimate weights 
without requiring domain knowledge to predict new data[27]. This model excels at capturing temporal 
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dependencies in physiological data[28]. 
• Variational autoencoders (VAEs): provide uncertainty quantification alongside imputation, which is 
crucial for clinical decision making[29].

While imputing missing values with summary statistics is a simple and straightforward approach, the 
method is often inadequate for the more complex data, including intraoperative data[30]. No single rule 
applies, so the choice of imputation depends on the pattern of missingness, the complexity of the dataset, 
the computational requirements, and the intended use of data[31]. For real-time applications, summary 
statistics methods can be used for computational efficiency, while for research applications, other 
approaches provide better accuracy in quantifying uncertainty[32]. When the proportion of missing data 
approaches 80%-90%, it is advisable to exclude the variable, since any imputation technique will introduce 
bias.

Data standardization and harmonization: challenges in interoperability and external validity
Data standardization is pivotal for consistent data collection across centers[33]. In perioperative medicine, 
some efforts have been made to promote data standardization, such as the development of a minimum set 
of data for comprehensive geriatric assessments[34].

Standardization allows merging data from multiple sources, including EHRs from different manufacturers, 
imaging and monitoring systems. It works by applying a common data structure, such as a predefined data 
dictionary, consistent units of measure, and predefined sampling rates. Harmonization goes a step further 
by aligning data from many sources for integration and analysis[35]. To answer these needs, the Health Level 
Seven (HL7) standards and Digital Imaging And Communications In Medicine (DICOM) were proposed to 
grant interoperability[36]. In 2011, HL7 created the Fast Healthcare Interoperability Resources (FHIR), a new 
standard aimed at improving how healthcare information is shared, using technologies such as 
Representational State Transfer (REST) architecture, application programming interfaces (APIs), XML 
format, JSON format, and Open Authorization tools[37]. Similarly, the DICOM standard is designed to 
maintain interoperability in medical imaging across hospitals. In addition to creating standards for storage, 
DICOM also ensures uniformity in metadata and imaging acquisition protocols[38].

As reported by Guglielminotti et al. (2015), consistency in reporting and methodology in multivariable 
analysis for prognostic observational studies is needed for reproducing research findings and increasing the 
reliability of research[39]. Data integration and harmonization have also been reported to enhance the 
prediction of postoperative cardiac events from decision support systems[40]. Standardization facilitates 
international data collection and enhances the quality of care by enabling benchmarking across institutions. 
An example is postoperative pain[41].

Medical records include specific data types, from clinical observations to insurance claims, which vary 
widely in their organization, structure, and dictionary. Consequently, CDMs were created to merge data 
from sources and to store information systematically using predefined syntax[42,43]. Several CDMs have been 
developed; among these, the most used are the observational medical outcomes partnership (OMOP), the 
sentinel CDM (SCDM), the national patient–centered clinical research network CDM (PCORnet CDM), 
and Informatics for Integrating Biology in the Bedside (i2b2)[44-48].

In particular, OMOP has gained the largest diffusion. OMOP has been successfully employed in key 
projects such as the European health data and evidence network (EHDEN), which aims to harmonize 
patient data across European countries to improve patient care and medical research[43]. It demonstrated 
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superior performance due to the extensive vocabulary, which allows us to handle complex, heterogeneous 
data in healthcare[49]. Table 1 presents the most widely used CDMs proposed to enhance the quality of data 
collection in perioperative care.

Health data are standardized to a CDM through an extract, transform, and load (ETL) process, which is 
defined by multidisciplinary teams comprising clinicians, data engineers, and data managers. In 2017, Ong 
et al. isolated 24 technical problems, categorized into six core topics, encompassing challenges from data 
sources (e.g., heterogeneity and accessibility) to data management (e.g., code maintenance and sharing)[50].

Standardization of temporal resolution and image data
High-frequency data collected by monitoring devices have temporal resolutions on the order of 
milliseconds, reaching up to 500 Hz. This is necessary to visualize waveforms. Filtering techniques, derived 
from physics and mathematics, include low-pass and high-pass filters. These are often applied to preserve 
the most critical information and to rule out noise[3]. Filtering, especially low-pass filters, has traditionally 
been used to reduce noise and improve data quality. With the advent of AI, filtering is even more necessary 
to handle data analysis even under high-noise conditions.

Several techniques have been developed to reduce noise in pictures, achieving sharper images, a principle 
that can also apply to complex medical signals. As for handling of missing data, the choice of filters depends 
on the type of noise and data addressed. Some techniques are: 
• Low-Pass Filters: remove high-frequency noises while preserving low-frequency features such as general 
shape and contrast. 
• High-Pass Filters: the opposite of low-pass filters. 
• Median Filters: preserves edges using the median values. 
• Mean Filters: a simple method used to remove less severe noise by taking the average pixel values. 
• Weiner Filter: an adaptive filter that minimizes the difference between the estimated and original signal. 
• Bilateral Filter: preserves edges by replacing the intensity of a pixel with the weighted average of the 
intensities of its neighboring pixels.

For medical images, specific types of noise and appropriate filters are: 
• Gaussian noise: follows a standard bell-shaped curve, best addressed by the Wiener filter. 
• Salt and Pepper noise: appears as black and white pixels on an image, and is effectively eliminated by the 
Median Filter. 
• Speckle noise: exhibits a granular pattern, and needs Bilateral filters[51,52].

The performance of these filters can be assessed using the peak signal-to-noise ratio (PSNR) metric.

Convoluted neural networks (CNNs) have emerged as leaders in the analysis of healthcare imaging data, 
achieving significant performance even in the presence of significant noise[53]. An example is ClarifyNet, an 
end-to-end trainable CNN model developed by Susladkar et al. for dehazing photos[54]. ClarifyNet was 
originally developed for computer vision applications and not specifically for perioperative care. 
Nonetheless, the underlying principles of noise reduction and image enhancement using high-pass (to 
detect sharp edges and finer details) and low-pass filters (for color and contrast) are highly relevant to noise 
reduction and image enhancement. CNNs have been used for noise and artifacts removal and have 
outperformed traditional techniques in published studies. They have been used to eliminate eye blink 
artifacts from electroencephalography signals[55], while in the context of ultra-high-resolution photon-
counting detector computed tomography (UHR-PCD-CT), they achieved up to 89% performance in noise 
reduction[56].
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Table 1. Description of commonly adopted CDMs

CDMs Funding agency Mission Characteristic[44] Advantages

OMOP 
CDM[45]

Reagan Udall 
Foundation for the 
FDA (RUF)

Systematic analysis of disparate 
observational databases using a 
common format and vocabularies for a 
standardized model for data sharing

Java-based toolset for user queries; 
standard vocabulary EAV style

Open source; extensive 
terminologies; global 
collaborations; highly 
standardized

SCDM[46] US Food and Drug 
Administration 
(FDA)

Creation and operation of a national 
public health surveillance system to 
monitor FDA-regulated products

Standard querying mechanism and 
code library

Secure network of distribution; 
protect patient confidentiality; 
analytical flexibility and 
transparency

PCORnet 
CDM[47]

Patient-Centered 
Outcomes Research 
Institute (PCORI)

Standardization of a million data points 
from diverse clinical information 
systems into a common format to 
provide a clear, consistent answer for 
the same question asked across 
different systems 
Based on SCDM

Standard querying mechanism and 
code library

Protect patient confidentiality; 
promote multi-site patient-
centric research; analyze data 
quickly; ease of access, use, 
and distribution

i2b2[48] National Institutes 
of Health (NIH) 
National Centers for 
Biomedical 
Computing (NCBC)

Creation of software to help 
researchers’ genomics with clinical data 
to improve personalized medicine and 
patient care 
The goal is to enable clinical researchers 
to conduct research incorporating 
genomics and biomedical informatics 
into clinical research

Modeled on star schema, a central 
“fact” table containing patient 
observation surrounded by one or 
more “dimension” tables providing 
additional information

Open source; include genomic 
findings relevant to human 
health; promote translational 
research; star schema makes it 
flexible and fast

CDMs: Common data models; OMOP: observational medical outcomes partnership; EAV: entity-attribute-value; SCDM: sentinel common data 
model; PCORnet CDM: national patient–centered clinical research network CDM; i2b2: Informatics for Integrating Biology in the Bedside.

Standardized dictionaries
An important aspect of data standardization mentioned above is the use of a standard dictionary as a 
common language across different centers. An example is the International Classification of Diseases (ICD) 
coding system, developed by the World Health Organization (WHO). This system uses alphanumeric codes 
for disease classification and reimbursement purposes[57]. The ICD has been adopted for recoding diseases 
and sharing disease data across regions, thereby supporting benchmarking and evidence-based decision 
making.

The Standard Nomenclature of Medicine Clinical Terms (SNOMED CT) was deployed to provide a 
standardized clinical dictionary for different EHRs[58]. In perioperative care, SNOMED CT standardizes the 
terminology used for surgical procedures, techniques, and complications. On the other hand, the logical 
observation identifiers names and codes (LOINC) standardizes terminology of clinical observations, 
including vital parameters and lab results, and is the preferred standard used by HL7 to attain 
interoperability[59].

Other standards used include RxNORM for drug delivery systems, providing standardized drug names for 
pharmacy systems and drug interaction databases[60]; current procedural terminology (CPT), which serves as 
the standard language for the communication of healthcare procedures[61]; and Unified Code For Units Of 
Measurement (UCUM) for expressing quantities across domains ranging from medicine to business[62].

There is ongoing collaboration among various organizations to make standards more consistent, 
interoperable, and user-friendly for both clinicians and researchers. SNOMED, which encodes patient 
clinical information, must interoperate with LOINC, which covers laboratory results, to ensure 
comprehensive EHR integration. This is achieved through the Unified Medical Language System (UMLS), 
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providing semantic mapping and links between terminologies[63]. There has been ongoing collaboration 
between the two organizations, SNOMED International and LOINC, for cooperative work in linking the 
terminologies and reducing redundancy[64].

Impact of data quality on patient safety and outcomes
Safety and quality are pivotal aspects of perioperative medicine, both of which can be significantly 
influenced by the quality of collected data[65]. A study by Fu et al. compared the quality of data extracted 
from two EHR systems in relation to the incidence of postoperative complications. The findings 
demonstrated that data quality can negatively impact patient outcomes and hinder clinical decision making. 
Similarly, inconsistent or incomplete documentation may lead to errors in therapeutic management[66].

A Delphi study investigating the safety indicators in surgical patients showed that 74% of 73 key indicators 
considered crucial by the experts were related to the care quality, including effective monitoring and 
communication[67]. Clear and effective communication is critical in perioperative care, especially during 
handovers from the operating room to the wards or between different intraoperative teams. The use of 
formal checklists has been shown to significantly enhance patient safety[68]. Conversely, a lack of 
standardization in postoperative handovers has been associated with compromised postoperative care[69]. 
Documentation errors are common and can also lead to complications, longer stay, and lower quality of life. 
Documentation is not only a clinical necessity but also a legal requirement. In a study on hand trauma cases, 
only 18.3% of the perioperative data were available for extraction, with some procedures exhibiting up to 
38% missing data[68]. High-quality documentation ensures that all relevant information is available for 
clinical decision making[70], whereas omissions, errors, and inconsistencies can impair care delivery and 
complicate the investigation of adverse events[71].

Such documentation and quality issues are also prevalent in open datasets. Initiatives like the Perioperative 
Risk Assessment Dataset (PRAD) integrate multi-view clinical data with pairwise comparison labels to 
improve the reliability of surgical risk prediction models[72]. However, the effective use of these datasets for 
research is often limited by poor data quality, including inconsistencies and non-standardized formats[73].

Challenges and future directions
As reported above, further efforts to ensure compatibility between different platforms are needed[74]. One of 
the main challenges is related to regulations and privacy issues across countries, which hinder the 
harmonization of data from different jurisdictions[75]. Regional differences in healthcare practice and in 
population can also affect the harmonization process. These can lead to ethical issues and socioeconomic 
bias, resulting in models being trained on incomplete, biased datasets that underrepresent certain 
populations. For example, a model trained on data from the US Veteran Health Administration may not 
generalize well to populations in other countries. To facilitate global intensive care data collection, 
initiatives such as the massive BlendedICU dataset have been proposed. The BlendedICU dataset merges 
data from prominent open critical care databases, including Amsterdam UMCdb, eICU, HiRID, and 
MIMIC-IV, and harmonizes them using the OMOP CDM format[76]. Similarly, the INDICATE initiative by 
ESICM is designed to create a standardized ICU dataset across a network of European ICUs.

The creation process of these datasets reveals significant real-world challenges. First, the source databases 
exhibit high variability in data collection methods, recording formats, and treatment policies, reflecting 
diverse clinical practices and patient populations worldwide. To minimize bias and errors, merging these 
datasets requires meticulous expert mapping - a lengthy and resource-intensive task. Another example is the 
Chinese Anesthesiology Benchmark (CAB), a database developed to evaluate medical LLMs in a non-
English context. Findings showed that even the top-performing models struggled to achieve clinician-level 
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accuracy regarding safety. This challenge likely stems from the lack of high-quality, domain-specific datasets 
in non-English languages, posing an additional obstacle for multicentric datasets[77].

Among future challenges, we should also consider the educational initiatives needed to bridge the gap 
between data science and clinical practice. A solid clinical understanding is essential to effectively leverage 
the vast amount of available data, while a strong grasp of data science is equally important to facilitate the 
adoption of data-driven tools and technologies[1]. AI is increasingly integrated across medical fields, 
including anesthesiology, where it enhances patient outcomes by enabling real-time risk prediction and 
personalized perioperative care. As AI becomes a routine part of clinical practice, training healthcare staff to 
manage AI systems and to generate and maintain high-quality data is crucial for improving patient 
outcomes[78]. The METRIC framework, proposed by Schwabe et al., is a 15-dimensional checklist designed 
to evaluate medical training data and could serve this purpose. This framework includes clusters that assess 
data quality dimensions such as Measurement process, Timeliness, Representativeness, Informativeness, 
and Consistency, enabling thorough evaluation of data prior to their use in training predictive models[79].

DISCUSSION
In this review, we emphasize the principle that reliable, high-quality data are fundamental to perioperative 
care. From preoperative assessment to intraoperative monitoring and post-discharge care, the quality of 
data directly influences our ability to detect early warning signs of deterioration, personalize treatment 
plans, and benchmark performance and quality across institutions.

The exponential growth of perioperative data presents unprecedented opportunities but also substantial 
challenges. While the volume and variety of available data are expanding rapidly, the quality and reliability 
of these data remain inconsistent across institutions and systems. Anesthesiologists and other perioperative 
clinicians should be familiar with strategies to improve data quality, such as artifact filtering, imputation 
methods, standardized dictionaries, and CDMs.

Considerations for real-world application
This review highlights the need for standardized vocabularies (SNOMED CT, LOINC) and harmonization 
frameworks to assure data quality and facilitate collaboration across institutions. However, implementation 
remains challenging due to differences in institutional capabilities, regulatory requirements, and resource 
availability. The adoption of standard data models, particularly the OMOP CDM, represents a crucial step 
toward achieving interoperability across diverse data systems.

There is no universal solution to achieving high data quality and harnessing its full potential for efficient, 
sustainable data collection. Each center must weigh factors such as computational complexity, 
implementation costs, and optimal workflow integration, recognizing that different hospitals may require 
tailored approaches to data quality management.

We propose that this process can be enhanced through the formation of interdisciplinary teams comprising 
data scientists, informaticians, and healthcare professionals such as doctors and nurses. In this context, it is 
imperative to structure the training and education of healthcare professionals in data science, data analysis, 
and data quality management. Increasing awareness of international standards and regulatory frameworks 
within the medical community is equally important. Moreover, fostering and effectively disseminating 
international collaborations should be a priority.
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Limitations of this review
This study did not include a formal quality evaluation of the reviewed studies, in line with the methodology 
of a scoping review. Although the initial search covered Google Scholar and Scopus, we ultimately relied on 
PubMed to maintain a focused and manageable scope specifically on perioperative data quality. This 
approach may have limited the comprehensiveness of literature identification and selection. Additionally, 
restricting sources to English-language publications may have excluded relevant non-English literature. 
Nonetheless, we think that the references provided by our scoping reviewer provide a solid foundation for 
understanding the current landscape of data quality in the perioperative context.

Conclusions
Data quality is a cornerstone for advancing clinical quality, patient safety, and research in perioperative care. 
Amid the ongoing data revolution, clinicians and researchers have access to an ever-increasing volume of 
data. This review underscores the importance of robust data cleaning, effective handling of missing data, 
and the adoption of standardization and harmonization strategies as critical components for both clinical 
care and research. Future initiatives should prioritize promoting standards, unified data formats and 
dictionaries, improving validation methods, and ensuring compliance with privacy and security regulations.
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