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Abstract
Aim: While cardiometabolic disorders and metabolic dysfunction-associated steatotic liver disease (MASLD) 
frequently coexist, the genetic connections and causes are not clearly understood. This study aimed to explore 
their shared genetic architecture to elucidate the mechanisms driving their comorbidity.

Methods: Using summary statistics from genome-wide association studies (GWASs) on MASLD and 29 
cardiometabolic traits (CMTs), we assessed their genetic correlation and causality, and identified shared genetic 
loci, genes, pathways, cell types, and tissues. Additionally, shared biological mechanisms were uncovered using 
single-cell RNA sequencing data.
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Results: Significant genetic correlations were detected between MASLD and 17 CMTs, encompassing 
cardiometabolic diseases, glucose, lipids, adiposity, and inflammatory markers, after adjusting for multiple testing (
p.adjust < 0.05). Cross-trait analysis yielded a total of 166 shared risk SNPs (including those located in or near 
TRIB1, LPL, PNPLA3, GCKR, and PPARG). Subsequent colocalization highlighted 73 genetic loci associated with both 
MASLD and CMTs, with rs429358 (APOE) consistently prioritized in HyPrColoc. Common genes were identified 
(such as NPC1, MST1R, TMBIM1, IRAK1BP1, L3MBTL3, RBM6, and RGS19), with significant enrichment in cholesterol 
metabolism, glucose metabolism, immune inflammation, and long-term depression. Shared tissue-specific 
heritability enrichment was identified in the liver, adipose, artery, adrenal gland, and brain tissue. Moreover, shared 
enrichment was observed in specific cell types (epicardial adipocytes, erythroid progenitor cells, hepatocytes, glial 
cells, macrophages, monocytes, and myeloid cells). The expressions of APOE and LPL, which showed colocalization 
between MASLD and CMTs, were significantly altered in the macrophages of patients with MASLD compared to 
those of controls. Causality and potential medications were also explored.

Conclusion: Multiple biological pathways contribute to the comorbidity between MASLD and cardiometabolic 
disorders, with lipid metabolism emerging as a critical factor. This study provides valuable insight into the possible 
mechanisms underlying their comorbidity and offers potential directions for future therapeutic innovations.

Keywords: Metabolic dysfunction-associated steatotic liver disease, cardiometabolic disease, cholesterol 
metabolism, macrophage, nonalcoholic fatty liver disease, obesity, shared genetic architecture, single-cell RNA 
sequencing

HIGHLIGHTS
· A large-scale study combines advanced genetic epidemiology methods with single-cell transcriptomics. 
· Significant genetic correlations exist between MASLD and 17 CMTs. 
· A total of 166 genomic risk loci and 73 shared causal variants for MASLD with these CMTs. 
· Cholesterol metabolism, glucose metabolism, immune inflammation, and long-term depression are 
intricately co-enriched within the liver-heart axis. 
· Genetic evidence supports drug repurposing candidates for MASLD and its comorbidities.

INTRODUCTION
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the leading cause of cirrhosis and 
hepatocellular carcinoma worldwide[1], characterized by hepatic steatosis accompanied by at least one 
cardiometabolic risk factor. MASLD affects over 25% of the global population[2], with cardiometabolic 
disease being the most common cause of death among these patients[3]. MASLD has been introduced to 
replace previous terms, including nonalcoholic fatty liver disease (NAFLD) and metabolic dysfunction-
associated fatty liver disease (MAFLD), to better reflect evolving diagnostic criteria for fatty liver disease 
with metabolic underpinnings[4].

In recent years, the liver-heart axis theory has garnered increasing attention[5,6], with a growing body of 
evidence indicating that cardiometabolic traits (CMTs) serve as independent risk factors for MASLD, while 
the reverse relationship is also observed[7-10]. For example, individuals diagnosed with MASLD exhibited a 
higher incidence of cardiovascular-related deaths compared to controls, as evidenced by the US National 
Health and Nutrition Examination Survey[11]. Conversely, among adults with one or more of these 
cardiometabolic diseases, the prevalence of MASLD rises steeply to over 60%-75%[12,13]. A prospective cohort 
study further reveals that individuals with liver cirrhosis experience a substantial burden of heart disease, 
detected on magnetic resonance imaging (MRI), characterized by myocardial inflammation, fibrosis, and 
impaired systolic function[14]. Moreover, a recent study reported that a genetically modified mouse model of 
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lean NAFLD reveals sexual dimorphism in the liver-heart axis[15]. Despite these advancing insights, however, 
and with emerging evidence increasingly suggesting the role of genetic factors in mediating these 
associations, the precise mechanisms driving this bidirectional detrimental interplay remain inadequately 
understood[16].

The recent decade’s advancements in genetics, particularly through genome-wide association studies 
(GWASs), which analyze several hundred thousand to over a million single nucleotide polymorphisms 
(SNPs) in thousands of individuals, have provided new opportunities to evaluate a potential shared genetic 
foundation for MASLD and CMTs, prompting us to conduct this study[17-20]. While recognized MASLD 
variants have enhanced our understanding of the disease’s etiology[21], they explain only 10%-20% of its 
heritable factors[22], underscoring the urgency for more comprehensive genetic investigations. Advances in 
GWAS have also yielded in-depth variant profiles for multiple CMTs, significantly deepening our 
understanding of these conditions[23]. The substantial heritability and polygenic nature of both MASLD and 
CMTs suggest a shared genetic foundation, which could pave the way for more precise diagnoses and safer, 
targeted treatments for each condition, both independently and when they co-occur.

CMTs were characterized as a multifaceted array of traits intricately associated with cardiometabolic health. 
We examined a total of 17 metabolic traits (comprising four glucose traits, three blood pressure traits, five 
lipid traits, three adiposity traits, and two inflammatory markers), along with three metabolic disorders and 
nine cardiometabolic disorders, all of which are closely linked to both MASLD and cardiometabolic 
disorders. Herein, we leveraged well-powered GWAS data to examine genetic correlations and potential 
causality between MASLD and CMTs. Following this, we performed genome-wide cross-trait analysis to 
identify potential risk loci and elucidate the underlying common genetic foundations. A comprehensive 
post-GWAS analysis was conducted to reveal common genetic variants, enriched pathways, relevant cell 
types, and tissues. Notably, we investigated genomic regions showing evidence of locus-level correlations by 
estimating colocalization among various traits using the novel hypothesis prioritization for multi-trait 
colocalization (HyPrColoc) methodology to ascertain whether co-causal variants exist in these regions[4]. 
Additionally, we explored the variability of shared pathways across different cell types in MASLD patients at 
the single-cell level. Lastly, we utilized drug-gene databases to pinpoint several cardiometabolic medications 
with high potential for treating MASLD alongside comorbidities. A systematic flow of the study design can 
be found in Figure 1.

METHODS
GWASs summary data
We collected GWAS summary data about MASLD, along with 12 cardiometabolic diseases, 15 metabolic 
traits, and two inflammatory markers. These traits manifest across various conditions, including liver fat 
accumulation, excess weight, diabetes, metabolic irregularities, and immune responses. The largest GWAS 
dataset for MASLD to date was derived from a meta-analysis of four cohorts with electronic health record-
documented MASLD, comprising 8,434 cases with hepatic steatosis, MASH (metabolic dysfunction 
associated steatohepatitis), or liver fibrosis, and 770,180 controls[24]. Most cardiometabolic diseases were 
analyzed in over 10,000 case samples, while metabolic traits and inflammatory markers were assessed in at 
least 100,000 individuals. While European ancestry predominated, a few studies incorporated diverse 
ancestral groups. These datasets exhibit cutting-edge potential for identifying genetic susceptibility to 
MASLD and CMTs by analyzing common SNPs. Utilizing these datasets, we created analysis frameworks to 
shed light on the genetic similarities between MASLD and CMTs, focusing on shared SNPs, genes, 
pathways, tissues, and various cell types. Supplementary Table 1 provides a comprehensive overview of the 
features associated with each dataset included in the study.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202504/mtod40129-SupplementaryMaterials.zip
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Figure 1. Schematic overview of study design. (A) Overview of traits and data sources. This panel details the trait categories, 
abbreviations, and sample sizes for MASLD and 17 metabolic traits (comprising four glucose traits, three blood pressure traits, five lipid 
traits, three adiposity traits, and two inflammatory markers), three metabolic disorders, and nine cardiometabolic disorders, based on 
GWAS results utilized in the genetic pleiotropy analysis; (B) Study workflow. This panel outlines the analytical framework, including the 
following modules: computation of genome-wide genetic correlations, inference of causality using bidirectional MR, identification of 
shared causal variants, genes, and pathways, detection of tissues and cell types most affected by shared genetic signals, single-cell 
transcriptome analysis, and prioritization of therapeutic drugs targeting MASLD complications. MASLD: Metabolic dysfunction-
associated steatotic liver disease; GWASs: genome-wide association studies; CMTs: cardiometabolic traits; LDSC: linkage 
disequilibrium score regression; MR: Mendelian Randomization; LCV: Latent Causal Variable; MTAG: multi-trait analysis of GWAS; 
CPASSOC: cross-phenotype association test; TWAS: transcriptome-wide association study; SMR: summary-data-based Mendelian 
Randomization; GCTA-fastBAT: a fast set-based association analysis; MAGMA: Multi-marker Analysis of GenoMic Annotation; TSEA: 
tissue-specific expression analysis; CSEA: cell type-specific enrichment analysis; KEGG: Kyoto Encyclopedia of Genes and Genomes; 
GO: gene ontology; BP: biological process; WP: WikiPathways. This figure was made with Figdraw (https://www.figdraw.com/).

Genetic correlation analysis
We evaluate the global genetic correlations between MASLD and CMTs using linkage disequilibrium score 

https://www.figdraw.com/
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regression (LDSC)[25]. Adhering to the LDSC methodology, we accessed pre-calculated LD scores derived 
from the European reference panel of the 1,000 Genomes Project Phase 3, limiting our analysis to haplotype 
map 3 (HapMap3) SNPs to lessen the bias introduced by low imputation quality. The genetic correlation (rg)
varies from -1 to 1, where -1 signifies a perfect negative correlation and 1 denotes a perfect positive
correlation. The Benjamini-Hochberg method was employed to calculate the false discovery rate (FDR) for
multiple testing (FDR < 0.05).

Mendelian randomization analysis
Next, we assessed the bidirectional causal relationship between MASLD and CMTs using the Mendelian
Randomization (MR) analysis method. Inverse-variance weighting (IVW) was adopted as our principal
methodology[26]. To enhance the IVW analysis, we implemented MR-Egger[27], simple mode, weighted
median[28], weighted mode, and MR-APSS[29] strategies to scrutinize the strength and coherence of the
results. For IVW, MR-Egger, simple mode, weighted median, and weighted mode, we applied a genome-
wide significance threshold of P = 5 × 10-8 and an F-statistic above 10, while using the default P = 5 × 10-5

threshold for MR-APSS in instrument selection. Independent SNPs were selected using LD clumping (r² <
0.001 within 1,000 kb) with PLINK v3[30], focusing on the 1,000 Genomes Project Phase 3 (European).
Furthermore, we referred to the GWAS Catalog (https://www.ebi.ac.uk/gwas/) to filter out SNPs connected
to the outcome and its risk factors such as smoking behavior and alcohol consumption. Cochran’s Q-test
assessed heterogeneity, and the MR-Egger intercept was used to evaluate horizontal pleiotropy. The MR
analyses were conducted using the TwoSampleMR[31] and MRAPSS[29] R packages. To alleviate the impact of
multiple testing, we employed a Benjamini-Hochberg correction (FDR < 0.05). To mitigate potential bias
due to overlapping samples, GWAS data for both exposure and outcome were obtained from distinct
cohorts.

Genetic causality proportion
Genetic correlations might impact bidirectional causality, causing false associations. To tackle this concern,
the Latent Causal Variable (LCV) method was utilized to estimate the genetic causality proportion (GCP)
and verify the MR results[32]. GCP quantifies the ratio of the possible causal influence to the genetic
correlation, where both positive and negative values signify the direction of the causal effect. The statistical
significance of GCP was indicated by P < 0.05.

Cross-trait meta-analysis
To detect pleiotropic loci in MASLD and CMTs, we conducted two cross-trait meta-analyses, including a
multi-trait analysis of GWAS (MTAG)[33] and a cross-phenotype association test (CPASSOC)[34]. Drawing
on a strong genetic correlation between two traits, MTAG carries out a meta-analysis of diverse traits,
contingent upon the premise that all variants display identical genetic correlation across all traits involved.
Despite the possibility of overlapping samples in GWAS summary statistics for different characteristics,
MTAG yields effective results. To explore the assumptions on equal variance-covariance, we calculated the
maximum false discovery rate (maxFDR).

CPASSOC conducts a sensitivity analysis by integrating association evidence from the GWAS summary
statistics of multiple traits, provided that the variant is correlated with at least one trait. CPASSOC offers
two statistical tests, SHom and SHet. Although SHom is strongest with uniform genetic effect sizes, this
assumption is often breached in meta-analyses of multiple traits. SHet, an extension of SHom, preserves
statistical power even with heterogeneity. Hence, we applied the SHet estimate to infer heterogeneous
effects across different traits. To derive independent SNPs, we utilized the PLINK clumping function with
parameters: --clump-p1 5e-8, --clump-p2 1e-5, --clump-r2 0.2, and --clump-kb 500. Significant shared
SNPs were defined as loci that achieved genome-wide significance in both MTAG and CPASSOC (P < 5 ×

https://www.ebi.ac.uk/gwas/
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10-8) and suggestive significance for each trait GWAS (P < 1 × 10-3). ANNOVAR[35] annotated variants 
identified by MTAG and CPASSOC.

Colocalization analysis
We performed a colocalization analysis using Coloc[36] to determine if the same variants account for two 
GWAS signals or if they are distinct variants in proximity to one another. For each of the 166 shared SNPs 
between MASLD and CMTs, variants within 500 kb of the index SNP were extracted, and the probability of 
a shared causative variant for the two traits was computed (PP.H4, the posterior probability for H4). If 
PP.H4 was more than 0.7, the locus was regarded as colocalized. With the Bayesian method HyPrColoc[4], 
which efficiently manages the colocalization of multiple traits, we determined the posterior probability of 
various traits sharing the same SNP. Colocalization results were visualized using the GENI plots R package 
(https://github.com/jrs95/geni.plots).

Gene-based association analysis
In most cases, SNP mutations do not yield effective genetic information. Hence, besides annotating genes 
using ANNOVAR, we also used transcriptome-wide association study (TWAS)-fusion[37], Summary-data-
based Mendelian Randomization (SMR)[38], GCTA-fastBAT[39], and Multimarker Analysis of GenoMic 
Annotation (MAGMA)[40] to discover genes shared by MASLD-CMTs trait pairs. All four gene-level 
analyses utilized the entire GWAS summary statistics from MTAG in the meta-analysis as input files. The 
gene-based analysis incorporated the European ancestry panel derived from the 1,000 Genomes Project 
(Phase 3). In addition, we employed the Benjamini-Hochberg method for adjusting P-values across multiple 
tests in each technique. FDR < 0.01 was used to determine statistical significance.

To explore the associations between MASLD and CMTs regarding gene expression in specific tissues, we 
conducted a TWAS using FUSION[37], integrating GWAS summary data with expression weights across 49 
tissues[41]. Furthermore, to strengthen the efficacy of the TWAS, we conducted a sparse canonical correlation 
analysis (sCCA)-TWAS[42] utilizing cross-tissue reference panels. Single-tissue TWAS and sCCA-TWAS 
were combined using an aggregate Cauchy association test (ACAT).

SMR[38] utilizes GWAS summary data alongside expression quantitative trait loci (eQTL) study data to 
identify genes whose expression levels are associated with intricate traits through pleiotropy. SMR employs 
the HEIDI tests to separate causality from the linkage. Using cis-eQTL summary data, we executed SMR 
with Genotype-Tissue Expression project (GTEx) V8 for whole blood and nine relevant tissues, including 
adipose subcutaneous, artery aorta, artery coronary, artery tibial, heart atrial appendage, heart left ventricle, 
kidney cortex, liver, and lung. Genes with an FDR < 0.01 and a PHEIDI > 0.01 were marked as significant.

GCTA-fastBAT[39], a fast set-based association analysis, examines human complex traits by utilizing 
summary data from GWAS and LD data from a reference sample with individual genotypes. The gene-trait 
associations were analyzed only for SNPs located within the gene.

MAGMA[40] applies a multiple regression framework to appropriately account for LD between markers and 
recognize multi-marker effects. Power can be significantly increased through gene-based association by 
collecting signals across variants in target regions when multiple causal variants affect the phenotype. 
MAGMA was run using default parameters, annotating variants to 20,259 protein-coding genes from the 
Ensembl v110 release.

https://github.com/jrs95/geni.plots
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Pathway enrichment analysis
To investigate the biological pathways of these shared genes within the liver-heart axis, we performed a 
pathway enrichment analysis that drew from the Gene Ontology (GO), Kyoto Encyclopedia of Genes and 
Genomes (KEGG), and WikiPathways (WP) databases, applying the clusterProfiler[43] R package. With a 
Benjamini-Hochberg correction, pathways were identified as significant (FDR < 0.05).

Tissue-specific expression analysis
Tissue-specific expression analysis (TSEA)[44] was conducted to determine if genes shared by MASLD-CMTs 
trait pairs are highly expressed in tissues related to the disease. The GTEx provided publicly available 
expression data for the tissue enrichment of genes found in the four gene-based analyses. The GTEx project 
involves 1,839 samples from 189 deceased individuals, covering 45 different tissues, and some tissues have 
multiple “sub-tissue” types. The Benjamini-Hochberg correction was employed to compensate for multiple 
comparisons (FDR < 0.05).

Cell-type-specific enrichment analysis
To analyze the cell-type enrichment of genes shared by MASLD-CMTs trait pairs, we employed the Web-
based Cell-type Specific Enrichment Analysis of Genes (WebCSEA)[45]. Employing the decoding tissue-
specificity (deTS) algorithm, WebCSEA compiled 111 single-cell RNA-seq (scRNA-seq) panels of human 
tissues and 1,355 tissue-cell types (TCs) from 61 overall tissues across 11 human organ structures. Fisher’s 
exact test was used to assess if the genes common with each phenotype pair were overrepresented among 
the cell type-specific genes.

Single-cell RNA sequencing analysis
MASH denotes an advanced stage of MASLD marked by hepatocyte damage, inflammation, and hepatic 
fibrosis. Access to the scRNA-seq data for MASH was gained through the GSE129516[46] dataset in the Gene 
Expression Omnibus (GEO) database, comprising samples from the Chow and MASH groups. After 
filtering out doublets and poor-quality cells, 33,168 cells with expression of more than 500 genes were 
utilized for further analysis. We employed the Seurat[47] R package (version 4.3.0) to perform normalization, 
integration, dimensional reduction, and clustering, enabling us to distinguish various subsets. Batch effects 
were mitigated using the top 20 PCA components with the harmony[48] R package (version 1.2.1). All 
clustered cells were visualized and analyzed using the t-distributed Stochastic Neighbor Embedding (t-SNE) 
algorithm. Cell type annotation was performed utilizing the SingleR[49] R package, which enables the 
comparison of gene expressions across several cell types with single-cell gene expressions. To calculate the 
activity score of the shared pathways at the cellular level, the AUcell[50] algorithm was applied, with the 
results visualized through t-SNE plots and boxplots.

Cardiometabolic medications for MASLD
By designating the genes recognized by all four gene-based analyses as disease genes for each MASLD-
CMTs trait pair, we discovered a total of 356 disease genes. ClusterProfiler[43] was applied to explore shared 
genes and ascertain the pathological pathways enriched for each MASLD trait pair, aiming to identify drugs 
that best correspond with the genes. Next, we conducted two stages to identify potential medications for 
examination: (1) We searched three extensive drug-gene databases, DGIdb[51], DrugCentral[52], and 
PharmGKB[53], for pharmaceuticals that target any of the 356 candidate genes; (2) The compounds approved 
by the US Food and Drug Administration (FDA) were restricted to those already utilized in standard 
clinical practices for treating cardiometabolic diseases, resulting in approximately 48 drugs.



Page 8 of Wang et al. Metab Target Organ Damage. 2025;5:23 https://dx.doi.org/10.20517/mtod.2024.12926

Statistical analysis
The primary environment for our statistical analysis was Linux, where we used R, Python, and Plink. The 
ggraph R package was employed to visualize the shared SNPs in a circular dendrogram. In addition, the 
Benjamini-Hochberg method was employed to get the FDR for adjusting P-values in multiple tests. The 
Wilcoxon test was applied to estimate statistical significance in comparisons between two groups.

RESULTS
Genetic correlation
Positive correlations between MASLD and 17 CMTs were found by LDSC after adjusting for multiple
testing [Figure 2A]. Adiposity emerged as the trait most strongly correlated, with the waist-to-hip ratio
(WHR, rg = 0.88, P = 3.8 × 10-6) being the highest, followed by body mass index (BMI) and WHR adjusted
for BMI (WHRadjBMI, rg > 0.5, P < 2.5 × 10-5). Regarding cardiometabolic disease, type 2 diabetes (T2D, rg =
0.87, P = 1.2 × 10-5) was the most pertinent, with others including myocardial infarction (MI), hypertension
(HyperT), coronary artery disease (CAD), heart failure (HF), peripheral artery disease (PAD), venous
thromboembolism (VTE), atrial fibrillation (AF), and abdominal aortic aneurysm (AAA, rg > 0.25, P < 0.03).
Additionally, among the lipid and glucose metrics, triglycerides (TG), fasting insulin (FI), and non-HDL
cholesterol (nonHDLC) were significantly connected to MASLD in a descending sequence (rg > 0.3, P <
0.02). Only diastolic blood pressure (DBP) among the blood pressures exhibited a minor genetic correlation
with MASLD, which did not survive after adjusting multiple tests (rg = 0.17, P = 0.039, Figure 2A).

Causal association
Bidirectional MR was conducted to investigate the possible causal effects and to evaluate if the genetic
commonality between MASLD and CMTs corresponds with pleiotropy [Figure 2B]. As expected, adiposity
traits demonstrated the strongest causal relationships with MASLD, including BMI (OR = 1.64, P = 3 × 10-27), 
WHR (OR = 1.78, P = 6 × 10-20), and WHRadjBMI (OR = 1.47, P = 2 × 10-10). Notably, T2D demonstrated a 
bidirectional causal relationship with MASLD, with T2D increasing MASLD risk (OR = 1.19, P = 5 × 10-6) 
and MASLD elevating T2D risk (OR = 1.24, P = 0.005). MR-APSS further validated the causal link 
between BMI, WHR, WHRadjBMI, and T2D with MASLD. Additionally, HyperT (OR = 1.11, P = 8 × 
10-4) and TG (OR = 1.45, P = 4 × 10-10) showed positive causal links with MASLD. Conversely, 
MASLD was found to causally influence DBP (OR = 1.61, P = 0.002) and FI (OR = 1.03, P = 5 × 10-7). 
No notable horizontal pleiotropy was found using MR Egger, and heterogeneity was absent.

Considering genetic correlation and potential sample overlap in MR analysis, LCV was used to assess GCP
values for MASLD trait pairs with significant MR outcomes [Table 1]. Four trait pairs showed statistical
significance and demonstrated a strong causal link (|GCP| ≥ 50%, P ≤ 3 × 10-3). For the MASLD-DBP pair,
LCV estimates were consistent with the directional findings from the MR analysis. In contrast, the LCV
estimates for the other three obesity traits (BMI, WHR, and WHRadjBMI) associated with MASLD
diverged from the directions observed in the MR analysis. This inconsistency suggests a complex
bidirectional interplay between obesity and MASLD, potentially indicative of a deleterious feedback loop
warranting further exploration.

Cross-trait loci and causal variants
Using MTAG and CPASSOC for cross-trait meta-analysis, we discovered 166 SNPs common to the 17
MASLD-CMTs trait pairs [Supplementary Table 2]. In total, MASLD shares the highest number of SNPs
with nonHDLC (N = 28) and TG (N = 26) and then with adiposity traits, which have about 13 to 21 SNPs in
common [Figure 3A]. Then, coloc was employed to colocalize these SNPs across traits and identify shared
causal variants. This analysis revealed 73 causal variants associated with both traits within the liver-heart

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202504/mtod40129-SupplementaryMaterials.zip
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Table 1. Partial causality evaluation employing the Latent Causal Variable framework

Trait1 Trait2 GCP SE P

MASLD DBP 0.83 0.12 4 × 10-41

MASLD BMI 0.50 0.41 9 × 10-5

MASLD WHR 0.76 0.21 2 × 10-4

MASLD WHRadjBMI 0.68 0.22 3 × 10-3

MASLD: Metabolic dysfunction-associated steatotic liver disease; GCP: genetic causal proportion; SE: standard error; P: P-value; DBP: diastolic 
blood pressure; BMI: body mass index; WHR: waist-to-hip ratio; WHRadjBMI: WHR adjusted for BMI.

Figure 2. Genetic correlation and causal relationship between MASLD and CMTs. (A) The genetic correlation (rg) derived from LDSC 
was displayed on this heatmap, using colors to show the correlation’s strength, *P < 0.05; **FDR < 0.05; (B) Causal relationships were 
inferred using two-sample MR employing five distinct methods. MR-APSS validated causalities and labeled them using the purple font. 
Dots illustrate the OR, and the color bars represent the 95% confidence intervals. MASLD: Metabolic dysfunction-associated steatotic 
liver disease; CMTs: cardiometabolic traits; LDSC: linkage disequilibrium score regression; FDR: false discovery rate; MR: Mendelian 
Randomization; OR: odds ratios; rg: genetic correlation.

axis [Supplementary Table 3]. HyPrColoc identified five causal variants shared across multiple traits 
[Figure 3B and Supplementary Table 4]. APOE was prioritized as the causal gene at this locus based on a 
cluster of colocalizing phenotypes, including MASLD, T2D, WHR, and WHRadjBMI, with rs429358 
emerging as the most probable (PP = 99.9% for a shared signal across traits) underlying causal variant 
[Figure 3C]. Notably, rs58542926 (TM6SF2) showed strong multi-trait colocalization between MASLD and 
six traits (T2D, nonHDLC, TG, WHRadjBMI, CRP, and GlycA), while rs112875651 (TRIB1) similarly 
demonstrated colocalization between MASLD and eight traits (CAD, MI, nonHDLC, TG, BMI, WHR, 
WHRadjBMI, and GlycA), all of which are linked to lipid metabolism, obesity, and inflammation within the 
liver-heart axis.

We found that shared SNPs within the liver-heart axis, whether causal or not, were concentrated near genes 
involved in lipid and glucose metabolism, particularly cholesterol metabolism [Supplementary Table 5]. For 
instance, TRIB1 was the nearest gene to nine SNPs that were common between MASLD and ten additional 
traits, where rs112875651 and rs2980885 were shared across three trait pairs, and two trait pairs shared 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202504/mtod40129-SupplementaryMaterials.zip
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202504/mtod40129-SupplementaryMaterials.zip
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202504/mtod40129-SupplementaryMaterials.zip


Page 10 of Wang et al. Metab Target Organ Damage. 2025;5:23 https://dx.doi.org/10.20517/mtod.2024.12926

Figure 3. The general overview of the pleiotropic links between MASLD and CMTs. (A) Count of shared SNPs between MASLD and 
CMTs using MTAG and CPASSOC; (B) HyPrColoc identified five causal variants that are common across multiple traits; (C) LocusZoom 
visualizations of rs429358 causal variant for MASLD and three CMTs, including T2D, WHR, and WHRadjBMI. The X-axis displays the 
chromosomal locations of SNPs, and the Y-axis represents the negative base 10 logarithm of P-values [-log10(p)] from two-sided 
statistical analyses. MASLD: Metabolic dysfunction-associated steatotic liver disease; CMTs: cardiometabolic traits; T2D: type 2 
diabetes; WHR: waist-to-hip ratio; WHRadjBMI: WHR adjusted for BMI; MTAG: multi-trait analysis of GWAS; CPASSOC: cross-
phenotype association test; SNPs: single nucleotide polymorphisms; BMI: body mass index; VTE: venous thromboembolism; TG: 
triglyceride; nonHDLC: non-HDL cholesterol; MI: myocardial infarction; HyperT: hypertension; CAD: coronary artery disease; HF: heart 
failure; PAD: peripheral artery disease; AF: atrial fibrillation; FI: fasting insulin; AAA: abdominal aortic aneurysm; DBP: diastolic blood 
pressure.

rs2980854. LPL was related to six common SNPs across nine trait pairs, with rs15285 being a causal SNP for 
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two trait pairs. Likewise, FTO was linked to six SNPs common to eight trait pairs., including rs17817964, 
which was causal for three pairs of traits. Interestingly, SUGP1, identified as a novel regulator of cholesterol 
metabolism, and PNPLA3, recognized as a triglyceride lipase, were each associated with three SNPs and 
linked to seven and eight trait pairs, respectively. In addition, rs1260326 and rs62131879 on GCKR were 
discovered to be associated with glucose regulation and related to MASLD with HyperT, CRP, GlycA, and 
nonHDLC. PPARG was crucial in lipid metabolism and inflammatory responses, and it was associated with 
two SNPs prevalent in three trait combinations: MASLD with WHR, WHRadjBMI, and TG. Finally, 
multiple shared causal SNPs were located near the genes APOE, TM6SF2, CYP7A1, COBLL1, and TRIB1, all 
involved in lipid regulation and associated with MASLD and its complications.

Although the genetic correlation between DBP and MASLD was modest, MR and LCV analyses revealed 
that MASLD may contribute to changes in DBP, suggesting that impaired MASLD-induced DBP influences 
the liver-heart axis. To further investigate this relationship, we utilized MTAG and CPASSOC to identify 
and validate shared genetic loci between MASLD and DBP, thereby uncovering potential therapeutic 
targets, including CACNB2, PELI1, TRIB1, PNPLA3, PLCE1, and COBLL1.

Gene-based association analysis
Determining gene associations for GWAS variants solely based on proximity is a simplistic approach that 
overlooks the role of pleiotropy. We opted for four different methods, including TWAS-fusion, SMR, 
GCTA-fastBAT, and MAGMA, to identify shared genes within the liver-heart axis [Figure 4A]. eQTL are 
employed by the first two methods, whereas the last two focus on proximity for conducting gene burden 
tests. A total of 356 disease genes were defined using all four methods [Supplementary Table 6], and 38 of 
these were linked to at least three MASLD-CMTs trait pairs [Figure 4B]. Remarkably, the genes NPC1, 
MST1R, TMBIM1, IRAK1BP1, L3MBTL3, RBM6, and RGS19 were found to be shared across five or more 
pairs of traits associated with MASLD-CMTs. Such a wide distribution indicates crucial roles in liver-heart 
axis interactions and metabolic regulation. Notably, NPC1, MST1R, and TMBIM1 are significantly 
associated with lipid metabolism, whereas IRAK1BP1 and L3MBTL3 are connected to inflammatory 
responses. Moreover, RBM6 and RGS19 may play significant roles in advancing hepatocellular carcinoma.

Biological pathways and mechanisms
Through the exploration of biological pathways with genes sourced from four diverse methodological 
techniques, we identified substantial enrichment in lipid and glucose metabolism, endocrine disorders, and 
immune inflammation, grounded in etiological mechanisms within the liver-heart axis [Figure 4C]. Among 
lipid metabolism pathways, cholesterol metabolism stood out as the most significantly enriched, with 
subsequent pathways including bile secretion, lipid and atherosclerosis, sphingolipid signaling, and steroid 
hormone biosynthesis. This underscores the potentially critical role of lipid metabolism abnormalities in 
mediating the liver-heart axis, which may contribute to severe systemic comorbidities. Interestingly, insulin 
resistance, glucagon signaling pathway, and maturity-onset diabetes of the young were also significantly 
enriched, indicating that glucose metabolic abnormalities might play a role in MASLD comorbidities like 
T2D. Cellular senescence played a crucial role in various cellular processes and was significantly implicated 
in the pathological progression of MASLD and cardiometabolic disorders, particularly associated with 
endoplasmic reticulum (ER) stress. Malignant tumors, particularly pancreatic and hepatocellular carcinoma, 
were also notably enriched, underscoring the potential of the liver-heart axis to lead to serious 
complications that impose substantial socio-medical burdens, warranting further investigation and 
validation. Given the central role of metabolic abnormalities in the comorbidity of MASLD and CMTs, we 
conducted a WP enrichment analysis on the shared targets of each trait pair. In alignment with prior 
findings, nearly all trait pairs of shared genes exhibited significant lipid metabolism enrichment, explicitly 
cholesterol metabolism among conditions such as MASLD with HF, CAD, AAA, TG, nonHDLC, and CRP 
[Supplementary Figure 1].
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Figure 4. The shared genes and pathways for MASLD and CMTs. (A) Using TWAS, SMR, GCTA-fastBAT, and MAGMA, the number of 
genes for each MASLD-CMTs trait pair was identified. Distinct colors are allocated to each method, with the number of identified genes 
clearly labeled on each level. To correct for multiple testing, the FDR adjustment was applied; (B) Genes are presented with all four 
gene-centric analysis methods identified and shared by at least three MASLD-CMTs trait pairs. The bottom of the figure shows the trait 
pairs, while the left side displays the genes. The purple color signifies the presence of genes. FDR correction was utilized to correct for 
multiple tests in each analysis; (C) Biological mechanisms categorize the KEGG pathway enrichment of genes shared by MASLD and 
CMTs. Pathways with FDR < 0.05 in the hypergeometric test were all included. MASLD: Metabolic dysfunction-associated steatotic liver 
disease; CMTs: cardiometabolic traits; FDR: false discovery rate; TWAS: transcriptome-wide association study; SMR: Summary-data-
based Mendelian Randomization; AAA: abdominal aortic aneurysm; WHRadjBMI: WHR adjusted for BMI; WHR: waist-to-hip ratio; BMI: 
body mass index; T2D: type 2 diabetes; VTE: venous thromboembolism; TG: triglyceride; nonHDLC: non-HDL cholesterol; MI: 
myocardial infarction; HyperT: hypertension; CAD: coronary artery disease; HF: heart failure; PAD: peripheral artery disease; AF: atrial 
fibrillation; FI: fasting insulin.
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A comorbidity network for MASLD-CMTs was constructed by compiling the common SNPs and genes, 
emphasizing the shared variants and genes for each characteristic combination [Figure 5].

Shared genes specific to tissue and cell types
TSEA and CSEA were performed to clarify the influence of shared genes on MASLD-CMTs trait pairs on 
various tissues and cell types. By integrating these two methodologies, our findings indicate a significant 
enrichment of liver, adipose, artery, adrenal gland, and brain tissue [Figure 6A], alongside epicardial 
adipocytes, erythroid progenitor cells, hepatocytes, glial cells, macrophages, monocytes, and myeloid cells 
[Figure 6B], across numerous MASLD-CMTs trait pairs. Interestingly, brain tissue was enriched only for 
MASLD and adipose traits, while macrophages and hepatocytes were more linked explicitly to MASLD and 
lipids. These outcomes generally align with shared genes and biological pathways, consistently focusing on 
the hepatic-cardiac axis and lipid metabolism.

Single-cell RNA sequencing data analysis
To investigate the cellular mechanisms underlying the co-occurrence of MASLD and CMTs, we carried out 
a single-cell transcriptomic analysis on liver specimens obtained from Chow and MASH groups. Following 
quality control, 33,168 cells were identified, with 17,788 from the Chow and 15,380 from the MASH, 
categorized into eight cell types, including hepatocytes, macrophages, monocytes, fibroblasts, endothelial 
cells, B cells, T cells, and NK cells [Figure 7A]. The MASH exhibited an increased relative abundance of 
hepatocytes, macrophages, and monocytes compared to the control, indicating potential involvement of 
these cell types in the pathogenesis of inflammation and fibrosis associated with MASLD.

Next, we explored the cellular heterogeneity of the shared pathways in patients with MASLD. In MASH, 
hepatocytes and macrophages were significantly enriched with cholesterol metabolism, glycolysis/
gluconeogenesis, PPAR signaling pathway, and long-term depression, which might play a role [Figure 7B 
and C]. Notably, cholesterol metabolism was significantly enriched in macrophages, exhibiting the highest 
AUcell score in MASH compared to the Chow [Figure 7D and E]. Glycolysis/Gluconeogenesis was 
markedly elevated in the MASH, with hepatocytes, macrophages, and monocytes being the primary 
contributors in comparison to the Chow [Figure 7F]. We also observed that the genes APOE and LPL, 
which colocalize with multiple traits within the liver-heart axis, were highly enriched in macrophages and 
had higher expression levels in the MASH compared to Chow [Figure 7G and H].

Drugs for MASLD with comorbid conditions
A total of 356 disease genes associated with MASLD and different CMTs were identified. Given the frequent 
coexistence of these disorders, we utilized these genes to identify pharmacological treatments for MASLD 
with associated comorbidities. In short, we analyzed the pathological pathways for each trait pair through 
their mutual genes, and mapped the pharmacological pathways for each prospective drug based on the 
genes they target, as recorded in large-scale drug-gene databases, e.g., DGIdb, DrugCentral, and 
PharmGKB. Candidate drugs were chiefly obtained by screening cardiometabolic compounds that target the 
356 disease genes. Collectively, 48 candidate drugs that target 15 genes in 5 functional categories were 
examined, namely antihypertensive (26 drugs), anticoagulant (6 drugs), glucose-lowering (5 drugs), lipid-
lowering (3 drugs), and other cardiovascular drugs (8 drugs). These drugs have largely been sanctioned for 
the treatment of a range of cardiometabolic diseases [Figure 8 and Supplementary Table 7]. Since lipid 
metabolism plays a vital role in the liver-heart axis, we employed a minimum of three gene-level techniques 
to find more lipid-lowering drugs, leading to the identification of 10 medications [Supplementary Table 8].
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Figure 5. Circular dendrograms display common loci for MASLD and CMTs. Within the inner circle, independent variants shared among 
MASLD-CMTs trait pairs are shown, with 73 shared causal variants highlighted by asterisks [posterior probability of H4 (PP.H4) > 0.7]. 
Annovar-inferred genes for the shared variants are depicted in the outer circle. Genes are color-coded to signify their overlap with the 
four gene recognition methodologies: TWAS, SMR, GCTA-fastBAT, and MAGMA. Gray denotes genes not identified by any approach; 
black indicates those identified by at least one method, and red represents genes identified by all four methods. MASLD: Metabolic 
dysfunction-associated steatotic liver disease; CMTs: cardiometabolic traits; TWAS: transcriptome-wide association study; SMR: 
Summary-data-based Mendelian Randomization; AAA: abdominal aortic aneurysm; WHRadjBMI: WHR adjusted for BMI; WHR: waist-
to-hip ratio; BMI: body mass index; T2D: type 2 diabetes; VTE: venous thromboembolism; TG: triglyceride; nonHDLC: non-HDL 
cholesterol; MI: myocardial infarction; HyperT: hypertension; CAD: coronary artery disease; HF: heart failure; PAD: peripheral artery 
disease; AF: atrial fibrillation; FI: fasting insulin.

DISCUSSION
Our multi-omics dissection of the liver-heart axis reveals compartment-specific metabolic crosstalk, with 
hepatic cholesterol dysregulation emerging as a central driver of cardiometabolic comorbidity. A total of 
166 loci were discovered to be shared, with the majority linked to cholesterol metabolism, glycolysis, and 
immune inflammation. We delved deeper into the shared genetic basis, examining potential genes, 
pathways, tissues, and cell types associated with these trait pairs. Interestingly, scRNA-seq analysis revealed 
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Figure 6. Tissue and cell type specificity derived from the shared signals linking MASLD and CMTs. (A) Tissue enrichment for the
shared genes between MASLD and CMTs, as identified by GTEx; (B) Cell type-specific enrichment for the shared genes between
MASLD and CMTs, derived from CATLAS or expression of cell type-specific genes in 111 single-cell transcriptomes. MASLD: 
Metabolic dysfunction-associated steatotic liver disease; CMTs: cardiometabolic traits; GTEx: Genotype-Tissue Expression 
project; AAA: abdominal aortic aneurysm; WHRadjBMI: WHR adjusted for BMI; WHR: waist-to-hip ratio; BMI: body mass index; T2D: 
type 2 diabetes; VTE: venous thromboembolism; TG: triglyceride; nonHDLC: non-HDL cholesterol.

a significant upregulation of cholesterol-related genes, particularly APOE and LPL, in macrophages from 
MASH patients. These genes demonstrated strong colocalization across multiple trait pairs within the liver-
heart axis, highlighting potential mechanisms underlying comorbidities and identifying promising drug 
targets. Our findings provide new insights into MASLD-CMTs comorbidity and could improve the 
prediction, diagnosis, and treatment of these conditions.

The liver-heart axis emerges as a bidirectional metabolic amplifier wherein adiposity-driven lipid 
dysregulation orchestrates multiorgan crosstalk. Consistent with findings from conventional 
epidemiological studies, we found significant genetic correlations between MASLD and 17 CMTs. For 
example, we provided strong genetic evidence linking MASLD with adiposity traits, including BMI, WHR, 
and WHRadjBMI, and MR evidence indicates that those who are obese should be warned about the risk of 
MASLD. Studies on bariatric surgery revealed that MASLD was present in 85% to 95% of severely obese 
individuals[54]. Overweight and obese MASLD patients should aim to lose between 7% and 10% of their body 
weight to significantly reduce liver fat and delay vascular and metabolic complications[55]. We also found a 
shared genetic mechanism between MASLD and T2D, with MR evidence pointing to a mutual causal 
relationship. According to a meta-analysis, MASLD frequently co-occurs with T2D, affecting approximately 
50% of patients[56]. In alignment with prior research, our findings corroborated the significant genetic 
correlations between MASLD and various cardiometabolic conditions, including MI[57], HyperT[58], CAD[59], 
HF[60], PAD[61], VTE[62], AF[63], and AAA[64]. Among nondiabetic patients, the FI levels were significantly 
higher in patients with MASLD[65,66], suggesting that these levels have diagnostic potential, consistent with 
our LDSC and MR results. Finally, among all blood pressure traits, only DBP and MASLD showed genetic 
correlation and causality, indicating that blood pressure abnormalities, particularly DBP, may have potential 
value for diagnosing MASLD[67-69]. This genetic relationship is further supported by clinical evidence, as a 
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Figure 7. Single-cell RNA sequencing analysis uncovers the shared pathways in MASLD with concurrent conditions. (A) t-SNE and the 
relative percentage of hepatocytes, macrophages, monocytes, fibroblasts, endothelial cells, B cells, T cells, and NK cells; (B) AUcell 
scores for the diversity of KEGG pathways across various cell types in MASH; (C) AUcell scores for the diversity of GO pathways across 
various cell types in MASH; (D) Cholesterol metabolism scores on t-SNE compare Chow (left) and MASH (right), highlighting 
significant enrichment in macrophages; (E) The cholesterol metabolism score of macrophages in MASH was most significant compared 
to Chow by the Wilcoxon rank sum test; (F) Glycolysis/gluconeogenesis was significantly increased in MASH, especially in hepatocytes, 
macrophages, and monocytes, compared to Chow, as shown by the Wilcoxon rank sum test; (G) APOE expression was significantly 
higher in MASH than in Chow, especially in macrophages, as demonstrated by the Wilcoxon rank sum test; (H) LPL expression was 
significantly higher in MASH than in Chow, especially in macrophages, as shown by the Wilcoxon rank sum test. MASLD: Metabolic 
dysfunction-associated steatotic liver disease; CMTs: cardiometabolic traits; t-SNE: t-distributed Stochastic Neighbor Embedding; GO: 
gene ontology; MASH; metabolic dysfunction associated steatohepatitis.
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Figure 8. Sankey diagram visualizing the relationships between trait pairs, genes, drugs, and classifications concerning MASLD and 
cardiometabolic comorbidities. MASLD: Metabolic dysfunction-associated steatotic liver disease; nonHDLC: non-HDL cholesterol; TG: 
triglyceride; AAA: abdominal aortic aneurysm; WHRadjBMI: WHR adjusted for BMI; WHR: waist-to-hip ratio; BMI: body mass index; 
T2D: type 2 diabetes.

prospective study found that the risk of incident HyperT increases with the severity of MASLD[70]. 
Consequently, population-scale longitudinal cohorts with integrated multi-omics platforms are needed for 
future research to elucidate the dynamic interplay between glycemic variability, blood pressure changes, and 
MASLD.
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A collection of genetic risk loci linking hepatic steatosis to cardiometabolic outcomes in the liver-heart axis 
was identified, with some appearing in multiple phenotype pairs, such as SNPs located in or near TRIB1, 
LPL, PNPLA3, GCKR, and PPARG. Of them, TRIB1, specifically rs17321515, was associated with higher 
serum lipid levels, which could contribute to the development and progression of MASLD and CAD[71-74]. 
Reinforcing this finding, our study found that TRIB1 exhibited significant multi-trait colocalization in the 
liver-heart axis, encompassing MASLD, CAD, MI, nonHDLC, TG, BMI, WHR, WHRadjBMI, and GlycA, 
thereby emphasizing its pivotal role in linking the liver-heart axis through its potential regulation of lipid 
metabolism. LPL, an enzyme crucial for lipid metabolism, has been implicated in cardiovascular health[75]. 
Early studies in mice lacking cardiac LPL showed that, as they aged, they developed a high incidence of AF, 
did not respond well to increased afterload, and had over a 50% reduction in HDL-C[76]. 
Understanding LPL’s role in MASLD might assist in formulating targeted therapies to address dyslipidemia 
and decrease cardiovascular risk. PNPLA3, primarily found in the liver and adipose tissue, was crucial for 
lipid metabolism[77]. In experimental studies, PNPLA3 148M led to hepatic steatosis, inflammation, and 
fibrosis[78]. Conversely, the reduction in PNPLA3 resulted in a rise in LDL-C and TC, thus increasing the 
risks of CAD and MI[79]. Addressing PNPLA3 as a therapeutic target for the treatment of MASLD 
necessitates a thorough evaluation of its dual function in hepatic and cardiac metabolism, along with careful 
consideration of the potential metabolic risks to cardiac health. Notably, the GCKR rs1260326 genetic 
variant played a role in impaired liver lipid and glucose metabolism, fostering the onset of metabolic 
disorders such as MASLD and T2D[80-83]. Modulating GCKR could help mitigate the onset and progression 
of MASLD and cardiometabolic comorbidities by optimizing glucose and lipid metabolism, akin to the 
effects observed with pioglitazone[84]. As a subtype of the PPAR family, PPARG was crucial in regulating 
lipid metabolism, insulin sensitivity, and inflammation[85,86]. Moreover, our results suggest a causal 
relationship between MASLD and impaired DBP (as we observed for variants in CACNB2[87], PELI1[88], 
TRIB1[71], PNPLA3[77], PLCE1[89,90], and COBLL1[91]), which is potentially associated with cardiovascular 
function, inflammation, and lipid metabolism, thereby highlighting the interaction along the liver-heart 
axis. Our findings’ reliability was enhanced due to the consistent significance of SNPs identified by MTAG 
in the CPASSOC analysis. Nevertheless, future studies on genetically modified mice (e.g., knock-in/knock-
out models) are critical to understanding the role of specific genes and variants, offering new insights into 
the biological mechanisms of the liver-heart axis.

Lipid metabolism, particularly cholesterol homeostasis, constitutes the molecular linchpin connecting 
hepatic steatosis and cardiometabolic dysfunction in the liver-heart axis pathophysiological framework. 
Numerous studies, such as cross-sectional analyses, systematic reviews, and genetic evidence, have shown 
that MASLD increases the likelihood of developing atherosclerosis and forming unstable plaques, thereby 
elevating cardiometabolic risk[92-95]. In this study, pathways related to lipid and atherosclerosis, alongside 
cholesterol metabolism, were significantly enriched, supporting earlier evidence. Across almost all trait 
pairs, lipid metabolic pathways revealed substantial enrichment, underscoring their central role in MASLD 
and cardiometabolic comorbidities. Recent research in immunometabolism has demonstrated that changes 
in the metabolic profile of macrophages, particularly cholesterol metabolism, significantly affect their 
activation state and functionality, consequently impacting the pathological processes associated with 
MASLD and cardiometabolic comorbidities[96-98]. Interestingly, our study noted a significant increase in 
macrophages within the MASH, showing a heightened expression of cholesterol metabolism pathways 
compared to the Chow, as indicated by scRNA-seq analysis. Prior studies have shown that alterations in 
hepatic lipid metabolism contribute to dyslipidemia and an elevation in low-density lipoprotein levels, 
subsequently facilitating foam cell formation and atherogenesis[99,100]. Simultaneously, modifications in liver 
lipid metabolism were also observed in a mouse model exhibiting hypertrophic cardiomyopathy[101]. Hence, 
cholesterol metabolism, as a crucial component of lipid metabolism, could be central to the hepatic-cardiac 
axis, contributing to the comorbidity within the liver-heart axis.
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APOE and LPL exemplify hepatic-derived genetic amplifiers of cardiometabolic risk, their macrophage-
specific dysregulation in MASLD unveiling novel therapeutic targets that modulate the liver-heart axis. Of 
particular interest is rs429358, located within APOE[102], which shows evidence of multi-trait colocalization 
among MASLD, T2D, WHR, and WHRadjBMI, all implicated in the liver-heart axis. Prior research has 
shown that increased levels of APOE can alter the metabolism of very low-density lipoproteins (VLDL), 
potentially heightening the risk of atherosclerosis[103]. Building on this, we also identified that APOE was 
significantly enriched and upregulated in macrophages in MASH compared to Chow, suggesting a potential 
impact on cardiometabolic disease in MASLD patients. Similarly, LPL, a gene associated with lipid 
metabolism and significantly colocalized with multiple trait pairs in the liver-heart axis, such as MASLD 
with AAA, CAD, and T2D, was markedly upregulated in macrophages during MASH progression. 
Consequently, lipid-based therapies in the liver-heart axis could be further explored and combined with 
existing treatments for synergistic clinical benefits.

Beyond lipid-related pathways, other shared pathways between MASLD and CMTs were biologically 
plausible. Among these was glucose metabolism, involving insulin resistance and the glucagon signaling 
pathway. MASLD can exacerbate hepatic and systemic insulin resistance and elevate hyperglycemia, 
subsequently raising the risk of cardiometabolic disease by facilitating monocyte/macrophage adhesion to 
the endothelium, promoting vascular smooth muscle cell proliferation and causing endothelial 
dysfunction[104-106]. Our scRNA-seq analysis showed a notable increase in glycolysis/gluconeogenesis in 
various cells in MASH compared to Chow, including hepatocytes, macrophages, and monocytes. The PPAR 
signaling pathway, also identified in our study, was involved in glucose and lipid metabolism across various 
organs[107-109] and impacted macrophage polarization[110,111], thereby influencing the liver-heart axis 
microenvironment. Lastly, ER stress, which could trigger cellular senescence[112], has a notable effect on the 
impairment of insulin signaling[113], which was linked to the development of diabetes and the progression of 
MASLD to MASH[114,115]. Overall, multiple mechanisms interacting synergistically resulted in MASLD and 
cardiometabolic comorbidities.

Our multi-omics dissection uncovers macrophage-driven neuroimmunometabolic crosstalk in the cardio-
cerebral-hepatic axis, where long-term depression pathway dysregulation underlies the metabo-psychiatric 
comorbidities observed in MASLD progression. Specifically, our findings showed that when brain tissues, 
especially the amygdala, a crucial center for socioemotional and cognitive functions[116], exhibited a 
significant association with MASLD and obesity traits, the long-term depression pathway was significantly 
enriched in macrophages during MASH. Prior investigations have shown that depression was more 
prevalent among patients suffering from MASLD and cardiometabolic disorders[117-120]. MASLD is linked to 
diminished cognitive function and influences different kinds of memory[121], where the metabolic 
disruptions reflect a mismatch between lipid-clearing and lipid-increasing mechanisms. This imbalance 
might be attributed to the shared risk factors, including obesity, dyslipidemia, and immune response in 
cardio-cerebral-hepatic axis diseases[122-124], collectively underscoring the need for further study through 
extensive clinical trials and animal research. Based on these findings, we recommend that clinicians monitor 
the emotional well-being of patients with MASLD and concurrent cardiometabolic disorders, with 
psychotherapy explored as an adjunct to pharmacological treatments.

A single treatment is unlikely to reverse liver fibrosis or enhance the cardiometabolic microenvironment 
across all patients. Moving forward, personalized therapies and drug combinations are expected to gain 
preference. Numerous medications, such as antihypertensive, anticoagulant, glucose-lowering, lipid-
lowering, and other cardiovascular drugs, have shown potential in treating MASLD and its comorbidities. 
Most drug candidates identified in our study are already in use for cardiometabolic conditions, with some, 
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such as metformin[125,126] and pioglitazone[127,128], undergoing clinical trials for repurposing to target MASLD. 
However, the efficacy of these pharmacological interventions for such comorbidities remains inconclusive. 
Further clinical research is essential to evaluate their therapeutic effectiveness. Thus, they ought to be 
employed judiciously in clinical decision making. In parallel, combating MASLD and its associated 
cardiometabolic risks should prioritize promoting healthy lifestyles, improving nutritional literacy, and 
encouraging smoking cessation[129].

Our study’s primary strengths lie in integrating triangulated evidence from GWAS and scRNA-seq 
techniques to uncover the common genetic foundation and biological mechanisms of MASLD and CMTs. 
To ensure high statistical power, we included a substantial number of GWAS with sample sizes ranging 
from 115,078 to 1,996,991 individuals and enhanced this power through sensitivity analyses. Additionally, 
investigating a wide variety of CMTs enabled a comprehensive examination of the shared mechanisms 
between different cardiometabolic comorbidities and MASLD. To minimize the risk of type I statistical 
errors, we applied strict FDR correction and integrated frequentist approaches with multi-trait 
colocalization, thereby enhancing our confidence in the results.

Several limitations need to be acknowledged. Since the GWAS data were derived mainly from European 
ancestry, the generalizability of our conclusions is limited. Future studies should include a broader range of 
ancestries. According to previous research, hepatic steatosis and cardiovascular disease might be related 
differently across genders[130]. Employing sex-specific GWAS data could thus prove beneficial for future 
research by elucidating these differences. While MASLD accounts for most fatty liver disease cases, 
replicating our study in metabolic and alcohol-associated/accompanying liver disease (MetALD)[131] could 
enhance our understanding of cardiometabolic risks across different liver disease subtypes, thereby aiding 
precise diagnosis and personalized treatment. Finally, this study gathered scRNA-seq data from samples 
related to MASH and Chow. However, it did not include sequencing data on the coexistence of MASH with 
cardiometabolic disorders, which restricted the analysis of potential interactions in the hepatic-cardiac axis. 
Incorporating additional RNA sequencing data on various MASLD and cardiometabolic comorbidities 
could provide even deeper insights into these interactions.

This study provides a multifaceted understanding of the association between MASLD and CMTs, offering a 
comprehensive and reliable map of liver-heart axis interactions. Our findings confirm and expand upon 
prior knowledge. While providing robust genetic evidence for the relationship between MASLD and CMTs, 
we further explored their underlying mechanisms of association, specifically identifying shared variants, 
genes, pathways, cell types, and tissues. The link between MASLD and cardiometabolic disorders involves 
multiple biological pathways and is likely influenced significantly by lipid regulation. These distinctive 
insights underscore the critical role of the liver-heart axis and suggest potential implications for clinical 
practice, indicating the need for more tailored therapeutic strategies that prioritize cardiometabolic 
disorders in patients with MASLD. These patients represent a high-risk population, including those with 
conditions such as obesity, diabetes, and HyperT.
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