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Abstract
Simultaneous localization and mapping has become rapidly developed and plays an indispensable role in intelligent
vehicles. However, many state-of-the-art visual simultaneous localization and mapping (VSLAM) frameworks are
very time-consuming both in front-end and back-end, especially for large-scale scenes. Nowadays, the increasingly
popular use of graphics processors for general-purpose computing, and the progressively mature high-performance
programming theory based on compute unified device architecture (CUDA) have given the possibility for large-scale
VSLAM to solve the conflict between limited computing power and excessive computing tasks. The paper proposes
a full-flow optimal parallelization scheme based on heterogeneous computing to speed up the time-consuming mod-
ules in VSLAM. Firstly, a parallel strategy for feature extraction andmatching is designed to reduce the time consump-
tion arising from multiple data transfers between devices. Secondly, a bundle adjustment method based solely on
CUDA is developed. By fully optimizing memory scheduling and task allocation, a large increase in speed is achieved
while maintaining accuracy. Besides, CUDA heterogeneous acceleration is fully utilized for tasks such as error com-
putation and linear system construction in the VSLAM back-end to enhance the operation speed. Our proposed
method is tested on numerous public datasets on both computer and embedded sides, respectively. A number of
qualitative and quantitative experiments are performed to verify its superiority in terms of speed compared to other
states-of-the-art.
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1. INTRODUCTION
With the rapid development of computer vision and the low cost of visual sensors, visual simultaneous local-
ization and mapping (VSLAM) [1–3] methods have been paid special attention for localization and navigation
applications such as unmanned cars and automated guided vehicles (AGV), and have developed into a rela-
tively well-established theoretical system. Since the VSLAM method is increasingly mature, most researchers
have prioritized their research into deploying simultaneous localization and mapping (SLAM) into more com-
plex scenarios with longer lifecycles to cope with more challenging issues. For large-scale [4,5] and lifelong [6,7]

VSLAM systems, the computational complexity and time cost are too high, resulting in the disjointed infor-
mation from the real-time input data flow. Therefore, it is crucial to efficiently increase the operating speed of
the VSLAM system while guaranteeing its accuracy.

With the development of the compute unified device architecture (CUDA) [8], graphics processors [9,10] are no
longer limited to graphics tasks. More researchers have begun to study the use of the graphic processing unit
(GPU) for general-purpose computing. Leveraging the computing performance that is tens or even hundreds
of times better than the central processing unit (CPU) and combining with the friendly programming envi-
ronment supported by CUDA architecture, GPU parallel acceleration has been successfully applied in many
fields such as data mining, weather prediction, and behavior recognition [11]. Similarly, the establishment of
the VSLAM system based on heterogeneous computing [12] has become a hot research content to solve the
real-time problem of VSLAM.

For VSLAM development
VSLAM generally includes front-end visual odometry [13], back-end optimization [14] and mapping [15], and
loop closing [16]. In 2015, Oriented FAST and Rotated BRIEF SLAM (ORB-SLAM2) [17] was proposed by
Mur-Artal and Tardós, which is a classical VSLAM system based entirely on feature points. The program de-
signed a closed-loop detection method based on bag-of-words (BOW) modeling, which can generate sparse
3D maps with centimeter-level accuracy. In contrast to [17], which estimated the camera poses with the Ef-
ficient Perspective-n-Point (EPnP) algorithm, ORB-SLAM3 [18] employed the pose estimation method based
on the PnP algorithm. Although the latter has a certain improvement in accuracy and robustness, its real-time
performance is still difficult to guarantee when dealing with large-scale scenarios.

For VSLAM parallel acceleration development
In large-scale scenes, a higher resolution camerawith awide-angle lens is often utilized to obtainwide-view and
clearer images. When the image size is too large, the running speed of VSLAM becomes extremely slow due to
the large amounts of pixels processed in the feature detection and matching module. Mohammadi and Reza-
eian used CUDA to improve the extraction of scale invariant feature sift, which not only ensured the accuracy,
but also improved the speed by nearly 30 times through the optimal combination of kernels [19]. Nevertheless,
it still cannot be applied in real-time SLAM applications. Parker et al. designed a parallel acceleration scheme
for feature extraction and feature matching based on the Learned Arrangement ofThree Patches (LATCH) de-
scriptors [20]. The scheme was also applied to structure from motion (SFM), achieving nearly ten times faster
than the feature description based on Scale-Invariant Feature Transform (SIFT) descriptors while maintaining
accuracy. Urban and Hinz extended and improved upon a state-of-the-art SLAM to make it applicable to be
rigidly coupled with multi-camera systems by MultiCol model [21]. On this basis, Li et al. proposed a CPU-
based multi-threading method for parallel image reading, feature extraction and tracking, which solved the
load imbalance problem and further improved computational efficiency [22]. Moreover, the feature extraction
was implemented via OpenMP in CPU, while the feature matching was implemented in GPU, significantly
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reducing the computational cost and power consumption compared with ORB-SLAM2. Similar work such as
ref [23], by reasonably allocating computing resources between CPU-GPU and adjusting the order of modules
in the original feature detection algorithm, improved the execution efficiency of the VSLAM front-end algo-
rithm on a high-performance embedded platform. Nagy et al. proposed feature detection based on a lookup
table and non-maximal suppression based on cell grids, which further improved the front-end parallel scheme
and achieved a new breakthrough in execution speed [24]. The current parallel acceleration schemes for feature
detection are limited to separate tasks such as corner detection and non-maximal suppression. In this case,
the data needs to be copied multiple times between the video memory and the host, which greatly degrades
the overall acceleration effect. For the optimization module involving large-scale matrix solutions, traditional
sequential execution algorithms become increasingly incapable when the number of variables increases with
runtime in a long-term VSLAM system. The bundle adjustment (BA) scheme, an improvement based on
Levenberg-Mardquardt (LM), optimizes the access strategy for Hessian, Schur and Jacobian matrices, with an
overall speedup of nearly 30 times. Zheng et al. used the preconditioned conjugate gradient (PCG) method
and the inexact Newton method to solve the BA problem [25], which improved the computational efficiency by
20 times and reduced memory consumption compared to [26]. However, the method had the problem of low
stability. Cao et al. applied principal component analysis (PBA) to SFM, only using GPU to implement high-
dimensional matrix multiplication, and did not conduct an in-depth study on the parallelization of BA [27]. At
present, there are few related researches on the parallel acceleration of the VSLAM back-end optimization and
the existing works have the problems of low accuracy, incomplete functions and poor robustness [22].

Current works on the complete (including front-end and back-end) parallel acceleration of SLAM methods
are very rare [28]. Lu et al. [26] realized a parallelization scheme for the VINS-Mono algorithm [29] by rewriting
the flow tracking, nonlinear least-squares optimization, and marginalization program, but its speedup is not
significant. To enhance the operation speed of the SLAM system, the paper proposes a relatively complete
parallelization scheme of VSLAM method based on heterogeneous computing. For the time-consuming fea-
ture extraction and matching at the front end, a full-flow acceleration algorithm is designed to perform the
entire process from image input to feature matching on GPU. It mainly includes Gaussian pyramid genera-
tion with arbitrary scales, FAST corner extraction based on a lookup table, non-maximal suppression based
on grid cell, calculation of feature descriptors, feature matching based on Hamming distance and Random
Sample Consensus (RANSAC)-based false matching filtering; for the back-end optimization of VSLAM, the
paper uses CUDA to implement the parallel graph optimization based on the Levenberg-Marquardt method.
Combined with the characteristics of marginalization in incremental equations and independent observation
in graph optimization, the parallelization algorithms including error calculation, construction and update of
linear systems, Schur complement reduction and linear equation solving are realized. In each subtask, we
make full use of system resources such as shared memory and constant memory, and combine coarse-grained
and fine-grained parallelism to optimize the acceleration strategy. Finally, we integrate the above improved
front-end and back-end parallel algorithms into a state-of-the-art VSLAM framework, and compare it with
other popularmethods on the public datasets to verify the effectiveness of the proposedmethod. The flowchart
of the proposed algorithm is shown in Figure 1. The main contributions of the work are listed as follows:

(1) The paper designs a full-flow strategy for feature extraction and matching. After the image is copied from
the CPU to the GPU, all computing tasks are independently implemented by the GPU, reducing the time
consumption on the multiple data transfers between devices.

(2) The parallel graph optimization method implemented in the paper is a perfect substitute for g2o (general
graph optimization), which not only supports basic operations such as adding and removing the vertices and
edges, acquiring error, and setting optimization levels on the CPU but also takes full account of the indepen-
dence of edges and the sparsity of matrices in VSLAM graph optimization. It can be better applied to the
global optimization and local optimization of VSLAM.
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Figure 1. Design scheme of the heterogeneous VSLAM system. VSLAM: Visual simultaneous localization and mapping.

(3)The parallel feature extraction andmatching algorithm and parallel graph optimization algorithm proposed
in the paper can be called by the VSLAM system in the form of interfaces. The tracking speed of the integrated
VSLAMsystemby parallelmodules has been doubled. Moreover, the better performance of theVSLAMsystem
could be achieved by flexibly adjusting the number of variables in practical applications.

2. PARALLEL ACCELERATION FOR VSLAM FRONT-END
Feature extraction and matching is the most basic task in the visual odometry, and is also an extremely time-
consuming part due to themultiple submodules involved in feature extraction and the numerous feature points
in feature matching. Image feature extraction plays a significant role in detecting a particular type of point in
an image and assigning a certain special description to those points. The ORB feature extraction has the
properties of high speed and stability and rotation- and scale-invariance, which has become the first choice
for feature-based VSLAM methods. Therefore, in the paper, ORB-based feature extraction and matching is
selected for the CUDA acceleration.

The pipeline of feature extraction and matching parallel acceleration is shown in Figure 2A. From inputting
the image on the CPU side to outputting the result on the GPU side, the system successively performs several
sub-tasks such as image pyramid generation, feature point extraction, non-maximal suppression, descriptor
calculation and feature matching.

2.1 Image pyramid
An image pyramid is a form of multi-scale representation of the image. During image preprocessing, in order
to obtain more scale-invariant feature points, image pyramids need to be constructed on the GPU and saved
in the global memory.

The first layer of the image pyramid is derived from the original image input on the CPU. The asynchronous
transfer is utilized via the “cudaMemcoy2DAsync()” to copy the data from the host to the device, which saves
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Figure 2. The process of parallel algorithm. (A) The parallel algorithm for feature extraction and matching; (B) The parallel algorithm for
optimization. CPU: Central processing unit; GPU: graphic processing unit.

time compared to data transfer through Peripheral Component Interconnect Express (PCI-e) bus. From the
second layer, one thread is assigned to process one pixel. For each layer, the image is generated by down-
sampling the data from the previous layer. To satisfy the diversity of scale factors, the proposed method uses
the bilinear interpolation method to calculate the pixel values. In the image preprocessing stage, non-integer
scale factors are more likely to generate non-integer pixel coordinates during downsampling than integer scale
factors. Therefore, bilinear interpolation is employed to find the four nearest pixel points to that pixel coordi-
nate to calculate the pixel value, which can reduce the visual distortion to some extent. In addition, in order
to extract higher quality feature points, the image needs to be initialized with the Gaussian filter before gen-
erating the image pyramid corresponding to the pyramid pool initialization of Figure 2A. Image filtering is
an identical and independent convolution operation on all pixels of an image, so it is well suited for parallel
operations in the GPU. Since the Gaussian template is a fixed two-dimensional array, it can be stored in the
constant memory of the CUDA architecture to avoid duplicate memory copies.

2.2 FAST detection
FAST corner is determined by detecting the similarity between the corner candidate 𝑝 and its sixteen sur-
rounding pixels within a radius of 3 pixels. The label 𝐿𝑥 of the pixels around 𝑝 is taken as one of three states
according to

𝐿𝑥 =


𝑑𝑎𝑟𝑘𝑒𝑟 𝐼𝑥 < 𝐼𝑝 − 𝑇

𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝐼𝑝 − 𝑇 ≤ 𝐼𝑥 ≤ 𝐼𝑝+𝑇
𝑏𝑟𝑖𝑔ℎ𝑡𝑒𝑟 𝐼𝑥 > 𝐼𝑝+𝑇,

(1)

where 𝑇 is the detection threshold, and 𝐼𝑝 is the pixel value of the corner candidate. If there are continuous
𝑁 pixels whose labels are “darker” or “brighter”, then it is regarded as a corner. Since the corner detection is
only related to its own neighborhood, one thread is still assigned to process one pixel for parallel acceleration
of detection.
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In CUDA, the basic scheduling unit for threads is a wrap. A wrap consists of 32 threads, and execution is
most efficient using multiples of 32 as the number of threads per thread block. However, since the number
of registers is limited, the registers struggle to meet the computational demands when too many threads are
allocated in a thread block, to the point where data is transferred to local memory at a lower rate. In order to
improve the utilization of video memory, the allocation of thread blocks is reasonably distributed according
to the size of the image to be processed to avoid the waste of resources. The width and height of the target
image are represented by “imgcol” and “imgrow”, respectively. The thread block and thread lattice are set to
two dimensions with a scaling factor of two. The thread-grid allocation strategy is given in:

𝑑𝑖𝑚𝐺𝑟𝑖𝑑.𝑥 =

⌈
𝑖𝑚𝑔𝑐𝑜𝑙

𝑑𝑖𝑚𝐵𝑙𝑜𝑐𝑘.𝑥

⌉
𝑑𝑖𝑚𝐺𝑟𝑖𝑑.𝑦 =

⌈
𝑖𝑚𝑔𝑟𝑜𝑤

𝑑𝑖𝑚𝐵𝑙𝑜𝑐𝑘.𝑦

⌉ (2)

Each thread corresponds to a pixel and the pixel coordinates (𝑥, 𝑦) correspond to the threads as follows:

𝑥 = blockDim. 𝑥 ∗ blockIdx. 𝑥 + threadIdx. 𝑥
𝑦 = blockDim. 𝑦 ∗ blockIdx. 𝑦 + threadId 𝑥.𝑦

(3)

In kernel function, we refer to the look-up table method [24] to avoid the implementation problem of wrap
divergence triggered by the if/else statement. The FAST response values are calculated according to the Sum
of Absolute Differences (SAD-A) method.

2.3 Non-maximal suppression
In order to avoid duplicate detection and excessive concentration of corners in a certain area, non-maximal
suppression is generally used to filter the corners according to their response values. In the paper, each layer of
the image pyramid is divided into several rectangular grids using a method similar to that described in ref [24],
and the grid size of each layer is adjusted according to the scale factor to ensure the consistency of the grid
index among the layers. In the CUDA architecture of NVIDIA, the basic thread scheduling unit, the wrap,
contains 32 threads, and the threads in a wrap share the same shared memory. The shared memory has low
transfer latency, and all threads in a wrap execute the same instructions. If different threads enter different
branches, a wrapdivergence occurs, which has an impact on performance. For non-maximal suppression, the
CUDA architecture is well suited to operate in conjunction with wrap. Firstly, the threads in a wrap must exist
in the same block; if each grid in the image corresponds to a block, each pixel in the grid is assigned a thread
in a wrap unit. In this way, high communication speed can be achieved while avoiding wrap divergence.

After the non-maximal suppression inside the grid, themaximal values in the grids with the same index among
different layers are then compared, and the FAST corners with the largest response value are retained and nor-
malized to the original image, so as to reduce the redundant feature points and ensure the uniform distribution
of feature points on the image.

2.4 Descriptor calculation
For rotation-invariant features, the “angle” of the corner points needs to be calculated during feature extraction,
which correlates to the direction calculation of Figure 2A. The first step is to calculate the grayscale centroid
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as in:

𝑚10 =
𝑅∑
−𝑅

𝑅∑
−𝑅

𝑥𝐼 (𝑥, 𝑦),

𝑚01 =
𝑅∑
−𝑅

𝑅∑
−𝑅

𝑦𝐼 (𝑥, 𝑦),

𝑚00 =
𝑅∑
−𝑅

𝑅∑
−𝑅

𝐼 (𝑥, 𝑦),

(4)

where 𝑚00 is the image moment and the centroid coordinates of the image block are defined as follows:

𝑐𝑥 =
𝑚10

𝑚00
, 𝑐𝑦 =

𝑚01

𝑚00
. (5)

Then, the principal direction of the feature point is obtained by connecting the geometric center of the image
with the centroid:

𝜃= arctan(
𝑐𝑦

𝑐𝑥
) = arctan(𝑚01

𝑚10
). (6)

In GPU, the wrap is the basic scheduling unit. All threads within a wrap execute the same instruction at
the same time, and share the same block of memory in low transfer latency. Since the direction is generally
calculated by selecting a circular area with diameter of 32 pixels, one wrap is used to process one feature point.
Therefore, each thread in the wrap is assigned to process one row of pixels, which improves the execution
efficiency. During the execution, 32 calculation units are required for the center row, while the number of
calculations for the rest of the rows is a fixed value of less than 32. The one-dimensional 32-element array 𝑢 is
constructed to save the number of executions per pixel row, and it is stored in constant memory.

In the image matching, the BRIEF descriptor is generally used to represent and describe the detected feature
points with its faster calculation speed and higher matching quality compared with SIFT and Speeded-Up
Robust Features (SURF) descriptors. It is determined by 256 random point pairs within the neighborhood
window around the feature point, where the random pairs can be obtained by Gaussian sampling.

Since the calculation for feature point descriptors is mutually independent and takes up 32 times as much
storage space, 32 threads are allocated for each feature point to improve the running efficiency. In order to
speed up the data fetch, “cudaMemcpyToSymbol()” is utilized to save point pairs in the constant memory.

2.5 Feature matching
During initialization, the number of extracted feature points is generally several times more than that of track-
ing due to the fact that the featurematching needsmore accuratemap points and initial pose estimation. Hence,
the feature matching is very time-consuming. Meanwhile, it is also difficult to guarantee real-time matching
even if a local matchingmethod is employed within a window, since there is no such a priori information, such
as the known movement change between camera poses. Therefore, the paper implements the parallelization
of feature matching by resorting to the OpenCV CUDA module, which mainly includes searching for point
pairs based on Hamming distance and culling false matchings based on RANSAC algorithm.

For coarse featurematching, the BruteForce algorithmbased on theHamming distance is applied by calculating
the set with the minimum distance between two sets of feature vector sets as a matching point pair. Since the
size of the feature vectors is fixed, it will be set as 𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒. When performing the initial feature matching,
𝑑𝑖𝑚𝐵𝑙𝑜𝑐𝑘.𝑥 = dimBlock .𝑦 = 𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒. The dimension of the thread grid is set to one dimension, and the
parameters are given in
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𝑑𝑖𝑚𝐺𝑟𝑖𝑑.𝑥 =

⌈
𝑛

𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒

⌉
(7)

In thematching process, 𝑛 threads are firstly allocated, with thread id as 𝑞𝑢𝑒𝑟𝑦𝐼𝑑𝑥 = 𝐵𝑙𝑜𝑐𝑘 𝐼𝑑𝑥.𝑥∗𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒+
𝑇ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥.𝑦, to calculate the Hamming distance of each minimum. The Hamming distance is defined as the
number of different positions corresponding to two sets of binary codes with the same length. In the actual
calculation process, the distance needs to be compared 𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 times. Therefore, the thread id is set to
𝑇ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥.𝑥, and the total number of threads in the program is 𝑛 ∗ 𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒. Thereby after initial matching,
the coarse matching point pairs are obtained.

For fine feature matching, the RANSAC algorithm parallelizes the scoring of coarse match pairs and the re-
moval of false matches. The iterative process is executed in parallel, followed by the matching pair evaluation
process. The computations of the model with random sampling are independent, as is the evaluation for each
matched pair; hence, both steps can be accelerated by CUDA parallel computation. If the number of randomly
sampled point set groups is 𝑚, the number of matched point pairs is 𝑛. dimBlock. 𝑥 = min{512, n} is set, and
the thread block parameters are as given in

dimGrid. 𝑥 =
⌈ 𝑚 ∗ 𝑛
dimBlock .𝑥

⌉
(8)

3. PARALLEL ACCELERATION FOR VSLAM BACK-END
The nonlinear optimization of VSLAM will eventually be transformed into solving a sparse matrix problem,
and the scale of the matrix depends on the number of variables which needs to be optimized. Although the
complexity of solution can be reduced bymarginalization, it is still difficult for BA to run in real-time when the
scale of variables to be optimized is too large. Especially, when SLAM detects the loop-closure and carries out
the global optimization, it is necessary to adjust the poses of all keyframes and relevant map points. Therefore,
the paper proposes a BA scheme based on g2o [30] by introducing GPU parallel computing and improving the
traditional BA process to adapt to parallel design, which mainly includes the reconstruction of key and time-
consuming parts such as error calculation and linear solution in g2o, memory scheduling optimization and
task allocation. Therefore, the running speed can be greatly improved while the accuracy remains unchanged.
The specific process can be seen in Figure 2B.

3.1 Construction for the linear structure
Creating the linear structure is the process of building incremental equations. Its main purpose is to build the
structures of all matrices used in subsequent solutions. Therefore, it is necessary to allocate fixed memory to
the relevant data structure in the GPU.

Here, take the example of the creation of coefficient𝐻. 𝐻𝑝𝑝 and𝐻𝑙𝑙 are diagonal blockmatrices, so the space of
the graphics memory to be allocated is determined by the number, size and data type of the non-zero blocks on
their own diagonals. The number of non-zero blocks in𝐻𝑝𝑝 is the same as the number of pose vertices denoted
by poses_size. Since the non-zero block is a 6*6 matrix, if a double precision floating-point type is used to save
data, the space of the sizeof(double)*36*poses_size needs to be allocated. For 𝐻𝑝𝑙 , in addition to allocating
graphics memory according to non-zero blocks, it is also necessary to save the number and position of non-
zero blocks and the index of corresponding edges for subsequent Schur complement reduction. According to
the physical meaning of 𝐻𝑝𝑙 , when the j-th map point can be observed from the i-th camera, 𝐻𝑝𝑙 has a non-
zero block at position (𝑖, 𝑗). Since edges do not affect each other, we assign corresponding threads to calculate
the number of non-zero blocks in parallel depending on the number of edges, and the index information could
be obtained according to the prestored 𝐻𝑝𝑙 non-zero block set in the device.
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Figure 3. The process of error calculation and the construction for the linear system. (A) The chart of the parallel error calculation; (B) The
flow chart of parallel solution for linear system update.

3.2 Error calculation
The error calculation of each edge in BA only involves the pose of the camera and the 3D coordinates of its
connected map points, and independent threads can be used to realize the parallel calculation of the errors to
improve the calculation speed. Nevertheless, unlike the previous calculation, the errors calculated here need to
be accumulated, indicating that each thread is not completely independent, and the data needs to be interactive.
However, the more thread blocks are called, the more complex the corresponding resources are allocated. As a
result, assigning the appropriate number of threads is significant. Considering the shared memory can be used
within thread blocks, we divide the sum operation into two steps. The first step is to add errors in all thread
blocks and save them in shared memory; the second step is to sum the errors in the shared memory. The steps
above largely avoid the data interaction among thread blocks and greatly improve the running efficiency. The
overall process of parallel error calculation is given in Figure 3A.

3.3 Construction for the linear system
Building a linear system is the most critical step in the optimization process and the basis of the subsequent
solution for the incremental equation. The main task of this part is to solve the Jacobian matrix of the error
about the poses and map points according to the data obtained in the first two parts, and then determine the
specific forms of 𝐻𝑝𝑝 , 𝐻𝑝𝑙 , 𝐻𝑙𝑙 , 𝑏𝑝 and 𝑏𝑙 .

First, the Jacobian matrix corresponding to each edge needs to be calculated. There are two types of Jacobian
matrix: 𝐽𝑝 and 𝐽𝑙 . The calculation of each Jacobian matrix is a completely independent operation. Therefore,
the number of threads allocated equals that of edges. For the n-th thread, which corresponds to the n-th edge,
the id of the pose vertex and the map point vertex corresponding to this edge are i and j, respectively. When
the thread is executed, the i-th non-zero block of 𝐻𝑝𝑝 will be superposed once 𝐽𝑇𝑝𝑛 ∗ 𝐽𝑝𝑛. Other matrices in
the incremental equation operate similarly. The process of updating the linear system is shown in Figure 3B.

3.4 Solution for the linear system
The linear system solution is divided into two parts: Schur complement reduction and linear equation solution.
The matrices to be maintained for marginalization are:

𝐻𝑆𝑐 = 𝐻𝑝𝑝 − 𝐻𝑝𝑙 ∗ 𝐻−1
𝑙𝑙 ∗ 𝐻𝑇

𝑝𝑙 , (9)

𝑏𝑆𝑐 = −𝑏𝑝 + 𝐻𝑝𝑙 ∗ 𝐻−1
𝑙𝑙 ∗ 𝑏𝑙 . (10)
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Figure 4. Flow chart of parallel solution for 𝐻𝑆𝑐 .

It can be seen from the formulas that 𝐻𝑆𝑐 and 𝑏𝑆𝑐 are obtained by summing two matrices, and parallel com-
puting with CUDA is very suitable for matrix superposition.

For the example of the coefficient 𝐻𝑆𝑐 , we copy 𝐻𝑝𝑝 to the corresponding position in 𝐻𝑆𝑐 as its initialized
structure, and take the number of non-zero blocks of 𝐻𝑝𝑝 as the number of threads, and each thread performs
a copy operation. Assuming that the number of camera poses is m and the number of map points is n, the 𝐻𝑆𝑐

can be divided into m*m sub-blocks. The sub-block in the position (i, j) is:

𝐻𝑆𝑐(𝑖, 𝑗) =
𝑛∑

𝑥=1
𝐻𝑝𝑙 (𝑖,𝑥) ∗ 𝐻−1

𝑙𝑙 (𝑥) ∗ 𝐻
𝑇
𝑝𝑙 (𝑥, 𝑗) , (11)

where 𝐻𝑝𝑙 (𝑖, 𝑗) is the i-th row and j-th column of sub-block 𝐻𝑝𝑙 , and 𝐻𝑙𝑙 (𝑥) is the x-th non-zero of sub-block
𝐻𝑙𝑙 . That is, each sub-block of 𝐻𝑆𝑐 needs to be added n times. Due to the sparse structure of 𝐻𝑝𝑙 , the number
of calculations will be much less than n. The calculation number of 𝐻𝑆𝑐(𝑖, 𝑗) is related to the i-th and j-th rows
of 𝐻𝑝𝑙 . If there are 𝜈 identical column indexes of the non-zero block in row i and row j of 𝐻𝑝𝑙 , there will be 𝜈
sum operations. During each iteration, the index of 𝐻𝑝𝑙 does not change, so all non-zero block indexes can be
pre-calculated in the part of the linear structure construction. Since the calculation of each sub-block in 𝐻𝑆𝑐

is independent, and the calculation of each sum-term in the sub-block is also independent, 𝐻𝑆𝑐 is computed
using a two-level parallel mode, with coarse-grained parallelization among non-zero blocks and fine-grained
parallelization within non-zero blocks, further improving the operation efficiency. The calculation of 𝑏𝑆𝑐 also
adopts the same strategy. Figure 4 is the flow chart for solving 𝐻𝑆𝑐 .

In order to make full use of the limited storage resources of the graphics processor, Compressed Sparse Row
(CSR) format is adopted for sparse matrix 𝐻𝑆𝑐 to store data. Compared with common matrix storage, CSR
format can avoid the waste of space. Finally, the paper uses the linear solver cuSolver provided by CUDA to
solve the incremental equation.

http://dx.doi.org/10.20517/ir.2024.17


Liu et al. Intell Robot 2024;4(3):256-75 I http://dx.doi.org/10.20517/ir.2024.17 Page 266

Figure 5. The runtime comparison of feature extraction with different graphics card models. (A) RTX 2080Ti; (B) GTX 1050Ti.

4. EXPERIMENT
In this section, we evaluate our proposed CUDA parallel acceleration method for the feature detection and
matching module in front-end and the optimization module in back-end. Meanwhile, the optimized accel-
erated modules are integrated into a common VSLAM pipeline, referred to as CUDA-SLAM. The proposed
method is compared with the state-of-the-art VSLAMmethods with multiple public datasets. The experiment
is implemented on a workstation with AMD Ryzen Threadripper 1950X 16-Core CPU and three different
NVIDIA graphics cards whose properties are summarized in Table 1.

4.1 Feature extraction and matching
The feature extraction algorithm based onCUDA is a complete acceleration scheme forORB feature extraction.
It realizes the functions of pyramid generation, feature point extraction, non-maximal suppression, direction
calculation and descriptor calculation.

To verify the performance of the proposed method, we select images with pixels of 460 K, 720 K, 1,036 K,
1,411 K and 1,834 K, respectively, to measure the runtime of the serial feature extraction algorithm based on
OpenCV-CPU and the parallel feature extraction algorithm based on CUDA acceleration. Figure 5 displays
the comparison of the feature extraction time with different graphics card models.

It can be seen from Figure 5 that the parallel feature extraction algorithm achieves superior execution times.
When extracting features from images with 1834K pixels in RTX 2080Ti, the speedup can reach 19.7, demon-
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Table 1. Image processor parameters

Property NVIDIA GeForce
RTX 2080Ti

NVIDIA GeForce
RTX 1050Ti NVIDIA Jetson AGX Orin

Number of CUDA cores 4,352 768 2,048
Video memory capacity 11 GB 4 GB 32 G
Video memory bandwidth 616 GB/s 112 GB/s 204.8 GB/s
Video memory bus width 352bit 128bit 256bit

Video memory type GDDR6 GDDR5 LPDDR5
Core architecture Turing Pascal Ampere

CUDA: Compute unified device architecture.

Figure 6. The runtime comparison of key functions in parallel feature extraction.

strating that the CUDA parallel feature extraction algorithm proposed in the paper is effective. It is also shown
that the acceleration effect of the two types of graphics cards is significantly different due to the difference be-
tween the number of CUDA cores and the difference between the bandwidth of graphics memory. At the same
time, the speedup increases with the growth of the image size, but the acceleration rate slows down with the
increase of the image size, which conforms to the heterogeneous acceleration characteristics. For the improved
acceleration algorithm, the whole image needs to be copied to the graphics card device first. The higher the
image resolution, the more data will be copied to the graphics card device, which consumes a lot of time and
is counted in the pyramid part. In order to avoid chance errors, the images of different pixels are executed 50
times separately and the average execution time is taken as the statistical result. The execution time of each
key function in the feature extraction can be seen in Figure 6. As can be seen in Figure 6, pyramid genera-
tion consumes the most time in the front-end, and the overall time consumed decreases significantly as the
performance of the graphics card increases.

The performance of feature matching is mainly evaluated by two indicators:

(1) Accuracy: this indicator refers to the number of successful matching point pairs whose Hamming distance
is less than a certain threshold.
(2) Running speed: this indicator refers to the average runtime in the process of matching a certain number of
feature points.

Figure 7 shows the results of the proposed parallel matching algorithm. It can be seen that the successful
matching rate is high. In order to further verify the accuracy of the algorithm, we calculate the matching
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Figure 7. The feature matching results of different algorithms. (A) Original images in EuRoC sequence MH 01; (B) Matching result based
on Brute-Force algorithm; (C) Matching result based on RANSAC algorithm. RANSAC: Random Sample Consensus.

Table 2. Accuracy comparison of feature matching

Serial matching Parallel matching
algorithm algorithm

Number of
feature
points

Number of
correct
matches

Successful
matching

rate

Number of
correct
matches

Successful
matching

rate

100 99 99% 98 98%
200 194 97% 198 99%
400 389 97.25% 395 98.75%
800 796 99.5% 792 99%
1,600 1,590 99.38% 1,586 99.13%
3,200 3,184 99.5% 3,189 99.66%

accuracy for different numbers of feature point pairs, and compare it with the feature matching algorithm
implemented by OpenCV-CPU. The results are shown in Table 2. It can be seen that the matching accuracy
of the two algorithms is basically identical, indicating that the acceleration algorithm proposed in the paper is
effective.

Time consuming test is implemented on two 960*480 pixels images that have certain overlapping scenes. We
limit the number of features extracted in each image, and calculate the average runtime of serial and parallel
matching algorithms after executing 50 times. The results are shown in Figure 8.

As can be seen from Figure 8, the parallel feature matching algorithm takes much less time than the serial
matching algorithm. With the increase of the number of feature points, the speedup on both graphics cards
has improved, indicating that GPU has a better acceleration effect on large-scale data, but the improvement of
acceleration ratio slows down with the increase of the number of feature points. This is because data transfer
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Figure 8. The runtime comparison of feature extractionwith different graphics cardmodels. (A) RTX 2080Ti; (B) GTX 1050Ti. CPU: Central
processing unit; GPU: graphic processing unit.

between GPU and CPU takes a lot of time, which indirectly shows that the time of parallel feature matching
algorithm is mainly spent on data transmission. By comparing the runtime of the two graphics cards, it can be
seen that the data transmission efficiency and computing performance of GTX 1050Ti are far lower than that
of RTX 2080Ti.

Through comparisons on accuracy and runtime, it can be seen that the parallel feature matching algorithm
based on CUDA proposed in the paper is roughly the same as the serial OpenCV algorithm in terms of match-
ing accuracy, but has significantly improved in terms of running efficiency.

4.2 Bundle adjustment
In this section, we compare the parallel optimization algorithm proposed in the paper with the g2o algorithm
running on CPU using different linear solvers, such as Eigen, Csparse and PCG. The test data for the experi-
ments is obtained from the map generated by ORB-SLAM running on Kitti 00 sequence and saved in the form
of a graph which includes keyframe-pose vertices, map point vertices, corresponding binary edges and ternary
edges. The data are categorized as different scales, and the runtime for ten iterations in optimization can be
seen in Table 3.

To analyze the results more intuitively, we draw the runtime curves of the two algorithms for different data
sizes, as shown in Figure 9A, where the horizontal axis represents the number of poses and the vertical axis
represents the optimization time with ten iterations. As seen in Figure 9A, the parallel algorithm runs faster
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Figure 9. The runtime comparison of different methods. (A) Runtime comparison of bundle adjustment; (B) Runtime comparison of key
functions in parallel bundle adjustment.

Table 3. Runtime comparison of bundle adjustment

Number of poses Map points Number of edges
Parallel time consuming(s) Serial time consuming(s)
2080Ti 1050Ti Eigen Csparse PCG

132 17,333 64,201 0.09 0.12 0.70 0.68 0.66
264 34,968 135,702 0.22 0.26 1.68 1.55 1.36
396 48,700 185,364 0.32 0.45 2.31 2.00 1.88
528 61,442 239,182 0.37 0.58 3.64 3.29 2.43
660 75,203 289,890 0.46 0.68 4.28 3.75 3.00
792 88,736 348,542 0.66 0.88 7.16 6.23 4.16
924 103,255 402,374 0.75 1.00 7.92 6.70 5.17
1056 109,978 458,623 0.81 1.22 8.10 7.39 6.73
1188 120,817 511,519 0.96 1.57 10.41 9.90 7.85
1322 133,383 561,116 1.02 1.72 11.91 10.96 8.74

than the serial algorithm for different data sizes, and the speedup is more obvious as the number of keyframes
increases. Figure 9B shows the runtime of the key functions in BA algorithm for different numbers of poses.

Since our approach focuses on parallelization without changing mathematics and tactics in g2o, we compare
the accuracy of the proposed parallel optimization algorithm with the Levenberg-Marquardt algorithm imple-
mented in g2o, and the test results for different data sizes are shown in Table 4. Through two comparisons in
Tables 3 and 4, it can be seen that the proposed parallel optimization scheme has a 5-12 times speedup, while
maintaining the same accuracy as g2o.
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Table 4. Accuracy comparison of bundle adjustment

Data id Number of edges Original error
Parallel algorithm error (pixel) Serial algorithm error(pixel)
1 iteration 10 iterations 1 iteration 10 iterations

0 64,201 0.588 0.549 0.500 0.549 0.500
1 135,702 0.579 0.549 0.502 0.549 0.502
2 185,364 0.562 0.538 0.500 0.538 0.500
3 239,182 0.563 0.542 0.511 0.542 0.511
4 289,890 0.547 0.530 0.503 0.530 0.503
5 348,542 0.555 0.530 0.503 0.530 0.503
6 402,374 0.544 0.523 0.500 0.523 0.500
7 458,623 0.569 0.543 0.522 0.543 0.522
8 511,519 0.575 0.551 0.523 0.551 0.523
9 561,116 0.629 0.600 0.570 0.600 0.570

Table 5. Thread parameters for different tasks

Section BlockDim.x BlockDim.y GridDim.x GridDim.y

Image pyramid min(64, 𝑖𝑚𝑔𝑐𝑜𝑙+32−1
32 × 32) 2 𝑖𝑚𝑔𝑐𝑜𝑙+𝐵𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥−1

𝐵𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥
𝑖𝑚𝑔𝑟𝑜𝑤+𝐵𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑦−1

𝐵𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑦

Fast corner
detection

32 4 𝑖𝑚𝑔𝑐𝑜𝑙+𝐵𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥−1
𝐵𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥

𝑖𝑚𝑔𝑟𝑜𝑤+𝐵𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑦−1
𝐵𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑦

Non-maximal
suppression

𝑐𝑒𝑙𝑙𝑐𝑜𝑙𝑙 max(1, min[ 128
𝑐𝑒𝑙𝑙𝑐𝑜𝑙𝑙

, 𝑐𝑒𝑙𝑙𝑟𝑜𝑤𝑙 ] ) 𝑖𝑚𝑔𝑐𝑜𝑙𝑙
𝑐𝑒𝑙𝑙𝑐𝑜𝑙𝑙

𝑖𝑚𝑔𝑟𝑜𝑤𝑙

𝑐𝑒𝑙𝑙𝑟𝑜𝑤𝑙

Direction
calculation

32 8 1 𝑁𝑝𝑜𝑖𝑛𝑡𝑠
𝐵𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑦

Descriptor
calculation

32 8 1 𝑁𝑝𝑜𝑖𝑛𝑡𝑠
𝐵𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑦

Creating linear
structures

32 32 𝑁𝑒𝑑𝑔𝑒𝑠
32∗32 1

Error
calculations

32 16 32 1

Building linear
systems

512 1 𝑁𝑒𝑑𝑔𝑒𝑠
512 1

Solving linear
systems

512 1 𝑁𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠
𝐵𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥 1

Note

(1) BlockDim and GridDim is the size of the thread block and thread grid
(2) 𝑖𝑚𝑔𝑟𝑜𝑤𝑙 and 𝑖𝑚𝑔𝑐𝑜𝑤𝑙 is the size of the image, where 𝑙 represents the level of the current image pyramid
(3) 𝑐𝑒𝑙𝑙𝑟𝑜𝑤𝑙 and 𝑐𝑒𝑙𝑙𝑐𝑜𝑤𝑙 is the size of the grid used in non-maximal suppression
(4) 𝑁𝑒𝑑𝑔𝑒𝑠 is the number of the edges in BA
(5) 𝑁𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 is the number of the calculation to the 𝐻𝑆𝑐 or 𝑏𝑆𝑐

Figure 10. Tracking results for different VSLAM systems. VSLAM: Visual simultaneous localization and mapping.
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Table 6. Tracking accuracy comparison of different VSLAM systems

Evaluation index ORB
SLAM2

Open
VSLAM

CUDA-
SLAM

RPE (m)

Max 0.027 0.057 0.036
Mean 0.008 0.008 0.012
Median 0.006 0.004 0.010
Rmse 0.010 0.013 0.014
Std 0.006 0.009 0.007

APE (m)

Max 0.991 2.344 1.474
Mean 0.395 0.511 0.645
Median 0.361 0.402 0.014
Rmse 0.448 0.684 0.720
Std 0.213 0.455 0.320

VSLAM: Visual simultaneous localization and mapping;
RPE: relative pose error; APE: absolute pose error; SLAM:
simultaneous localization and mapping.

Table 7. Runtime comparison of key modules in different VSLAM systems

ORB-SLAM2 OpenVSLAM CUDA-SLAM

Front-end 48 ms 52 ms 12 ms
Back-end 138 ms 144 ms 41 ms

VSLAM: Visual simultaneous localization and mapping;
CUDA: compute unified device architecture; SLAM: si-
multaneous localization and mapping.

4.3 Heterogeneous VSLAM system
It is shown that the parallel feature extraction and matching algorithm in Section III-A and the BA algorithm
in Section III-B based on CUDA have a significant improvement in running efficiency with approximately
the same accuracy as the serial algorithm. Therefore, we integrate the above-mentioned modules with our
proposed accelerated nodes to realize the real-time performance of the common VSLAM system, and the
detailed thread parameters are shown in Table 5. The improved is called CUDA-SLAM and is compared with
the popular SLAM methods including ORB-SLAM [17,18] and OpenVSLAM [31]. The data used to evaluate the
errors is from KITTI sequence 10, and the absolute pose error (APE) and relative pose error (RPE) are used
to evaluate the accuracy of VSLAMmethods. The main parameters are used as follows: the number of feature
points is set to 2000, and the covisible keyframe threshold is set to 15; that is, an edge between two keyframes
exists if they share observations of the same map points (at least 15).

The tracking results are shown in Figure 10, and the RPE and APE for the VSLAM systems are presented in
Table 6. Qualitative and quantitative experiments verify that the error of the proposed scheme under each
metric is basically the same as that of OpenVSLAM, indicating that the CUDA-SLAM proposed in the paper
meets the accuracy requirements of the general VSLAM model.

Table 7 records the average runtime of the SLAM front-end and back-end. According to Table 7, the efficiency
of each module is significantly improved, proving the feasibility of heterogeneous VSLAM systems consisting
of the parallel acceleration modules proposed in the paper. Combined with the previous results of accuracy
tests, the application of CUDA acceleration to VSLAM key modules can greatly improve the running speed
without loss of accuracy, which is very helpful to realize the real-time large-scale VSLAM systems.

The stability and accuracy of SLAM system is directly related to the scale of data. To a certain extent, increasing
the number of feature points and keyframes for local optimization can improve the accuracy of tracking and
mapping. Therefore, we expand the data scale by doubling the number of feature points and increasing the
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Table 8. Accuracy and runtime comparison between OpenVSLAM and CUDA-SLAM

Project Open
VSLAM

CUDA-
SLAM1

CUDA-
SLAM2

CUDA-
SLAM3

Keyframe increase scale 0% 0% 50% 50%
Number of feature points 2,000 4,000 2,000 4,000

RMSE (APE) 0.684 m 0.611 m 0.550 m 0.327 m
RMSE (RPE) 0.013 m 0.011 m 0.010 m 0.008 m
Tracking time 52 ms 16 ms 12 ms 16 ms

Optimization time 144 ms 41 ms 53 ms 53 ms

Table 9. Runtime comparison of the tracking module

ORB-SLAM2 OpenVSLAM CUDA-SLAM

Sequence Median Mean Median Mean Median Mean
T1 0.0288 s 0.0291 s 0.0451 s 0.0469 s 0.0124 s 0.0191 s
T2 0.0296 s 0.0298 s 0.0527 s 0.0498 s 0.0119 s 0.0192 s
T3 0.0294 s 0.0295 s 0.0457 s 0.0467 s 0.0118 s 0.0186 s
T4 0.0295 s 0.0297 s 0.0563 s 0.0575 s 0.0125 s 0.0198 s
T5 0.0290 s 0.0291 s 0.0543 s 0.0547 s 0.0126 s 0.0228 s
T6 0.0288 s 0.0289 s 0.0520 s 0.0509 s 0.0134 s 0.0219 s

Average 0.0292 s 0.0293 s 0.0507 s 0.0512 s 0.0124 s 0.0202 s

SLAM: Simultaneous localization and mapping; VSLAM: Visual simultaneous localiza-
tion and mapping; CUDA: compute unified device architecture.

number of keyframes by 50%, then compare the tracking time and trajectory accuracy of OpenVSLAM and
CUDA-SLAM. The results are shown in Table 8.

It can be shown in Table 8 that CUDA-SLAM has significantly improved the tracking accuracy after expanding
the data scale, but still consumesmuch less time than the OpenVSLAM algorithm. It is further verified that the
parallel SLAM algorithm in the paper has significant advantages in terms of accuracy and runtime. Therefore,
in practical applications, the best performance of VSLAM system can be achieved by flexibly adjusting the
number of feature points and keyframes.

To better meet the practical application circumstances, an embedded GPU named Jetson AGX Orin is intro-
duced. Further experiments are conducted on the above hardware platform with TUM datasets to verify the
effectiveness of the parallel tracking module more comprehensively. The runtime comparison of the track-
ing module is shown in Table 9. The performance of the proposed tracking algorithm is improved by 31%
compared with the traditional algorithm under the same test environment. It can be seen that our algorithm
outperforms traditional algorithms under a variety of open datasets and is stable under the embedded GPU
hardware.

5. CONCLUSION
In the paper, we propose a parallel scheme on the key modules of VSLAM system based on CUDA for the
large-scale computational tasks with high complexity in the tracking and optimization of VSLAM system. By
improving the modules of feature extraction and matching as well as BA, the parallelization of the algorithm
is achieved on the GPU. Compared with the traditional sequential execution methods, the speedups of feature
extraction, feature matching and BA are respectively 10-20, 5-13 and 10 times, while maintaining accuracy. At
last, the proposed front-end and back-end parallel algorithms are migrated to OpenVSLAM.The results show
that the tracking accuracy of CUAD-SLAM is basically identical to the state-of-the-art methods with the same
settings but the running speed is significantly improved.

The data with the best performance is bolded in the table. VSLAM: Visual
simultaneous localization and mapping; CUDA: compute unified device
architecture; SLAM: simultaneous localization and mapping; RMSE: root
mean square error; RPE: relative pose error; APE: absolute pose error.
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Furthermore, when the data scale increases exponentially, the runtime of CUDA-SLAM is still much lower
than that of traditional methods. Enhancing real-time capabilities is crucial because real-time responsiveness
is a key requirement in many real-world applications. In VSLAM system, loop closure detection is also an
important part. It requires determining whether the robot has reached the previous position by comparing
the current frame with the reference keyframe based on BOW model, where the similarity calculations are
repetitive and independent operations that are feasible to accelerate. Therefore, the parallelization of loop clo-
sure detection is considered to be implemented to improve the performance of VSLAM system in the future.
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