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Abstract
Carbon-based adsorbents, such as graphene, graphene oxide (GO), activated carbon/biochar (AC/BC), carbon 
nanotubes (CNTs), metal-modified carbon, and fly ash, are garnering increasing attention due to their exceptional 
structural properties, enabling their potential effectiveness in removing microplastics and nano-plastics 
(MPs/NPs) from aqueous solutions. A key attribute contributing to the efficacy of these carbon adsorbents in 
addressing MPs/NPs is their flexibly tunable surface properties. To advance the applicability of functionalized 
carbon adsorbents in the context of MPs/NPs removal, it is necessary to highlight their interactions with MPs/NPs 
in aqueous environments. The review commences by outlining the main adsorption mechanisms. Subsequently, the 
adsorption behavior of different types of MPs/NPs on carbon-based adsorbents is analyzed and how different 
factors influence their adsorption performance is examined. Finally, the review concludes by offering insights into 
prospective avenues for future research concerning functional carbon adsorbents for MPs/NPs removal.
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INTRODUCTION
Plastics, which exhibit remarkable malleability, versatility, cost-efficiency, durability, exceptional oxygen 
resistance, and lightweight, have gained extensive usage[1]. In the year 2020, global plastic production 
reached a staggering 367 million tons[2], and an anticipated increase of 29% is projected for the year 2028[3]. 
When subjected to environmental conditions, plastics gradually degrade into minute fragments due to 
factors such as weathering, mechanical wear, solar radiation, and microbial activities[4,5]. These particles are 
categorized according to their size, shape, density, and the type of polymer from which they are made. Alimi 
et al.[6], Ding et al.[7], Jahnke et al.[8], Lang et al.[9], and Wright and Kelly[10] mentioned that the classification 
of plastics based on size ranges from macro-plastics (larger than 25 mm), meso-plastics (5-25 mm), 
microplastics (MPs) (100 nm - 5 mm), to nano-plastics (NPs) (smaller than 100 nm) [Figure 1A-D][11]. MPs 
are commonly identified as particles between 1 µm and 5 mm, whereas NPs are defined as particles smaller 
than 0.1 µm[12,13]. These newly recognized entities are now identified as emerging hazardous contaminants 
for their unique physical and chemical properties, intrinsic stability, and high resistance to 
biodegradation[14-18]. They are ubiquitously present across diverse landscapes, encompassing sewage systems, 
wastewater treatment plants (WWTPs), sediment layers, oceans, groundwater reserves, estuaries[19], 
drinking water sources[6], the atmosphere[20], soil[21], food supplies[22], and even the human body’s 
bloodstream[10,20].

Aquatic organisms, including mammals, birds, fish, zooplankton, and mollusks, are susceptible to 
mistakenly ingesting MPs/NPs[23]. MPs/NPs can be made from a variety of plastic materials, including 
polypropylene (PP), polyvinyl chloride (PVC), polyester (PES), polycarbonate (PC), high-density 
polyethylene (HDPE), low-density polyethylene (LDPE), polystyrene (PS), polyurethane (PU), and 
polyethylene terephthalate (PET), among others[24-26]. These particles, characterized by their aptitude for 
adsorbing harmful compounds, serve as carriers for toxic elements such as antibiotics, pharmaceuticals, 
heavy metals, pesticides, plasticizers, and pathogens[27-29]. Facilitated by their high surface area, reduced 
dimensions, and pronounced hydrophobic properties[20], these interactions significantly impact the 
availability, fate, and amplification of these pollutants within ecosystems. Furthermore, the small scale of 
MPs and NPs renders them prone to being ingested as sustenance by aquatic species, potentially propelling 
their movement up the food chain and posing a consequential toxicological threat across the entire 
ecological spectrum[30-32]. Hence, the expeditious removal of MPs and NPs emerges as a pressing priority to 
safeguard the integrity of aquatic environments.

A diverse array of treatment technologies, encompassing adsorption[33], coagulation[34], advanced oxidation 
processes[35], photocatalysis[36], bioremediation[37], and filtration[38], has been devised to combat the presence 
of MPs and NPs in polluted waters. Among these methodologies, adsorption stands out as a cost-effective, 
straightforward, dependable, and efficacious approach for capturing both MPs and NPs from water sources 
and sewage systems[15]. Conventional adsorbents encompass a spectrum of materials such as low-cost 
substances, carbonaceous materials, and modified materials[39]. These versatile adsorbents offer an extensive 
range of choices and sources, rendering them adaptable to local conditions across diverse countries and 
regions[40-42]. Significantly, the key attributes of adsorption, notably facile operational procedures, renewable 
adsorbents, and minimal toxicity, contribute to its broad potential for MPs/NPs removal in water, thereby 
promising prospects for its wide-scale application[43,44]. Ali et al.[2] and Chen et al.[45,46] have both conducted 
reviews on the latest adsorbents for removing MPs/NPs from polluted water. Their reviews encompass a 
range of emerging adsorbents, including those based on sponge/aerogel, metals, biochar, and other 
innovative materials. They provide a thorough explanation of the characteristics and adsorption 
mechanisms of each adsorbent in relation to MPs/NPs. Notably, carbon-based adsorbents are highlighted as 
particularly promising due to their cost-effectiveness and high adsorption efficiency. However, there is still a 
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lack of detailed information regarding the removal of MPs/NPs by carbon-based adsorbents. Additionally, a 
comprehensive and systematic explanation of the adsorption behaviors and mechanisms specific to each 
type of carbon-based adsorbent is yet to be fully explored.

Carbon-based materials, characterized by carbon as their primary constituent, exist in either powdered or 
bulk non-metallic solid forms. This category includes activated carbon/biochar (AC/BC)[47,48], CNTs[49], 
graphene[46], graphene oxide (GO)[50], metal-modified carbon[51,52], and fly ash[53], among others. AC stands as 
the foremost carbon-based adsorbent employed extensively in wastewater treatment. The versatility of AC 
allows for the preparation of a broad spectrum of adsorbents tailored to diverse environmental applications, 
including the removal of MPs and NPs from aqueous solutions[47]. Given the elevated production costs 
associated with coal-based AC, biochar becomes a cost-effective alternative offering high efficacy in 
MPs/NPs adsorption[51]. Biochar can be derived from an array of woody biomass sources, encompassing 
agricultural waste and byproducts such as peanut hulls and dairy manure[54]. Notably, the utility of biochar 
extends beyond adsorption, encompassing roles such as carbon sequestration, soil fertility enhancement, 
and environmental remediation, thus establishing its multifunctionality in various domains. Graphene, 
constituting a single layer of a 2D hexagonal carbon network, is intricately investigated for its application 
prospects. Meanwhile, GO and reduced GO possess a high specific surface area and abundant surface 
functional groups, rendering it an ideal adsorbent for MPs/NPs removal[50,55,56]. carbon nanotubes (CNTs), 
on the other hand, manifest as cylindrical carbon tubes originating from one or multiple layers of graphene. 
Their well-defined hollow cylindrical structure, extensive surface area, hydrophobic characteristics, and 
amenability to surface modification contribute to their efficacy. Leveraging their exceptional 
physicochemical properties, GO and CNTs exhibit considerable advantages within the sphere of adsorption 
technology, particularly in addressing the removal of MPs/NPs[49].

Although each carbon adsorbent exhibits distinct structural attributes and functionalities, a unifying trait 
present among all carbon adsorbents is their possession of abundant active surface functional groups. These 
groups play a pivotal role in shaping the surface chemical properties of carbon-based materials and 
facilitating the removal of MPs/NPs[57]. The prevailing consensus is that the physical and/or chemical 
interactions occurring between MPs/NPs and the functional groups on adsorbents substantially contribute 
to the adsorption process of these minute pollutants. To align with the requirements of water quality 
criteria, substantial development and refinement efforts have been directed towards diverse carbonaceous 
materials and their derivatives. Consequently, a multitude of modification techniques have emerged to 
enhance the removal of MPs/NPs. These approaches include oxidation, magnetization, functional group 
grafting, and the incorporation of inorganic substances through compositional composites[58].

Figure 1. Morphology of PS MPs/NPs with different diameters at (A) 100 nm; (B) 500 nm; (C) 1 μm; and (D) mixed sample[11]. Copyright 
2023, Elsevier. PS: Polystyrene; MPs: microplastics; NPs: nano-plastics.
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Chemical and physical alterations to the surface of carbon materials can increase the variety and number of 
functional groups, enabling the addition of specific heteroatoms. This important area of research focuses on 
refining carbon materials’ surface chemistry, specifically for the targeted capture of MPs/NPs.

These modifications enhance various characteristics of carbon-based adsorbents, such as pore distribution 
and volume, surface area, as well as increasing the number of functional groups and structural robustness. 
However, a thorough understanding of how the functional groups on the surface of carbon adsorbents 
interact with MPs/NPs is still lacking.

This study aims to thoroughly examine recent developments in carbon adsorbents, focusing on their surface 
functional groups and how these influence the removal and effectiveness against MPs/NPs in water. The 
papers published from 2015 till the present are summarized and reviewed (All of these papers are related to 
the MPs/NPs removal via carbon-based adsorbents). The review has two key goals: (1) To explore and 
clarify the basic processes that control the elimination of MPs/NPs by carbon adsorbents, emphasizing the 
complex interactions between functional groups and MPs/NPs; (2) To investigate the adsorption patterns of 
MPs/NPs on carbon adsorbents, highlighting their significant effects. Furthermore, the review will offer 
forward-looking views on future research into the use of functional groups in carbon adsorbents for the 
removal of plastic pollutants.

MECHANISM OF MPS/NPS ADSORPTION
The interaction between carbon adsorbents’ functional groups and MPs/NPs is intricate, influenced by 
factors such as the carbon surface’s diversity and chemistry, water’s ionic composition, and adsorbate 
characteristics. Adsorbing MPs/NPs onto carbon materials involves various interactions: hydrophobic, 
hydrogen bonding, van der Waals forces, electrostatic attractions, π–π interactions, pore filling, and 
intraparticle diffusion [Figure 2][2,56,59]. The impact of these mechanisms on adsorption varies greatly, 
dependent on the MPs/NPs properties and the adsorbent type.

Chemisorption is important for removing MPs/NPs from water compared to physical adsorption 
interactions such as electrostatic interactions and pore filling. In specific water conditions, multiple 
mechanisms such as electrostatic interactions and surface complexation could simultaneously occur, 
influenced by electrostatic forces, binding site creation, and covalent bonding.

Physical adsorption, a relatively weaker process, involves MPs/NPs migrating into carbon adsorbents’ pores 
and adhering to the carbon surface without forming chemical bonds. This mechanism is significantly 
affected by the surface area and porosity of carbon adsorbents[47,51,60]. An increase in micropores enhances 
surface area, favoring physical adsorption, while more mesopores improve contaminant diffusion, thus 
accelerating adsorption kinetics.

The pore structure of carbon adsorbents plays a crucial role in the physical adsorption process, influenced 
by factors such as the raw materials used and the carbon synthesis method. This includes carbonization/
pyrolysis temperatures for AC/BC[61-63], as well as graphitization for GO and CNTs. The carbon surface’s 
heterogeneity and polarity, along with associated functional groups, also significantly contribute to physical 
adsorption[56,63]. These elements enable the transfer of MPs/NPs to the carbon surface through forces such as 
electrostatic attraction and ion-dipole interactions. Although common, physical adsorption is not typically 
the primary means of adsorbing MPs/NPs. Table 1 lists the recent typical carbon-based adsorbents for MPs/
NPs adsorption[47,49-53,64-68].
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Table 1. The adsorption mechanism of MPs/NPs on carbon-based adsorbents

MPs/NPs Carbon adsorbents Mechanisms Ref.

PS NPs Granular activated carbon Electrostatic attractions; Pore diffusion [47]

PS MPs 3D RGO π–π interaction [50]

PS NPs Biochar Electrostatic attractions [64]

PS NPs Cu–Ni carbon materials Electrostatic attractions [66]

PS MPs Zn-MBC π–π interactions, hydrogen bonding, cooperative effect [52]

PS MPs Mg/Zn-MBC Electrostatic interaction and chemical bonding [51]

Polyethylene microbeads Activated pine and spruce bark 
biochar

Physisorption [67]

PS NPs Iron-modified fly ash Electrostatic attraction, complexation, π–π interactions [53]

PS MPs, COOH-PS MPs, NH2-PS 
MPs

ChGO Electrostatic attraction, hydrogen bonding, π–π interactions [65]

PE, PET, PA Magnetic CNTs Hydrophobic interactions, electrostatic attraction, hydrogen 
bonding, 
π–π interactions, complexation

[49]

PS NPs Corncob raw and oxidized biochar Hydrophobic interaction and hydrogen bonding [68]

MPs: Microplastics; NPs: nano-plastics; PS: polystyrene; 3D RGO: three-dimensional reduced graphene oxide; Zn-MBC: Zn modified magnetic 
biochar; Mg/Zn-MBC: Mg/Zn modified magnetic biochar; ChGO: sponge synthesized with chitin and GO; PE: polyethylene; PET: polyethylene 
terephthalate; PA: polyamide; CNTs: carbon nanotubes.

Figure 2. The main adsorption mechanisms of MNs/NPs by carbon-based adsorbents. NPs: Nano-plastics.

MPs/NPs tend to adhere to carbon-based adsorbents in water due to their hydrophobic nature, mainly 
through hydrophobic interactions. Hydrophobic molecules, which are non-polar, tend to aggregate and 
exclude water molecules in a polar environment due to hydrophobic interactions. The attachment of 
adsorbate molecules to the adsorbent’s surface is not facilitated by strong ionic, hydrogen, or covalent 
bonds, but rather through weaker interactions like van der Waals forces[69]. Many types of MPs/NPs exhibit 
significant hydrophobic characteristics. Similarly, carbon-based adsorbents, which are created at elevated 
temperatures, possess hydrophobic properties, enabling them to engage in potent hydrophobic interactions 
with MPs/NPs. For instance, CNTs are capable of bonding with MPs via either hydrophobic or π–π 
interactions, depending on the hydrophobicity of the MPs. When integrated with magnetic nanoparticles, 
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they form magnetic carbon nanotubes (M-CNTs), which allow for easy separation after absorbing MPs. 
M-CNTs have demonstrated high efficiency in removing MPs such as polyethylene (PE), PET, and 
polyamide (PA). They achieved complete adsorption of all MPs at a concentration of 5 g/L within just 5 h, 
with maximum adsorption capacities for PE, PET, and PA being 1,650, 1,400, and 1,100 mg/g, respectively. 
Remarkably, the adsorption process by M-CNTs remains effective even in the presence of substances like 
chemical oxygen demand, phosphate, and ammonia. M-CNTs also show the capability for thermal 
regeneration, maintaining their magnetic and adsorptive properties close to their original state. They 
retained about 80% efficiency even after four cycles of reuse[49]. In the adsorption process, hydrophobic 
interactions were primarily responsible for the adsorption of PE and PET, while π–π interactions were 
significant in the adsorption of PA and PET. This underscores the versatility and effectiveness of M-CNTs 
in adsorbing and removing various types of MPs from the environment, highlighting their potential as a 
sustainable solution for tackling MP pollution[49].

Iron-modified biochar is a notable example, especially when loaded with nanoparticles. It can be easily 
separated from mixtures using magnetic separation [Figure 3A]. The inclusion of iron species, particularly 
Fe3O4, on the biochar creates active sites for surface complexation with nanoparticles, enhancing its 
adsorption capacity. This Fe-modified biochar is effective in rapidly removing all NPs from water in as little 
as 10 min and maintains its efficiency over four reuse cycles[70].

Similarly, biochar modified with magnesium and zinc leverages positively charged Mg(OH)2 and ZnO to 
enhance the adsorption of PS MPs. This improvement is primarily driven by electrostatic attraction and the 
formation of PS–O–metal bonds. Beyond its adsorptive qualities, Mg/Zn-MBC features catalytically active 
sites that exhibit significant hydrogenation activity. This property is particularly beneficial during the 
thermal treatment of PS MPs, facilitating the degradation of these plastics into smaller molecular 
compounds, as depicted in Figure 3B. This dual functionality not only aids in effectively removing MPs 
from the environment but also in breaking down and potentially repurposing these plastic materials[51].

Ganie et al. discovered that BC, synthesized through pyrolysis at 750 °C, exhibited a positive surface charge 
of 2.85 mV. When this biochar was mixed with PS-based MPs/NPs that carried a negative charge of 
-39.8 mV, the zeta potential of the resulting combination rapidly shifted to -9 mV. This change signals a 
significant electrostatic attraction between the components[64].

ChGO sponges demonstrate a remarkable capacity for reuse, maintaining high adsorption efficiencies even 
after three adsorption-desorption cycles. Specifically, these sponges have shown adsorption capacities of 
89.8% for PS, 88.9% for PS-NH2, and 72.4% for PS-COOH. The adsorption of PS, PS-NH2, and PS-COOH 
onto ChGO sponges is facilitated by a blend of electrostatic interactions, π–π interactions, and hydrogen 
bond interactions. The presence of these varied interaction types is crucial to the sponges’ ability to 
effectively adsorb different derivatives of PS, showcasing their versatility and efficiency as adsorbents in a 
range of applications[65]. Graphite adsorbents can adsorb MPs/NPs via the π–π interactions. Yuan et al. found 
that the exceptional adsorption capacity (617.28 mg/g) of the three-dimensional reduced graphene oxide 
(3D RGO) towards polystyrene PS MPs was due to the strong π–π interactions between the graphite layers 
and the benzene rings in PS[50]. Similarly, Zhou et al. reported that the π–π interaction between the sp2-
hybridized carbon in CuNi@C and the aromatic rings in PS MPs promoted the removal of PS MPs[71].

ADSORPTION BEHAVIOR OF MPS/NPS
Adsorption kinetic models are pivotal in evaluating the efficiency and identifying rate-determining steps in 
the removal of MPs/NPs onto carbon-based adsorbents, helping clarify the mechanisms involved in this 
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process[72]. The adsorption kinetics generally encompass four steps[73]: (1) bulk transport, which typically 
happens quickly; (2) film diffusion, a slower process; (3) intraparticle diffusion, also a slower step; and (4) 
adsorption attachment, which occurs rapidly. The generally used adsorption kinetic models for examining 
MPs/NPs adsorption on carbon-based adsorbents are the pseudo-first-order[74], pseudo-second-order[75], 
intraparticle diffusion, and film diffusion models[76]. The pseudo-first-order and pseudo-second-order 
models are utilized to analyze the entire adsorption process. In contrast, the intraparticle diffusion and 
liquid film diffusion models are particularly useful for delineating the rate-limiting steps within this process. 
If the adsorption mechanism’s complexity is not adequately captured by the pseudo-first-order and pseudo-
second-order models, this can be further elucidated using the intraparticle and liquid film diffusion models, 

Figure 3. (A) Potential adsorption process and adsorption mechanisms of NPs on Fe-modified biochar[70], Copyright 2021, Elsevier; (B) 
Potential adsorption mechanisms of MPs on modified Mg/Zn biochar and the degradation of MP via thermal treatment[51], Copyright 
2021, Elsevier. NPs: Nano-plastics; MPs: microplastics.
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providing a more comprehensive understanding of the adsorption dynamics.

The rate condition inherent in the direct form of both the pseudo-first and pseudo-second request 
templates can be represented as Qe, as detailed in Equations (1) and (2)[77,78].

The qt represents the adsorption capacity at time t, qe denotes the adsorption capacity at equilibrium (mg/g), 
k1 is the constant for the pseudo-first-order reaction, and k2 stands for the pseudo-second-order reaction 
constant.

Extensive research [Table 2] indicates that both pseudo-first-order and pseudo-second-order kinetic models 
are effective in characterizing carbon-based adsorbents’ adsorption behavior. However, their applicability 
depends on the specific properties of each adsorbent. The pseudo-first-order model is typically favored for 
rapid adsorption processes occurring primarily on the adsorbent’s surface, and it is suitable for materials 
where surface interactions are predominant. In contrast, the pseudo-second-order model is better for 
processes where adsorption kinetics are governed by chemical adsorption mechanisms, involving electron 
sharing or transfer. This model fits adsorbents with complex surface chemistries or those engaged in deeper 
adsorption processes. The adsorbent’s inherent properties, such as surface area, pore size, functional groups, 
and chemical structure, are crucial in determining the most suitable model.

Adsorption isotherms are essential for understanding the equilibrium behavior of adsorbents at constant 
temperature, influenced by the nature of the adsorbate, adsorbent, and adsorption solution properties such 
as pH, ionic strength, and temperature[79]. Freundlich and Langmuir isotherm models are helpful in 
discerning the adsorption mechanism, whether linear monolayer coverage or multilayer adsorption[74].

The Freundlich isotherm model, which is used to describe the adsorption characteristics of heterogeneous 
surfaces, can be expressed in both nonlinear and linear forms. The nonlinear form of the Freundlich 
isotherm is given by[80]:

The Freundlich isotherm model is characterized by two coefficients: KF (L/mg), which indicates the 
adsorption capacity, and N, which represents the strength of adsorption. These coefficients demonstrate 
that[78]: 
(1) KF quantifies the maximum amount of adsorbate that can be adsorbed per unit equilibrium 
concentration, reflecting the adsorbent’s capacity to accumulate and retain the adsorbate. 
(2) N and its inverse 1/N measure the adsorption intensity or the bond strength between adsorbate and 
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Table 2. The adsorption capacity of MPs/NPs on carbon-based adsorbents and their corresponding adsorption behavior

Carbon adsorbents Water matrix Adsorption performance Adsorption behavior Ref.

Granular activated carbon Lake water Adsorption capacity 6.33 mg·g-1 Pseudo-second-order; 
Langmuir isotherm

[47]

3D RGO Tap water Adsorption capacity 448.60 mg·g-1 Pseudo-second-order; 
Langmuir isotherm

[50]

Biochar River water Adsorption efficiency 75% Pseudo-first-order; 
Langmuir isotherm

[64]

Cu–Ni carbon materials Synthetic 
wastewater

Adsorption efficiency 99.18% Pseudo-first-order; 
Langmuir isotherm

[71]

Zn-MBC Tap water Adsorption efficiency >92% Pseudo-second-order; 
Langmuir isotherm

[52]

Mg/Zn-MBC Synthetic solution Removal efficiency >94% Pseudo-second-order; 
Langmuir isotherm

[51]

Iron-modified fly ash Freshwater Adsorption capacity 89.9 mg·g-1 Pseudo-first-order; 
Sips model

[53]

ChGO Synthetic 
wastewater

Adsorption efficiency 89.8% Pseudo-second-order; 
Langmuir isotherm

[65]

Magnetic CNTs Synthetic 
wastewater

Adsorption capacity 1,650, 1,400, and 1,000 mg·g-1 for PE, 
PET, and PA, respectively

Pseudo-second-order; 
Freundlich isotherm

[49]

Corncob raw and oxidized 
biochar

Synthetic solution Removal efficiency >90% Pseudo-second-order; 
Langmuir isotherm

[68]

MPs: Microplastics; NPs: nano-plastics; 3D RGO: three-dimensional reduced graphene oxide; Zn-MBC: Zn modified magnetic biochar; Mg/Zn-
MBC: Mg/Zn modified magnetic biochar; ChGO: sponge synthesized with chitin and GO; CNTs: carbon nanotubes; PE: polyethylene; PET: 
polyethylene terephthalate; PA: polyamide.

adsorbent, highlighting the surface’s heterogeneity and the interaction’s strength.

Unlike models predicting a saturation point, the Freundlich isotherm suggests an unlimited adsorption 
capacity, implying the potential for multilayer adsorption. The efficiency of the adsorption process under 
this model can be categorized as follows[81]: 
(1) It is deemed efficient or favorable when 0 < 1/N < 1, indicating a high affinity of the adsorbate for the 
adsorbent. 
(2) It is considered inefficient or unfavorable when 1/N >1, indicating a low affinity. 
(3) The process is seen as irreversible when 1/N = 1, meaning the adsorbate, once adsorbed, remains firmly 
attached to the adsorbent.

The Langmuir model, assuming a uniform adsorbent surface with monolayer adsorption and no interaction 
between adsorbed molecules, is widely used[72]. The nonlinear and linear forms of the Langmuir model are 
as follows:

where qm (mg/g) is the maximum adsorption capacity; KL (L/mg) is the Langmuir isotherm constant.
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Based on Table 2, it is clearly seen that the Langmuir isotherm model is predominantly used for describing 
MPs/NPs adsorption on carbon-based adsorbents, suggesting monolayer adsorption on a homogeneous 
surface without significant interaction between adsorbed molecules.

EFFECT OF INFLUENCING FACTORS ON THE ADSORPTION PERFORMANCE
The elimination of MPs/NPs from water via adsorption is impacted by the characteristics of the adsorbent 
as well as the chemical properties of the water. While earlier discussions were centered on how the structure 
of the adsorbent influences its efficacy, we will now turn our attention to the particular elements that govern 
the adsorption process of MPs/NPs. These elements include pH level, dissolved organic matter (DOM), 
metal ions, and anions.

pH value
In aquatic environments, pH value significantly affects both the adsorbents’ and MPs/NPs’ surface charges, 
playing a key role in their adsorption process. This factor chiefly determines the electrostatic interactions 
between the MPs/NPs and carbon adsorbents and influences how the plastic particles cluster together. 
Research has consistently shown the pH-dependence of the MP/NP adsorption process, noting that a pH 
range slightly towards the acidic to basic side, usually around 4 to 8, is optimal for enhancing the 
electrostatic attraction during adsorption. Nonetheless, it is noteworthy that in instances where dominant 
adsorption mechanisms such as surface complexation are present, the pH’s effect on the efficiency of 
MPs/NPs adsorption may be relatively insignificant.

Metal ions
Metal ions are frequently present in water resources, especially K+, Na+, Mg2+, Ca2+, Fe3+, and Al3+. The impact 
of K+/Na+ ions on MPs/NPs adsorption is usually considered to be minimal[53]. The effect of multivalent 
cations, including those with charges of +2 and +3, on the removal of MPs/NPs has been found to vary 
across different studies. One observed impact is that these high-valence cations can diminish the adsorption 
of MPs/NPs. This reduction in adsorption efficiency is attributed to the strong affinity these cations have for 
the adsorbents, which competes with and potentially hinders the binding of MPs/NPs to the adsorbent 
surfaces[53,82]. Furthermore, certain metal ions, such as Mg2+, Ca2+, and Fe3+, can improve the aggregation of 
MPs/NPs through electrostatic attraction. This aggregation process can restrict the diffusion of MPs/NPs 
into the porous structure of carbon adsorbents, potentially impacting the adsorption effectiveness. However, 
it is important to acknowledge that ions like Ca2+ and Mg2+ ions might also enhance the adsorption 
efficiency. They can create new adsorption sites on the adsorbents through a bridging effect, thereby 
potentially improving the overall removal efficiency of MPs/NPs [Figure 4][47].

Anions
Anions such as Cl-, SO4

2-, CO3
2-, and PO4

3- have an impact on the process of adsorbing MPs/NPs. These 
anions often obstruct the adsorbent-MPs/NPs interactions due to their propensity to bind with the 
adsorbents. Specifically, when using Cu-Ni/carbon materials for MPs/NPs removal, HCO3

- largely alters the 
efficiency. This effect is attributed to the hydrolysis of HCO3

-, which produces OH- ions, subsequently 
raising the pH of the solution. This pH increase leads to stronger electrostatic repulsion between the 
MPs/NPs and the Cu-Ni carbon, affecting the adsorption dynamics. This relationship between different 
anions and the adsorption process is also reflected in the studies conducted by Ganie et al.[64]. On the other 
hand, the efficacy of Zn-BMC in adsorbing PS MPs is negatively affected by the presence of anions, with 
their impact decreasing in the order: NO3

- < SO4
2- < Cl- < HCO3

- < H2PO4
-. It is suggested that the 

particularly strong effect of H2PO4
- ions stems from their higher charge density, leading to more competitive 

adsorption on the surface of the adsorbent. This indicates the complexities involved in the adsorption 
process. Variables such as the concentration of anions, the surface characteristics of MPs/NPs, and the 
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unique features of the adsorbents used contribute to diverse outcomes across different studies. These 
discrepancies underscore the importance of comprehensively understanding the environmental and 
material-specific factors that affect adsorption behavior in each distinct situation[52].

DOM
DOM in water systems is a diverse and complex collection of polyelectrolytes. The way DOM interacts with 
MPs/NPs can affect how MPs adhere to adsorbents, as it changes the surface characteristics of both 
MPs/NPs and the carbon adsorbents. For example, research[64] has demonstrated that humic acid can 
notably hinder the adsorption of PS NPs, causing a marked reduction in their removal efficiency 
(decreasing by 55%-75%). This reduction in adsorption is due to the coating and stabilization of the NPs 
and the adsorbents, such as BC-750, which creates strong electrostatic repulsion and consequently lowers 
the effectiveness of the adsorption process. It is important to mention, however, that even in an 
electrostatically unfavorable environment and in the presence of DOM at concentrations as high as 10 mg/
L, sorption of NPs can still occur. This phenomenon can be explained by the more effective complexation of 
NPs on available adsorption sites, rather than their coverage by DOM[70].

CONCLUSION AND PERSPECTIVES
In this comprehensive review, we delve into the recent advancements in carbon-based adsorbents and their 
role in eliminating MPs/NPs from water. A key focus is understanding the adsorption mechanism between 
these adsorbents and MPs/NPs. We then discuss the various methods of synthesizing these adsorbents and 
analyze their adsorption behaviors. Critical experimental parameters, such as pH value, anions, DOM, and 
metal ions, can impact the performance of carbon adsorbents to a different degree.

The removal of MPs/NPs from wastewater is crucial for reducing the harmful effects of plastics on various 
life forms. Despite some advancements, the field of MP/NP adsorption is still emerging, and current 
research is insufficient for fully resolving this issue. This section outlines challenges and future directions for 
MP/NP adsorption in water systems: 
(1) For adsorbents to be practically viable, their ability to desorb and be reused is vital. Although 

Figure 4. Potential adsorption mechanisms of PS NPs on AC, with the existence of Mg2+ and Ca2+ ions[47].  PS: Polystyrene; NPs: nano-
plastics; AC: activated carbon.



Page 12 of 15 Zheng et al. Water Emerg Contam Nanoplastics 2024;3:11 https://dx.doi.org/10.20517/wecn.2023.74

regeneration of adsorbents through thermal and chemical processes has been studied, more research is 
needed to efficiently desorb MPs/NPs, recycle adsorbents, and restore their adsorption capacity. 
(2) The longevity and ecological implications of adsorbents are crucial factors. The degradation of 
adsorbents might result in metal leakage or nanoparticle emission, leading to secondary contamination. 
Moreover, adsorbents may react with other substances in water to form new pollutants. It is essential to 
evaluate adsorbents’ stability in actual water environments and to develop efficient methods for their post-
use removal. 
(3) Although adsorption is effective for removing MPs/NPs, it can be influenced by water characteristics 
and might require significant time for optimal removal efficiency. Merging adsorption with other 
techniques such as magnetic separation or filtration could improve efficiency and cut costs. Notably, 
combining adsorption with magnetic separation using magnetic adsorbents has shown potential due to its 
high effectiveness and easy separation process. Future research should concentrate on creating such hybrid 
methods for various water environments. 
(4) To enhance understanding of adsorbent-MP/NP interactions and facilitate the development of more 
effective adsorbents, it is necessary to combine the adsorption tests with computational tools. Such methods 
can assist in designing superior adsorbent materials by providing meaningful insights into adsorption 
mechanisms.
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