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Abstract

This perspective presents first-hand research insights into the pervasive environmental distribution of
neonicotinoid insecticides (NEOs) and their consequent human exposure. Our findings reveal widespread NEO
detection across human biological matrices, indicating potential health risks and highlighting critical gaps in current
risk assessment paradigms. We identify an urgent need for longitudinal epidemiological studies, particularly
focusing on vulnerable populations, to comprehensively assess NEO-related health outcomes. These scientific
insights should inform evidence-based policy reforms and risk management strategies to effectively protect both
public health and environmental integrity.
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UBIQUITY AND DETECTION IN HUMANS

Neonicotinoid insecticides (NEOs) have been extensively detected in a variety of environmental matrices,
including soil, aquatic systems, particulate matter, plant pollen, floral nectar, honey, and foodstuffs" . Their
widespread presence indicates the potential routes of human exposure, including ingestion, inhalation, and
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dermal absorption. NEOs have been detected in human urine samples, and exposure levels were found to
vary significantly according to geographic region, seasons, and demographic variables'”*. Moreover, NEO
metabolites have been observed in human samples more frequently and at higher concentrations than their
parent compounds™*'", highlighting the necessity to incorporate metabolite assessment in risk evaluations.
The prevalence of these metabolites suggests that current exposure assessments, which are predominantly
based on short-term urinalysis, may significantly underestimate the actual extent of human exposure.
Furthermore, the toxicological profiles of both NEOs and their metabolites warrant further investigation, as
they may exhibit distinct toxicokinetic behaviors and exert divergent health impacts">'7.

NEO exposure and the associated health risks in susceptible populations, particularly children and pregnant
women, warrant further investigation. Among children, NEO exposure can disrupt neurodevelopmental
processes**, including the need to assess the chronic, low-level exposure effects in this population. The
relationship between prenatal NEO exposure and perinatal outcomes has been investigated, with emerging
evidence suggesting a correlation between maternal NEO exposure and adverse birth outcomes, including
an elevated incidence of congenital heart disease in neonates"****”.. These insights underscore the critical
need to investigate the environmental dynamics and potential health ramifications of NEOs, with a
particular emphasis on vulnerable populations.

The global ubiquity of NEOs and their detection in human biomonitoring studies further indicates the need
for a comprehensive understanding of their environmental dynamics and potential health
implications”***’. This imperative extends to the development of mitigation strategies designed to reduce
exposure and associated risks. The unique vulnerabilities and specific needs of children and pregnant
women, who may exhibit distinct toxicokinetic profiles and experience health effects that differ from those
observed in the general population®****, must be considered. The urgency for large-scale epidemiological
investigations to delineate potential health outcomes associated with NEO exposure is paramount,
particularly among these high-risk cohorts. Achieving a profound understanding of the toxicokinetics and
toxicodynamics of NEOs in these susceptible populations is essential for conducting accurate health risk
assessments.

HEALTH RISKS AND ADVERSE EFFECTS

NEOs may pose health risks to humans, including neurological toxicity, diabetes, and other unintended
effects on mammals™. In humans, sub-lethal effects manifest as nausea, vomiting, headaches, and
diarrhea. Emerging evidence suggests that NEOs may pose significant health risks to both mammals and
humans, including neurotoxicity, immunotoxicity, hepatotoxicity, nephrotoxicity, and reproductive
toxicity” . Further research into the toxicity of NEOs and their metabolites is warranted, as current
exposure assessments predominantly rely on short-term urinary biomarkers.

NEOs are recognized for their neurotoxic properties, specifically targeting the nicotinic acetylcholine
receptor (nAChR), which plays a pivotal role in neural signaling>***. nAChRs are also present on immune
cells, thereby potentially influencing immune responses'****.. Emerging evidence suggests that chronic
exposure to NEOs may disrupt neurodevelopmental processes, particularly in children, leading to potential
cognitive and behavioral deficits”****". For instance, a study by Wang et al. reported a significant association
between prenatal NEO exposure and delayed cognitive development in 2-year-old children®. These
findings indicate the critical need for long-term studies to assess the neurodevelopmental impacts of NEO
exposure across different life stages.
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The immune-toxicological effects of NEOs are a significant concern, as they may perturb the immune
system’s normal functions, increasing the risk of infections and diseases"™. Recent research has shown that
exposure to NEOs can lead to immune dysregulation, characterized by altered cytokine profiles and
increased susceptibility to infections*”. For example, Walderdorff et al. demonstrated that imidacloprid at
higher concentrations significantly reduced phagocytic activity in lipopolysaccharide-activated human
macrophages after 24 h of exposure!”. These findings indicate the importance of incorporating
immunotoxicity endpoints in future epidemiological studies.

The hepatotoxic and nephrotoxic potential of NEOs implies possible damage to the liver and kidneys, with
serious health implications, such as compromised detoxification and excretory processes'“**. Studies have
reported elevated levels of liver enzymes and kidney function markers in individuals chronically exposed to
NEOs, indicating potential organ damage**”. Godbole et al. found that detectable levels of neonicotinoid
metabolites in urine were associated with decreased liver enzyme levels and hepatic steatosis index (HSI) in
U.S. adults, suggesting potential hepatotoxic effects"”. These findings highlight the need for comprehensive
assessments of liver and kidney function in populations exposed to NEOs.

Reproductive toxicity associated with NEOs suggests the possibility of hormonal disruption and
interference with reproductive processes, which could lead to fertility problems'**’. Prenatal exposure to
NEOs may be linked to adverse birth outcomes, including congenital heart disease and low birth
weight”?*?. A prospective cohort study by Pan et al. reported a higher incidence of congenital anomalies in
neonates born to mothers with high NEO exposure during pregnancy"”. Thus, further research on the
reproductive and developmental impacts of NEOs is needed, particularly in vulnerable populations such as
pregnant women and children.

The environmental persistence and human biomonitoring of NEOs and their metabolites underscore the
imperative for a thorough comprehension of their toxicokinetics and health impacts. Since metabolites are
detected at higher levels than parent compounds in human matrices, such as urine”, metabolites should be
considered in risk assessments. Metabolites may exhibit distinct toxicokinetic profiles and health effects
compared to their parent compounds, thereby complicating the evaluation of health risks associated with

NEO exposure.

The complexity of health risks posed by NEOs is exacerbated by their potential for environmental
bioaccumulation and biomagnification within the food chain, resulting in chronic, low-dose human
exposure. Such exposure can precipitate latent health effects, which may manifest with serious long-term
consequences. Consequently, long-term epidemiological studies should be undertaken to elucidate the
potential health outcomes associated with NEO exposure and devise strategies for risk mitigation.

RISK ASSESSMENT METHODOLOGIES

NEO risk assessment involves evaluating exposure levels and comparing them with established reference
doses. The relative potency factor (RPF) method is widely used to estimate the daily intake (EDI) of NEOs,
which is then compared with the chronic reference dose to assess potential health risks"'!. This approach
enables the comparative assessment of the relative toxicity of various NEOs, taking into account the potency
of each compound. However, since current risk assessments are predominantly focused on short-term
exposure scenarios, long-term monitoring utilizing biomaterials such as hair and nails is needed””. These
biomaterials provide a more comprehensive perspective on exposure chronology, as they can sequester
substances over extended periods, thereby reflecting chronic exposure patterns.
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Comprehensive, large-scale epidemiological studies are imperative for elucidating the potential health
outcomes associated with NEO exposure. Such studies are pivotal for establishing robust correlations
between exposure levels and health effects while accounting for diverse factors, including demographics,

16,17,31,32,53,54

geographical location, and lifestyle habits"" |. The Nemerow Index method, a comprehensive
approach for quantifying the overall NEO pollution levels in the soil of urban park green spaces, has been
employed to assess the cumulative exposure risks across different populations”*”. This method provides a
comprehensive assessment of the risks associated with NEO exposure by integrating the effects of multiple

pollutants.

FUTURE PERSPECTIVES

The pervasive presence of NEOs in the environment and their detection in human matrices underscore the
imperative for a comprehensive risk assessment framework that encompasses both acute and chronic
exposure routes. The current exposure assessments for NEOs are often based on short-term biomonitoring
data, which may significantly underestimate the true extent of human exposure. A study by Song et al.
reported that NEO metabolites were detected in human urine samples at higher frequencies and
concentrations than their parent compounds, suggesting that reliance on short-term urinalysis alone may
miss a substantial portion of chronic exposure”. Specifically, the study found that the concentration of NEO
metabolites in urine samples varied significantly across different regions and demographic groups. Future
research should focus on expanding our understanding of the long-term health effects, developing more
sensitive detection methods, and establishing international standards for safe exposure levels. Moreover,
large-scale epidemiological studies are urgently needed to elucidate potential health outcomes associated
with NEO exposure and inform evidence-based policy decisions that balance agricultural requirements with
environmental health.

In the context of long-term health effects, a full lifecycle study approach is essential for elucidating the
chronic impacts of NEOs on human health®. This approach involves examining exposure from prenatal
stages through adulthood and assessing the developmental, reproductive, and carcinogenic effects of NEOs
over time. Such studies would provide invaluable insight into the cumulative and delayed effects of these
insecticides on human health, which are currently poorly understood.

The integration of organoid technology into NEO research represents a promising avenue for advancing
our understanding of the mechanisms by which NEOs exert their toxic effects’™**. Organoids, which are
three-dimensional cell cultures that mimic the structure and function of human organs"”**, offer a cutting-
edge tool for studying the direct effects of NEOs on human tissues. These models can simulate specific
organ responses to NEO exposure, providing a platform for the high-throughput screening of potential
adverse effects and for testing the efficacy of mitigation strategies.

The development of more sensitive detection methods is crucial for accurately quantifying NEO levels in
various environmental and biological samples. Advances in analytical chemistry, such as mass spectrometry
and biosensors, can enhance the sensitivity and specificity of NEO detection, thereby enabling the
monitoring of even trace amounts of these insecticides in complex matrices.

Establishing international standards for safe exposure levels requires a concerted global effort. Collaborative
research programs among countries can harmonize risk assessment methodologies and establish exposure
limits based on the best available scientific evidence. This would facilitate the development of harmonized
regulations that protect public health while accounting for the diverse agricultural practices and
environmental conditions across different regions.
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In summary, assessing the risks posed by neonicotinoids (NEOs) requires a multidisciplinary approach
combining toxicology, epidemiology, and environmental science, given their ubiquitous presence and
potential health impacts. To effectively evaluate population exposure and associated risks, future research
should prioritize: (1) longitudinal health studies; (2) implementation of organoid models; (3) development
of advanced detection methods; and (4) establishment of global exposure guidelines to protect both human
health and the environment.
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