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Abstract
This perspective presents first-hand research insights into the pervasive environmental distribution of 
neonicotinoid insecticides (NEOs) and their consequent human exposure. Our findings reveal widespread NEO 
detection across human biological matrices, indicating potential health risks and highlighting critical gaps in current 
risk assessment paradigms. We identify an urgent need for longitudinal epidemiological studies, particularly 
focusing on vulnerable populations, to comprehensively assess NEO-related health outcomes. These scientific 
insights should inform evidence-based policy reforms and risk management strategies to effectively protect both 
public health and environmental integrity.
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UBIQUITY AND DETECTION IN HUMANS
Neonicotinoid insecticides (NEOs) have been extensively detected in a variety of environmental matrices, 
including soil, aquatic systems, particulate matter, plant pollen, floral nectar, honey, and foodstuffs[1-6]. Their 
widespread presence indicates the potential routes of human exposure, including ingestion, inhalation, and 
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dermal absorption. NEOs have been detected in human urine samples, and exposure levels were found to 
vary significantly according to geographic region, seasons, and demographic variables[7-9]. Moreover, NEO 
metabolites have been observed in human samples more frequently and at higher concentrations than their 
parent compounds[7,9-11], highlighting the necessity to incorporate metabolite assessment in risk evaluations. 
The prevalence of these metabolites suggests that current exposure assessments, which are predominantly 
based on short-term urinalysis, may significantly underestimate the actual extent of human exposure. 
Furthermore, the toxicological profiles of both NEOs and their metabolites warrant further investigation, as 
they may exhibit distinct toxicokinetic behaviors and exert divergent health impacts[12-17].

NEO exposure and the associated health risks in susceptible populations, particularly children and pregnant 
women, warrant further investigation. Among children, NEO exposure can disrupt neurodevelopmental 
processes[18-22], including the need to assess the chronic, low-level exposure effects in this population. The 
relationship between prenatal NEO exposure and perinatal outcomes has been investigated, with emerging 
evidence suggesting a correlation between maternal NEO exposure and adverse birth outcomes, including 
an elevated incidence of congenital heart disease in neonates[13,22-27]. These insights underscore the critical 
need to investigate the environmental dynamics and potential health ramifications of NEOs, with a 
particular emphasis on vulnerable populations.

The global ubiquity of NEOs and their detection in human biomonitoring studies further indicates the need 
for a comprehensive understanding of their environmental dynamics and potential health 
implications[7,28-33]. This imperative extends to the development of mitigation strategies designed to reduce 
exposure and associated risks. The unique vulnerabilities and specific needs of children and pregnant 
women, who may exhibit distinct toxicokinetic profiles and experience health effects that differ from those 
observed in the general population[21,22,34], must be considered. The urgency for large-scale epidemiological 
investigations to delineate potential health outcomes associated with NEO exposure is paramount, 
particularly among these high-risk cohorts. Achieving a profound understanding of the toxicokinetics and 
toxicodynamics of NEOs in these susceptible populations is essential for conducting accurate health risk 
assessments.

HEALTH RISKS AND ADVERSE EFFECTS
NEOs may pose health risks to humans, including neurological toxicity, diabetes, and other unintended 
effects on mammals[35,36]. In humans, sub-lethal effects manifest as nausea, vomiting, headaches, and 
diarrhea. Emerging evidence suggests that NEOs may pose significant health risks to both mammals and 
humans, including neurotoxicity, immunotoxicity, hepatotoxicity, nephrotoxicity, and reproductive 
toxicity[35-37]. Further research into the toxicity of NEOs and their metabolites is warranted, as current 
exposure assessments predominantly rely on short-term urinary biomarkers.

NEOs are recognized for their neurotoxic properties, specifically targeting the nicotinic acetylcholine 
receptor (nAChR), which plays a pivotal role in neural signaling[3,38,39]. nAChRs are also present on immune 
cells, thereby potentially influencing immune responses[3,38,39]. Emerging evidence suggests that chronic 
exposure to NEOs may disrupt neurodevelopmental processes, particularly in children, leading to potential 
cognitive and behavioral deficits[29,40,41]. For instance, a study by Wang et al. reported a significant association 
between prenatal NEO exposure and delayed cognitive development in 2-year-old children[29]. These 
findings indicate the critical need for long-term studies to assess the neurodevelopmental impacts of NEO 
exposure across different life stages.
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The immune-toxicological effects of NEOs are a significant concern, as they may perturb the immune 
system’s normal functions, increasing the risk of infections and diseases[39]. Recent research has shown that 
exposure to NEOs can lead to immune dysregulation, characterized by altered cytokine profiles and 
increased susceptibility to infections[42]. For example, Walderdorff et al. demonstrated that imidacloprid at 
higher concentrations significantly reduced phagocytic activity in lipopolysaccharide-activated human 
macrophages after 24 h of exposure[43]. These findings indicate the importance of incorporating 
immunotoxicity endpoints in future epidemiological studies.

The hepatotoxic and nephrotoxic potential of NEOs implies possible damage to the liver and kidneys, with 
serious health implications, such as compromised detoxification and excretory processes[44,45]. Studies have 
reported elevated levels of liver enzymes and kidney function markers in individuals chronically exposed to 
NEOs, indicating potential organ damage[46,47]. Godbole et al. found that detectable levels of neonicotinoid 
metabolites in urine were associated with decreased liver enzyme levels and hepatic steatosis index (HSI) in 
U.S. adults, suggesting potential hepatotoxic effects[46]. These findings highlight the need for comprehensive 
assessments of liver and kidney function in populations exposed to NEOs.

Reproductive toxicity associated with NEOs suggests the possibility of hormonal disruption and 
interference with reproductive processes, which could lead to fertility problems[48-50]. Prenatal exposure to 
NEOs may be linked to adverse birth outcomes, including congenital heart disease and low birth 
weight[23-25]. A prospective cohort study by Pan et al. reported a higher incidence of congenital anomalies in 
neonates born to mothers with high NEO exposure during pregnancy[25]. Thus, further research on the 
reproductive and developmental impacts of NEOs is needed, particularly in vulnerable populations such as 
pregnant women and children.

The environmental persistence and human biomonitoring of NEOs and their metabolites underscore the 
imperative for a thorough comprehension of their toxicokinetics and health impacts. Since metabolites are 
detected at higher levels than parent compounds in human matrices, such as urine[7,9], metabolites should be 
considered in risk assessments. Metabolites may exhibit distinct toxicokinetic profiles and health effects 
compared to their parent compounds, thereby complicating the evaluation of health risks associated with 
NEO exposure.

The complexity of health risks posed by NEOs is exacerbated by their potential for environmental 
bioaccumulation and biomagnification within the food chain, resulting in chronic, low-dose human 
exposure. Such exposure can precipitate latent health effects, which may manifest with serious long-term 
consequences. Consequently, long-term epidemiological studies should be undertaken to elucidate the 
potential health outcomes associated with NEO exposure and devise strategies for risk mitigation.

RISK ASSESSMENT METHODOLOGIES
NEO risk assessment involves evaluating exposure levels and comparing them with established reference 
doses. The relative potency factor (RPF) method is widely used to estimate the daily intake (EDI) of NEOs, 
which is then compared with the chronic reference dose to assess potential health risks[51]. This approach 
enables the comparative assessment of the relative toxicity of various NEOs, taking into account the potency 
of each compound. However, since current risk assessments are predominantly focused on short-term 
exposure scenarios, long-term monitoring utilizing biomaterials such as hair and nails is needed[52]. These 
biomaterials provide a more comprehensive perspective on exposure chronology, as they can sequester 
substances over extended periods, thereby reflecting chronic exposure patterns.
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Comprehensive, large-scale epidemiological studies are imperative for elucidating the potential health 
outcomes associated with NEO exposure. Such studies are pivotal for establishing robust correlations 
between exposure levels and health effects while accounting for diverse factors, including demographics, 
geographical location, and lifestyle habits[11,16,17,31,32,53,54]. The Nemerow Index method, a comprehensive 
approach for quantifying the overall NEO pollution levels in the soil of urban park green spaces, has been 
employed to assess the cumulative exposure risks across different populations[55]. This method provides a 
comprehensive assessment of the risks associated with NEO exposure by integrating the effects of multiple 
pollutants.

FUTURE PERSPECTIVES
The pervasive presence of NEOs in the environment and their detection in human matrices underscore the 
imperative for a comprehensive risk assessment framework that encompasses both acute and chronic 
exposure routes. The current exposure assessments for NEOs are often based on short-term biomonitoring 
data, which may significantly underestimate the true extent of human exposure. A study by Song et al. 
reported that NEO metabolites were detected in human urine samples at higher frequencies and 
concentrations than their parent compounds, suggesting that reliance on short-term urinalysis alone may 
miss a substantial portion of chronic exposure[7]. Specifically, the study found that the concentration of NEO 
metabolites in urine samples varied significantly across different regions and demographic groups. Future 
research should focus on expanding our understanding of the long-term health effects, developing more 
sensitive detection methods, and establishing international standards for safe exposure levels. Moreover, 
large-scale epidemiological studies are urgently needed to elucidate potential health outcomes associated 
with NEO exposure and inform evidence-based policy decisions that balance agricultural requirements with 
environmental health.

In the context of long-term health effects, a full lifecycle study approach is essential for elucidating the 
chronic impacts of NEOs on human health[56]. This approach involves examining exposure from prenatal 
stages through adulthood and assessing the developmental, reproductive, and carcinogenic effects of NEOs 
over time. Such studies would provide invaluable insight into the cumulative and delayed effects of these 
insecticides on human health, which are currently poorly understood.

The integration of organoid technology into NEO research represents a promising avenue for advancing 
our understanding of the mechanisms by which NEOs exert their toxic effects[57,58]. Organoids, which are 
three-dimensional cell cultures that mimic the structure and function of human organs[57,58], offer a cutting-
edge tool for studying the direct effects of NEOs on human tissues. These models can simulate specific 
organ responses to NEO exposure, providing a platform for the high-throughput screening of potential 
adverse effects and for testing the efficacy of mitigation strategies.

The development of more sensitive detection methods is crucial for accurately quantifying NEO levels in 
various environmental and biological samples. Advances in analytical chemistry, such as mass spectrometry 
and biosensors, can enhance the sensitivity and specificity of NEO detection, thereby enabling the 
monitoring of even trace amounts of these insecticides in complex matrices.

Establishing international standards for safe exposure levels requires a concerted global effort. Collaborative 
research programs among countries can harmonize risk assessment methodologies and establish exposure 
limits based on the best available scientific evidence. This would facilitate the development of harmonized 
regulations that protect public health while accounting for the diverse agricultural practices and 
environmental conditions across different regions.
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In summary, assessing the risks posed by neonicotinoids (NEOs) requires a multidisciplinary approach 
combining toxicology, epidemiology, and environmental science, given their ubiquitous presence and 
potential health impacts. To effectively evaluate population exposure and associated risks, future research 
should prioritize: (1) longitudinal health studies; (2) implementation of organoid models; (3) development 
of advanced detection methods; and (4) establishment of global exposure guidelines to protect both human 
health and the environment.
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