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Abstract
Sleep is involved in regulating many aspects of the body, including cell function, physical activity, and disease. 
Neurodegenerative diseases are often preceded by sleep disturbance. This disturbance is not just a non-motor 
symptom but also an important risk factor for developing the disease. It is now understood that the glymphatic 
system plays important physiological functions in the human body: maintaining the balance of interstitial fluid and 
clearing waste products from metabolism or death in the brain. Glymphatic system dysfunction contributes to the 
progression of neurodegenerative diseases. Importantly, sleep is involved in regulating the glymphatic system, 
which affects the clearance of pathological proteins in the brain, and may be an important pathway affecting the 
progression of neurodegenerative diseases. Here, we review recent advances in sleep disturbances and the 
glymphatic system in health and Parkinson’s disease, hoping to identify potentially targetable avenues for future 
research and treatment of Parkinson’s disease.
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INTRODUCTION
Parkinson’s disease (PD) has emerged as a prominent neurodegenerative disorder, exhibiting a marked 
increase in prevalence[1]. PD is characterized by the pathological aggregation of α-Synuclein(α-Syn) into 
Lewy bodies and subsequent loss of dopaminergic neurons, resulting in a cascade of motor and non-motor 
symptoms[2]. Motor symptoms include resting tremors, dystonia, bradykinesia, and postural gait 
disturbances[3], while non-motor symptoms such as sleep disturbances, hyperalgesia, hyposmia, cognitive 
deficits, anxiety, depression, constipation, and other autonomic symptoms (including orthostatic 
hypotension, urinary urgency, and erectile dysfunction) significantly decrease patients’ health-related 
quality of life and well-being[4,5]. Among these, sleep disturbances stand out as the most prevalent non-
motor symptom, typically manifesting as insomnia[6], rapid eye movement sleep behavior disorder (RBD)[7], 
excessive daytime sleepiness (EDS), and restless legs syndrome (RLS), affecting over half of PD patients, 
significantly impairing their quality of life, and imposing a substantial economic burden on society[6]. 
Importantly, sleep disturbances can emerge early in the prodromal disease phase and worsen as PD 
progresses, which are not merely regarded as a consequence of PD but also may contribute to disease 
progression[8,9]. Among them, the pathological progress of RBD and PD is the most close. The Oxford 
Discovery Cohort Study[10] found faster progression of motor, mood, and cognitive symptoms in PD 
patients combined with possible RBD (pRBD), confirming a more aggressive PD subtype identifiable at 
baseline. Additionally, numerous basic science studies support a correlation between sleep and 
neurodegenerative disease progression at the pathophysiological level[11], and have revealed a strong 
bidirectional relationship between sleep disruption and increased amyloid-beta (Aβ) deposition, as well as 
higher levels of α-Syn in the brain’s extracellular fluid and cerebrospinal fluid[12-17]. Collectively, these 
findings strongly suggest a close relationship between sleep disturbances and neurodegenerative disease, 
and understanding the impact of sleep disturbance on PD remains an urgent avenue for further 
investigation.

The glymphatic system is regulated by the sleep-wake cycle, facilitating the efficient removal of accumulated 
waste from the brain by allowing the flow of interstitial and cerebrospinal fluid through perivascular 
pathways, with significantly greater efficiency at night than during the day. Aging is a well-established risk 
factor for glymphatic system dysfunction[18,19], which may explain the particular relevance of this system to 
neurodegenerative diseases affecting older populations[20]. Numerous studies have demonstrated the 
involvement of the glymphatic system in the clearance and spread of pathogenic proteins tau[21], amyloid-
β[22-25], and α-Syn[26-28], which provides a new direction for exploring the pathogenesis of neurodegenerative 
diseases characterized by abnormal protein deposition in the brain. PD is known to be primarily caused by 
protein homeostasis imbalance. Under normal physiological conditions, α-Syn is a physiologically benign, 
soluble monomer consisting of 140 amino acids[29]. However, pathological conditions can trigger α-Syn 
oligomerization or polymerization, leading to the formation of cytotoxic aggregates with a β-lamellar 
structure. If the abnormally folded proteins are not efficiently cleared, this can result in the accumulation of 
α-Syn both inside and outside cells, along with the intercellular spread of pathological α-Syn, which 
contributes to dopaminergic neuron death[30,31]. Among these, the extracellular pathological proteins are 
more likely to be cleared through the glymphatic system[25]. Clinical studies have already confirmed damage 
to the glymphatic system in PD[32,33], strongly suggesting that glymphatic system dysfunction may be one of 
the important pathogenic mechanisms of PD.

Interestingly, the glymphatic system, responsible for clearing waste products from the brain, is also 
physiologically regulated by sleep. Fluid transport within this system exhibits a daily rhythm, with enhanced 
activity during sleep and reduced activity during wakefulness[34]. Consistently, several studies have identified 
strong associations between glymphatic dysfunction and sleep disturbances[35], especially in aging 
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individuals and those suffering from age-related neurodegenerative diseases. Furthermore, similar to 
amyloid-β, α-Syn in the brain’s extracellular fluid and cerebrospinal fluid are higher during wakefulness 
compared to sleep[17]. Moreover, α-Syn levels can be further exacerbated by sleep disruption[36]. These 
findings collectively suggest a complex interplay between sleep, the glymphatic system, and 
neurodegeneration[37]. Therefore, this article focuses on the link between sleep disturbances and the 
glymphatic system in neurodegeneration, especially regarding the clearance of pathological proteins, aiming 
to provide new research avenues for the pathogenesis and neuroprotection of PD.

SLEEP AND PARKINSON’S DISEASE
Sleep is a fundamental biological process essential for health, driven by different electrophysiological 
rhythms within the brain[38]. Sleep and wakefulness are two distinct functional states governed by the 
circadian rhythm[39,40]. While wakefulness allows us to perform a variety of physical and cognitive tasks, 
sleep serves critical restorative functions. It replenishes energy and physical strength, enhances immunity, 
promotes growth and development, improves learning and memory abilities, and helps to stabilize 
emotions[41]. With advancing age, sleep patterns exhibit a progressive disruption. In addition, growing 
evidence suggests that sleep disorders may even precede the onset of some neurodegenerative diseases, and 
abnormal sleep patterns can worsen their progression[42], including PD.

Severe sleep disturbances have been documented in PD[11,43], such as insomnia, EDS, RBD, and RLS, which 
can manifest in the early stages of PD. Insomnia, characterized by difficulty falling asleep, staying asleep, or 
early awakening, and generally poor sleep quality, is one of the most common non-motor symptoms in PD 
patients, significantly impacting their quality of life[44,45]. EDS refers to the inability to maintain a state of 
wakefulness and alertness during the day, often leading to unintentionally falling asleep at inappropriate 
times almost daily for at least 3 months. EDS is prevalent in PD patients, affecting approximately 20%-60% 
of individuals[46,47], and can worsen their quality of life and increase their risk of injury[48]. RBD is 
characterized by vivid or unpleasant dreams and intense body movements that may lead to acting out 
dreams and potential injury. Existing research suggests that RBD can be a precursor to neurodegenerative 
diseases characterized by α-Syn deposition, including PD, dementia with Lewy bodies, or multiple system 
atrophy[49,50].

Longitudinal studies indicate that most patients will gradually develop symptoms of PD or cognitive 
impairments over time[51]. A prospective study followed a group of patients with idiopathic RBD; after 
decades, the majority (82%) were ultimately diagnosed with a neurodegenerative disease characterized by 
α-Syn deposition[52]. RLS is a common sensorimotor disorder where patients experience unpleasant 
sensations in their legs at rest, typically relieved by movement. A recent meta-analysis showed a significantly 
higher prevalence of RLS in PD patients compared to healthy controls (2.86 times higher). Treated PD 
patients exhibited a prevalence of 15%, while non-medicated patients showed an 11% prevalence[53]. 
However, another research suggests no causal or genetic link between RLS and PD[54]. Additionally, research 
suggests that sleep disturbances in PD, including more disrupted sleep patterns, reduced slow wave sleep 
(SWS), and rapid eye movement sleep, may contribute to cognitive decline and memory consolidation 
difficulties. A study demonstrated that PD patients taking dopaminergic medications showed improvement 
in working memory after sleep. Notably, the degree of improvement correlated with the amount of SWS[55]. 
In conclusion, strong evidence suggests a close link between sleep disturbances and the development of PD.

Basic scientific research also confirms that PD model mice exhibit sleep disturbances and disrupted 
circadian rhythms[56]. Interfering with sleep or circadian rhythms significantly exacerbates pathological 
protein deposition, excessive neuroinflammation, dopaminergic neuronal loss in the substantia nigra, and 



Page 4 of Wang et al. Ageing Neur Dis 2024;4:6 https://dx.doi.org/10.20517/and.2023.5614

motor impairments in PD model mice[57-59]. However, while circadian rhythms and sleep disorders are 
strongly linked to the progression of neurodegenerative diseases, the specific mechanisms underlying this 
connection remain poorly understood. It is well known that the sleep-wake cycle plays a crucial regulatory 
role in the glymphatic system[60]. Intriguingly, growing interest has emerged regarding the function of the 
glymphatic system in central nervous system diseases, which plays an important role in the removal of 
metabolic waste, including pathological proteins[23,61]. Taken together, this all suggests that the glymphatic 
system may serve as a potential bridge between sleep and neurodegenerative diseases[17].

GLYMPHATIC SYSTEM AND SLEEP
Sleep is a crucial human life activity, accounting for about one-third of our lifespan, and plays a significant 
role in maintaining overall health. Despite the recognized importance of sleep, its complex effects on the 
body are not yet fully understood. The glymphatic system, a recently discovered waste clearance pathway in 
the brain, plays a critical role in maintaining metabolic balance and brain health by removing metabolic 
byproducts. Notably, the glymphatic system is primarily active during sleep and exhibits a close link to the 
regulation of circadian rhythms[60].

The lymphatic network, a low-pressure, unidirectional flow system found throughout the vertebrate body, 
removes interstitial fluid (ISF) formed by capillary filtrate and plays a role in tissue immune surveillance[62]. 
In the brain, however, there is a lack of parenchymal lymphatic vessels. Until 2012, Iliff et al.[63] observed the 
flow pathway of a fluorescent CSF tracer injected into the cerebral space of mice using a two-photon laser 
scanning microscope. For the first time, they visualized the active and directional flow of CSF into brain cell 
spaces to remove waste products, a system they termed the glymphatic system. The anatomical foundation 
of the glymphatic system is the perivascular space. This space arises from the extension of the soft meninges 
that accompany penetrating arteries and draining veins into and out of the brain parenchyma. It is 
surrounded by a barrier formed by the adherent astrocyte endfeet[64]. Within the brain tissue, this space is 
filled with an extracellular matrix rich in type IV collagen and laminin, secreted by pericytes and fibroblasts. 
Platelet-derived growth factor β (PDGF-β) secreted by endothelial cells recruits pericytes, which in turn 
induce high expression of aquaporin 4 (AQP4) water channels in the endfeet of neighboring astrocytes[65]. 
CSF travels along the surface of cerebral arteries and the perivascular spaces of penetrating arterioles. It 
enters the brain parenchyma through the space between astrocyte endfeet or via aquaporin-4 (AQP4), 
facilitating CSF-ISF exchange, as well as solute and metabolite transport. Finally, convective flow carries 
CSF and ISF to the venous perivascular spaces, ultimately draining them out of the brain. This process 
maintains the stability of extracellular ions and fluids[66].

Normal sleep can be broadly categorized into alternating stages of REM and non-rapid eye movement 
(NREM) sleep, based on recordings from polysomnography (PSG), which include electroencephalogram 
(EEG), electrooculogram, and electromyogram (EMG)[67]. REM sleep is associated with vivid dreaming and 
is characterized by desynchronized brain waves with a mix of low frequencies (similar to the waking state), 
rapid eye movements, and minimal muscle tone as measured by EMG[68]. In contrast, NREM sleep is 
characterized by slow or no eye movements, increased activity of the parasympathetic nervous system, and 
little dreaming[69,70]. NREM is further divided into three stages (N1-N3)[67]. N1, the lightest stage, is marked 
by a significant decrease in the alpha waves (8-12 Hz) that dominate brain activity during wakefulness. Stage 
N2 is characterized by the presence of sleep spindles (brief transient oscillations within the range of 
12-14 Hz, sometimes referred to as "σ" bands) and K-complex waves (sharp, high-pressure biphasic waves 
lasting more than 0.5 seconds). N3, also known as SWS, is the deepest sleep stage, with slow delta waves 
(0.5-2 Hz) dominating brain activity for at least 20% of total sleep time[67,70-72]. Interestingly, cerebral fluid 
transport begins and progresses during NREM sleep, with the inflow of cerebrospinal fluid tracers 
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coinciding with SWS activity measured by EEG[34]. Slow-wave activity is most prominent in early sleep and 
reflects sleep pressure, increasing with prior sleep deprivation[73]. Studies suggest that waste removal from 
the brain may be most efficient during these early NREM stages, particularly during restorative sleep after 
long periods of wakefulness. However, patients with PD experience reductions in the total amount and 
percentage of N2[74,75] and N3[76] sleep, as well as decreased sleep stability. Notably, N2 sleep also appears to 
be abnormal in terms of electrical activity in PD patients[77], with a decrease in SWS with disease 
progression[78]. These reductions in NREM and SWS sleep may contribute to impaired clearance of brain 
waste products, including α-Syn aggregates[7], potentially explaining the bidirectional relationship between 
sleep disturbances and disease progression. In PD, lower SWS sleep is associated with faster worsening of 
motor symptoms, and poor sleep quality predicts a more rapid decline in gait function[79,80].

The glymphatic system’s function is closely tied to waking and sleeping states. Studies have revealed 
glymphatic influx and clearance exhibit endogenous circadian rhythms, peaking during the mid-rest phase 
in mice, with the highest perivascular polarization of AQP4 observed during this phase, while loss of AQP4 
abolishes the day-night difference in both glymphatic influx and drainage to the lymph nodes[60]. During 
sleep, the glymphatic system operates at a doubled cerebrospinal fluid (CSF) clearance rate and shows a 60% 
increase in brain interstitial space compared to wakefulness[81]. Research has also shown that both peri-
arterial inflow and overall flow within brain tissue are significantly higher during anesthesia, akin to 
sleep[34]. This translates to a more efficient waste clearance by the glymphatic system during sleep[81]. On the 
contrary, sleep deprivation impedes the glymphatic system’s function, notably reducing the peri-arterial 
inflow from the space surrounding arteries into brain tissue compared to normal sleep states, thereby 
compromising the brain’s clearance efficiency[82,83]. The suprachiasmatic nucleus (SCN), located within the 
hypothalamus, acts as the body’s master circadian clock, controlling sleep and wake timing through the 
release of specific neurotransmitters and hormones[84,85]. Interestingly, a recent study revealed that 
glymphatic fluid transport peaks during sleep and decreases during wakefulness, independent of light 
exposure[60]. In conclusion, sleep plays a critical role in maintaining brain homeostasis and clearing out CNS 
metabolites through the glymphatic system.

It is worth noting that the glymphatic system can also regulate sleep in reverse. The influence of AQP4 
genetic variations appears to affect sleep[86]. Studies have shown that a common single nucleotide 
polymorphism (SNP) in AQP4 is associated with changes in slow-wave activity during NREM sleep[87]. 
Taken together, these findings point to a strong link between the glymphatic system and sleep patterns.

GLYMPHATIC SYSTEM AND PARKINSON’S DISEASE
Notably, most age-related primary neurodegenerative diseases are characterized by impaired protein 
processing and aggregation, with a hallmark feature being the formation of misfolded or 
hyperphosphorylated protein aggregates[88]. In PD, pathological α-Syn not only accumulates within neurons 
but also spreads between cells. The glymphatic system is thought to eliminate waste products by channeling 
them to the cervical lymphatic vessels for disposal. However, lymphatic vessel function declines with age[89], 
leading to a decrease in glymphatic flow[19,90,91]. Dysfunction of the glymphatic system is increasingly 
recognized as a potential factor in the occurrence and progression of neurodegenerative diseases. While the 
precise mechanisms remain under investigation, research suggests that impaired glymphatic function may 
contribute to the buildup of toxic proteins and inflammatory substances in the brain, hallmarks of these 
diseases[92]. Given the crucial role of the glymphatic system in clearing waste from cerebrospinal fluid and 
interstitial fluid, the relationship between the glymphatic system and the pathological progression of PD has 
aroused significant interest. This section will provide a focused review of this topic.
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Numerous studies have shown a close connection between glymphatic dysfunction and AQP4[21,22,24,25]. 
Alterations of AQP4 can largely reflect changes in the glymphatic system in PD. Autopsy findings have 
revealed a negative correlation between AQP4 expression levels and the α-Syn content in the neocortical 
regions of PD, suggesting a potential role for AQP4 in regulating α-Syn deposition[93]. Numerous clinical 
studies have shown that AQP4 mononucleoside polymorphism affects brain activity in PD patients, 
correlating with PD susceptibility and cognitive function[94,95]. Basic research has found that A53T transgenic 
mice display decreased polarization of AQP4 and reduced glymphatic activity in the brain, and knocking 
out the AQP4 gene accelerates the α-Syn accumulation and dopaminergic neurons loss in the substantia 
nigra of A53T transgenic mice, resulting in motor impairments[27]. One study by Zou et al.[26] found that 
AQP4 deletion decreased the brain’s clearance rate of α-Syn, evidenced by an increase in protein monomers 
but not an increase in oligomer clusters, which suggests that within the glymphatic system, AQP4 facilitates 
the clearance of soluble, single α-Syn molecules. Additionally, Cui et al.[28] found that reduced AQP4 
expression accelerated the pathological deposition of α-Syn and worsened dopaminergic neuron loss and 
behavioral deficits in AQP4 knockout mice injected with α-Syn preformed fibers (PFFs) into the striatum. 
Multiple studies have confirmed that knocking out the AQP4 gene or inhibiting the production of 
cerebrospinal fluid with acetazolamide reduces the clearance of exogenously injected α-Syn in the substantia 
nigra or striatum brain regions of mice[27,96]. In the MPTP-induced PD mouse model, impaired AQP4 
polarization and reduced flow and effusion in the perivascular space were also found, while inhibition of 
MMP-9 restored AQP4 integrity at the end of astrocytes and alleviated MPTP-induced dopaminergic 
neuron loss[97]. Taken together, studies suggest a close relationship between the AQP4-mediated glymphatic 
system and α-Syn within brain tissue, and a disrupted glymphatic system can slow down the clearance of 
large molecules from the brain and exacerbate the pathological processes, hinting that restoring glymphatic 
activity could be a potential therapeutic target to slow PD progression[27,28].

As a functional and classical lymphatic system in the CNS, meningeal lymphatic vessels are distributed 
along the dural venous sinuses and cranial nerves, allowing the cerebrospinal fluid and its solutes in the 
perivascular spaces to enter the meningeal lymphatic vessels. These solutes are transported to the deep 
cervical lymph nodes, ultimately reaching peripheral metabolism[98,99]. Studies have found that the flow of 
meningeal lymphatic vessels along the superior sagittal sinus and transverse sinus is significantly reduced in 
patients with PD, and there is a significant delay in the perfusion of deep cervical lymph nodes. In PD 
model mice injected with α-Syn preformed fibrils, delayed meningeal lymphatic drainage was also observed, 
along with loss of tight connections between meningeal lymphatic endothelial cells, increased meningeal 
inflammation, and blocking of blood flow through meningeal lymphatic vessels, leading to increased α-Syn 
pathology and exacerbated motor and memory deficits[100]. Another study involved ligating deep cervical 
lymph nodes to block meningeal lymphatic drainage in 18-week-old A53T mice, revealing a reduction in 
tracer influx of cerebrospinal fluid, accompanied by aggregation of α-Syn around blood vessels and 
impaired polarization expression of AQP4 in the substantia nigra, with more severe loss of dopaminergic 
neurons and motor deficits[26]. Additionally, researchers found that oligomeric α-Syn in cerebrospinal fluid 
effectively activates macrophages located in deep cervical lymph nodes via endoplasmic reticulum stress, 
and inhibiting endoplasmic reticulum stress can effectively suppress this activation, thereby inhibiting 
peripheral inflammation in PD mice[101]. These indicate a close connection between the meningeal lymphatic 
drainage and PD. To thoroughly understand the relationship between the glymphatic system and PD or 
other neurodegenerative diseases, the malfunction of the meningeal lymphatic system in neurological 
conditions should be considered carefully in future works.

Dysfunction of the glymphatic system can not only affect the clearance of pathological proteins but also lead 
to increased sensitivity of dopaminergic neurons to toxins. Studies have shown that AQP4 deficiency 
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exacerbates MPTP-induced degeneration of dopaminergic neurons in the substantia nigra and ventral 
tegmental area in mice[102]. However, it is worth noting that the dopaminergic system can also in turn 
regulate the glymphatic system. Dopamine has been shown to reduce the proliferation of glial cells in the 
striatum, as well as the expression of AQP4 within these cells[103]. Moreover, dopamine receptors are 
involved in regulating the inflow and outflow of interstitial fluid, thus participating in the regulation of 
cerebrospinal fluid volume[104]. Therefore, since dopaminergic neurons seem to regulate AQP4 function, and 
AQP4 deficiency exacerbates the loss of dopaminergic neurons, the two process damage may exacerbate 
and promote each other, ultimately leading to protein clearance disorders.

Previous studies of the glymphatic system have focused on animal models, and there is a relative lack of 
indicators for assessing the function of the human glymphatic system due to safety and technical feasibility. 
Nowadays, with the rapid development of neuroimaging technology, diffusion tensor image along the 
perivascular space (DTI-ALPS) has appeared, which indirectly reflects the functional alterations of the 
glymphatic system by measuring the diffusion of H2O within the perivascular space (PVS). Meanwhile, the 
structural changes of the glymphatic system can be assessed by calculating the PVS burden in the relevant 
brain regions. In recent years, many clinical studies have shown that the ALPS index is negatively correlated 
with the onset, progression, and severity of PD. At the same time, a decrease in DTI-ALPS was correlated 
with an increased PVS burden, which is associated with the development of gait freezing, a more rapid 
increase in dopaminergic medications, and even a higher risk of dementia conversion [Table 1]. The 
development of DTI-ALPS provides evidential support for the promise of an impaired glymphatic system as 
a predictor of progression in PD.

SLEEP, GLYMPHATIC SYSTEM AND PARKINSON’S DISEASE
As age increases, sleep quality gradually declines, leading to insomnia, fragmentation, and other issues. This 
may also be a result of dysfunction in the elderly glymphatic system, potentially contributing to the onset 
and progression of age-related neurodegenerative diseases, including PD[114]. Furthermore, there is an 
increasing amount of direct evidence confirming a close interplay between sleep, the glymphatic system, 
and PD.

REM sleep behavior disorder, or RBD, is the sleep disorder most closely associated with the onset and 
progression of PD. Clinical studies have shown that RBD often appears before the typical motor symptoms 
of PD, sometimes even decades earlier, and 90% of individuals with RBD will eventually progress to PD, 
suggesting that RBD is a significant risk factor for the development of PD[115]. Recent research indicates that 
the glymphatic system in patients with RBD is severely impaired. Using DTI-ALPS to assess glymphatic 
system activity, Si et al.found damage to the glymphatic system in both iRBD patients and PD patients[32]. 
Another study also confirmed that the median ALPS index was reduced in the RBD group and PD 
compared to the control group[105]. These findings suggest that the progression of alpha-synucleinopathies 
may be related to damage to the glymphatic system. In addition to REM sleep, NREM sleep disorders have 
also been shown to be closely related to the pathological progression of PD. Morawska et al.[116] found that 
the deprivation of slow-wave sleep increased the pathological protein load in VAMT2 knockout mice while 
increasing slow-wave sleep significantly reduced the deposition of pathological α-Syn in the brains of 
VAMT2 knockout mice and A53T transgenic PD model mice[116]. More importantly, slow-wave sleep 
increased the expression of AQP4 around blood vessels, suggesting that slow-wave sleep may play an 
important role in regulating the glymphatic system in the extracellular clearance of pathological 
proteins[116]. Therefore, sleep disorders affect the onset and progression of PD through the glymphatic 
system, and maintaining healthy sleep habits and circadian rhythms is essential for optimal glymphatic 
function and overall brain health.
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Table 1. Clinical evidence of lymphatic system impacting Parkinson’s disease

Author, 
year

Target 
group

Index 
measured Finding

Si et al., 
2022[32]

RBD, PD 
patients

DTI-ALPS Patients with PD exhibited a lower ALPS index than those with BDs, and both patient groups showed 
a lower ALPS index than HC. The ALPS index and disease severity were negatively correlated in the 
BD and PD subgroups

Bae et al., 
2023[105]

RBD, PD 
patients

DTI-ALPS The median ALPS index was lower in the group with BD versus controls but showed no evidence of a 
difference compared with the group with PD, and the conversion risk decreased with an increasing 
ALPS index

Qin et al., 
2023[106]

PD 
patients

DTI-ALPS The DTI-ALPS index of PD patients was significantly lower than normal controls. UPDRS-III score and 
subscore for rigidity were negatively correlated with DTI-ALPS index

Bae et al., 
2023[107]

PD 
patients

DTI-ALPS The ALPS-index was lower in the PD group than in the controls. In the PD group, the ALPS-index 
negatively correlated with the UPDRS-III score, and positively correlated with the MMSE and MoCA 
scores

He et al., 
2023[108]

PD 
patients

DTI-ALPS Patients were classified into the low or high ALPS index group based on the baseline ALPS index. The 
low ALPS index group experienced faster deterioration in UPDRS, Symbol Digit Modalities Test, and 
Hopkins Verbal Learning Test

Meng et al., 
2024[109]

PD 
patients

DTI-ALPS, 
EPVS

The DTI-ALPS indices were lower bilaterally in PD patients than in the HC group, and EPVS numbers 
in any of the bilateral centrum semiovale, basal ganglia, and midbrain were higher, especially for the 
medium- to late-stage group.

Gu et al., 
2022[110]

ET, PD 
patients

DTI-ALPS, 
EPVS

The ALPS index was lower in patients with PD than in patients with ET and HC. Patients with PD 
showed a more severe EPVS burden in the centrum semiovale, basal ganglia, and midbrain compared 
to ET and HC.

Shen et al., 
2022[33]

PD 
patients

DTI-ALPS, 
PVS

lower DTI-ALPS in the subgroup of patients relative to controls, and the differences were more 
pronounced in patients with Hohn & Yahr stage greater than two. The decreased DTI-ALPS 
correlated with increased PVS burden, and both indexes correlated with PD severity.

Donahue et al., 
2023[111]

PD 
patients

PVS Higher white matter rostral middle frontal PVS was associated with lower scores in both global 
cognitive and visuospatial functions. In the basal ganglia, higher PVS was associated with lower 
scores for memory, with a trend toward lower global cognitive composite scores

Jeong et al., 
2023[112]

PD 
patients

CPV CPV was negatively associated with DAT availability and was positively associated with the UPDRS 
score. A larger CPV was associated with the future development of freezing of gait and a more rapid 
increase in dopaminergic medication. 

Jeong et al., 
2023[113]

PD 
patients

CPV CPV negatively correlated with composite scores of the frontal/executive function domain. A larger 
CPV was associated with a higher risk of dementia conversion

RBD: Rapid eye movement sleep behavior disorder; PD: Parkinson’s disease; DTI-ALPS: diffusion tensor image analysis along the perivascular 
space; HC: health control; UPDRS: unified Parkinson’s disease rating scale; MMSE: mini-mental state examination; MoCA: montreal cognitive 
assessment; (E)PVS: (enlarged) perivascular spaces; ET: essential tremor; CPV: The choroid plexus volume.

REGULATE SLEEP TO IMPROVE GLYMPHATIC FUNCTION
Enhancing sleep can improve the efficiency of the glymphatic system, thereby reducing protein aggregation 
in the brain, as shown in both mouse and human studies[81,117]. A cross-sectional study involving 84 
participants used an imaging technique called DTI-ALPS to assess glymphatic function. This study found 
that a higher DTI-ALPS index correlated with a longer duration of deep sleep (N2 sleep), suggesting a 
strong link between sleep quality and glymphatic system function[35]. Sleep modulation therapies also hold 
promise. In a study using a PD mouse model, researchers found that treatment with sodium 
hydroxybutyrate, a drug known to enhance slow-wave sleep, improved the organization of AQP4, a key 
protein in the glymphatic system, around blood vessels (perivascular AQP4 polarization)[116]. This treatment 
also specifically increased proteostasis and ultimately reduced the buildup of the abnormal α-Syn protein, a 
hallmark of PD. Supporting this link between sleep and disease progression, another study involving 129 PD 
patients found a correlation between the amount of slow-wave sleep measured by polysomnography and 
motor function scores. Patients with higher levels of slow-wave sleep showed a slower decline in motor 
function over a mean period of approximately 4.6 ± 2.3 years[80]. Melatonin, a hormone known to regulate 
circadian rhythms and improve sleep quality[118], may also play a role in glymphatic function. Studies in mice 
genetically modified to develop Alzheimer’s disease (Tg2576 mice) have shown that melatonin treatment 
can inhibit the buildup of Aβ precursor protein (APP) Aβ). This effect may be due to melatonin’s ability to 
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restore glymphatic system function. Melatonin appears to achieve this by regulating the expression of a 
circadian protein called Per2 and by maintaining the daily cycle of AQP4 distribution in astrocytes[119]. 
Interestingly, certain anesthetics may also enhance glymphatic function. A study in rats showed that 
combining the anesthetic dexmedetomidine with low-dose isoflurane anesthesia increased cerebrospinal 
fluid volume by 2% and improved glymphatic system efficiency by 32% compared to isoflurane alone. This 
enhanced function may be linked to dexmedetomidine’s ability to inhibit the norepinephrine system, which 
is known to suppress glymphatic activity[81]. Another study using mice investigated the effects of different 
anesthetics on the glymphatic system. The researchers found that anesthetics that promote slow-wave sleep 
also increased the flow of cerebrospinal fluid into the brain tissue, facilitating the removal of waste 
products[34]. In conclusion, promoting healthy sleep patterns appears to enhance the function of the 
glymphatic system, which in turn helps clear away abnormal proteins from the brain. This two-way 
relationship suggests that improving sleep may offer a potential therapeutic target for slowing the 
progression of neurodegenerative diseases.

CONCLUSIONS
In summary, a significant relationship exists among sleep disturbances, the glymphatic system, and PD. 
Damage to the glymphatic system may serve as a pivotal factor contributing to impaired clearance, 
deposition of pathological proteins, and subsequent degeneration of dopaminergic neurons in PD due to 
sleep disturbances. In the realm of neurodegenerative diseases, extensive research has been conducted on 
the glymphatic system’s role in clearing brain Aβ and tau proteins[21,61], yet investigations into the clearance 
of pathological α-Syn by the glymphatic system remain relatively limited. The precise mechanisms linking 
sleep disorders, glymphatic dysfunction, and PD are still under exploration. Moreover, there is a growing 
necessity for the implementation of more advanced, non-invasive MRI and PET technologies in the future. 
These technologies will aid in assessing the glymphatic system’s function and the deposition of pathological 
proteins in the brains of individuals with sleep disturbances and PD. Additionally, they will contribute to 
investigating the potential impact of improving sleep on the glymphatic system and the pathological 
progression of PD.
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