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Abstract
Stem cell therapy is a novel approach for treating various severe and intractable diseases, including autoimmune 
disorders, organ transplants, tumors, and neurodegenerative diseases. Nevertheless, the extensive utilization of 
stem cells is constrained by potential tumorigenicity, challenges in precise differentiation, rejection concerns, and 
ethical considerations. Extracellular vesicles possess the ability to carry diverse bioactive factors from stem cells 
and deliver them to specific target cells or tissues. Moreover, they offer the advantage of low immunogenicity. 
Consequently, they have the potential to facilitate the therapeutic potential of stem cells, mitigating the risks 
associated with direct stem cell application. Therefore, the use of stem cell extracellular vesicles in clinical diseases 
has received increasing attention. This review summarizes advances in the use of extracellular vesicles from 
mesenchymal stem cells (MSC). MSC extracellular vesicles are used in the treatment of inflammatory diseases 
such as rheumatoid arthritis, liver injury, COVID-19, and allergies; in the repair of tissue damage in heart disease, 
kidney injury, and osteoarthritic diseases; as a carrier in the treatment of tumors; and as a regenerative agent in 
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neurodegenerative disorders such as Alzheimer's and Parkinson's.

Keywords: Mesenchymal stem cell, extracellular vesicles, inflammation, tumor, immunity, tissue repair

INTRODUCTION
Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic adult stem cells derived from various 
tissues such as bone and adipose, commonly referred to as pluripotent stromal cells or mesenchymal 
stromal cells[1]. MSCs possess numerous advantageous properties, including low immunogenicity, 
chemotaxis, and the ability to target tumor sites with precision[2]. They communicate with target cells, 
thereby influencing the activity and function of these cells, playing pivotal roles in tissue repair and disease 
treatment[3]. However, the widespread application of stem cell transplantation has been limited due to safety 
and ethical concerns. Consequently, an increasing number of studies are being conducted on extracellular 
vesicles (EVs)[4]. EVs exhibit characteristics and biological activities similar to MSCs but also possess 
advantages such as targeted delivery, low immunogenicity, and high repairability. Furthermore, EV-based 
treatments follow a safe, cell-free therapy strategy[5,6]. MSC-EVs serve as messengers between cells and can 
regulate various physiological processes. They influence disease progression by carrying bioactive factors 
(including proteins, lipids, mRNA, and miRNA)[7-9]. Therefore, MSC-EVs can be employed as natural drug 
delivery vehicles with therapeutic effects for a wide range of diseases[10]. Additionally, MSC-EVs exhibit anti-
inflammatory, immunomodulatory, and regenerative repair activities[11]. This article provides an overview of 
the utilization of MSC-EVs in numerous diseases, including rheumatoid arthritis, liver injury, COVID-19, 
hypersensitivity reactions, heart disease, kidney injury, osteoarticular disease, cancer, Alzheimer's disease, 
and Parkinson's disease [Table 1].

MSC-EVS FOR INFLAMMATION-RELATED DISEASES
MSCs secrete EVs that possess therapeutic effects in inflammation-related diseases[12]. When EVs are 
isolated from MSC, modified by specific miRNA therapeutic agents, and then injected into the body via 
intravenous injection, the enclosed miRNAs can then be transferred from the EVs to specific recipient cells. 
For example, in diabetic mouse models, EV-miRNAs complexes interact with the Toll-like receptor (TLR) 
signaling pathway to regulate the activation of NF-κB, which in turn produces more immune factors, such 
as interferon-alpha (IFN-α), tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and 
interleukin-6 (IL-6), and thus affects the disease status. Moreover, MSC-EVs significantly inhibit pro-
inflammatory cytokines and contain multiple miRNAs targeting the Toll-like receptor 4/NF-κB signaling 
pathway[13]. This reduction in inflammatory cytokines production is achieved by inhibiting tumor necrosis 
factor receptor-associated factor 6 and IL-1 receptor-associated kinase 1 expression, particularly following 
macrophage polarization induction towards the M2 phenotype via the administration of EVs containing 
miR-146a. These findings corroborate the therapeutic efficacy of the EV-miRNA complex in the context of 
inflammatory diseases[14]. Consequently, MSC-EVs are capable of exerting anti-inflammatory effects during 
disease progression.

Rheumatoid arthritis
Rheumatoid arthritis (RA) is a chronic systemic disease involving autoimmunity, characterized by 
inflammatory changes in synovial and joint structures, extensive fibrinoid degeneration of collagen fibers in 
the mesenchymal tissue, and atrophy and thinning of bone structures. Currently, more than 30% of patients 
with RA exhibit an inadequate response to first-line treatment, with joint replacement being the only 
available treatment option for those with advanced RA[15]. Therefore, there is an imperative need for novel 
therapeutic strategies to enhance the efficacy of RA treatment.
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Table 1. MSC-Exo treats multiple diseases

Function Disease Exo Effect Reference

miR-135b Promote chondrocyte proliferation [18]RA

miR-150-5p Alleviate abnormal vascular proliferation [18]

Liver injury Hepatocyte growth 
factor

Promote hepatocyte growth [20]

COVID-19 Exo- Liposome Inhibit viral intracellular pathways and suppress inflammatory 
cytokine storm

[32,33]

ovalbumin Modulate the immune response [36]

Anti-inflammatory

Hypersensitivity

miR-146a-5p Alleviate airway hyperresponsiveness [38]

miR-24-3p Reduce myocardial infarction [54]

miR-183-5p Inhibit cardiomyocyte aging [56]

miR-146a-5p Attenuate drug-induced oxidative stress in cardiomyocytes [59]

Heart disease

IONP-Exo Reduce cardiomyocyte apoptosis and fibrosis [64]

miR-186-5p Inhibit ECM protein accumulation and epithelial-mesenchymal 
transition and attenuates renal fibrosis

[70]Kidney damage

miR-146b Reduce IL-1 receptor-related kinase expression and inhibit NF-κB 
activity

[73]

VEGF Enhance angiogenesis [78]

CLEC11A Enhance bone formation and reduce bone resorption [79]

CD73 mediate cartilage repair and regeneration [80]

Tissue repair

Osteoarthritis

miRNA-128-3p Target inhibition of Smad5 attenuates cellular osteogenic 
differentiation and fracture healing in vivo

[83]

miR-16-5p Down-regulate integrin α2 and inhibit cancer cell progression [84]

miR-326 Inhibit NF-κB and thus reduce immune factors [86]

CRC

miR-1246 Restore Th17/Treg balance and reduce IBD [88]

miR-101-3p Inhibit cancer cell proliferation and tumor growth [93]

Anti-tumor factor 
vector

HNSCC

siRNA Knockdown of Survivin gene to inhibit tumor growth [95]

AD GDF-15 Mitigate Aβ42-induced apoptosis and inflammation [111]Regeneration

PD peroxisome mRNA Reduce neurotoxicity and neuroinflammation [118]

RA: rheumatoid arthritis; COVID-19: Coronavirus disease 2019; IONP: iron oxide nanoparticles; ECM: extracellular matrix; IL: interleukin; CRC: 
colorectal cancer; IBD: inflammatory bowel disease; HNSCC: head and neck squamous cell carcinoma; AD: Alzheimer's disease; GDF: growth 
differentiation factor 15; PD: Parkinson's disease.

In animal experiments, canine MSC-derived EVs exhibit anti-inflammatory and immunomodulatory effects 
in vitro under serum-free medium conditions[16]. Feline adipose tissue-derived MSC-EVs demonstrate an 
increased expression of IL-10 (an anti-inflammatory factor) and a significant decrease in pro-inflammatory 
factor expression[17]. These findings underscore the potential of MSC-EVs in the treatment of inflammatory 
diseases.

In the following sections, we will discuss the role of microRNAs carried by MSC-EVs in RA. Enhanced 
expression of MSC-EV-derived miR-135b, stimulated by transforming growth factor-β1, inhibits the 
expression of specific protein 1 in chondrocytes, thereby promoting chondrocyte proliferation and 
facilitating the repair of damaged cartilage tissue. Additionally, MSC-EV-derived miR-150-5p reduces joint 
destruction by targeting matrix metalloproteinase 14 and vascular endothelial growth factor, thus 
ameliorating abnormal vascular proliferation and inhibiting synovial cell proliferation in RA[18]. However, 
the utility of EVs is constrained by their short half-lives. A study has demonstrated that hydrogels can 
seamlessly bond with natural cartilage. The hydrogel delivery of cartilage-bound EVs enhances the stability 
of proteins and miRNAs within MSC-EVs, prolonging their in vivo retention and controlled drug release. 
Consequently, hydrogels provide an effective scaffold for the transport of EVs to facilitate the repair and 
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regeneration of articular cartilage defects[19].

Liver injury
EVs present a promising cell-free strategy for the treatment of liver injuries[20]. For instance, rat bone 
marrow MSC (BMSC)-EVs can expedite hepatocyte proliferation and alleviate hepatic fibrosis by inhibiting 
hepatocyte scorch death[21]. Furthermore, in vivo human umbilical cord-derived MSC (hUC-MSC)-EVs 
contribute to the repair of damaged liver tissues by reducing Nod-like receptor protein 3 inflammasome 
vesicle expression in macrophages within a mouse model of acute liver failure[22]. EVsomes play a pivotal 
role in combating hepatic diseases by transporting a diverse array of cargo compounds to target cells. 
Specifically, MSC-EVs have been employed as delivery vehicles for dexamethasone in the treatment of 
autoimmune hepatitis[23]. BMSC-EVs are a promising nanocarrier with the potential to substantially 
enhance the anti-fibrotic effects of lignocaine[24].

COVID-19
Coronavirus disease (COVID-19) is a global pandemic caused by severe acute respiratory syndrome 
coronavirus type 2 (SARS-CoV-2). SARS-CoV-2 targets mucosal cells of the respiratory system, in turn 
infecting other cell types. This may induce a systemic inflammatory storm that triggers an acute respiratory 
distress syndrome, often eventually leading to multi-organ damage[25]. Clinical studies have shown that 
MSC-EVs can significantly reduce various types of lung inflammation. MSC-EVs may contribute to the 
modulation of immune responses, promote pathogen clearance, and reduce the severity of organ damage. 
The immunomodulatory capabilities of MSCs include the inhibition of T and B cell proliferation and 
cytokine production, reduction of NK cell function, and maturation of dendritic cells. MSCs and their 
derivative EVs are potential therapeutic elements for the treatment of COVID-19[26-28].

COVID-19 immunization is divided into two main phases. The first phase is the elimination of the virus 
and suppression of disease progression to a critical stage, and the second phase is an inflammatory state that 
can lead to a cytokine storm. SARS-CoV-2 enters host cells through endocytosis mediated by the 
angiotensin-converting enzyme 2 (ACE2) receptor. In addition to immune system dysregulation, 
dysfunction of the renin-angiotensin system caused by ACE2 downregulation is also related to COVID-19
[29]. P9R is a defensin-like peptide with antiviral activity[30]. The positive charge of P9R effectively inhibits 
cytoplasmic matrix protons entering the endosome, thereby preventing endosomal acidification and 
impacting the life cycle of SARS-CoV-2. 8P9R is a branching form of P9R that forms cross-links with 
viruses to enhance antiviral activity. Chimeric 8P9R-antifungal peptide binds to SARS-CoV-2 with higher 
specificity and can effectively inhibit the entry of SARS-CoV-2 into target cells for replication[31].

MSC-EVs were hybridized with synthetic liposomes of an appropriate size to generate a vector that 
encompassed the chimeric 8P9R-anti-peak peptides and soluble ACE2. The resulting therapeutic agent was 
administered via inhalation[32]. These EV-liposome hybrids can inhibit the SARS-CoV-2 intracellular 
pathway and suppress cytokine storms, reducing mortality in patients with COVID-19[33]. The process is 
divided into two parts: in the first phase, intracellular pathways that are critical to viral replication are 
inhibited by the chimeric 8P9R peptides, which enter virus-infected cells by binding specifically with the 
virus. Subsequently, they inhibit the acidification of the endosomal environment, preventing viral escape 
into the cytoplasmic matrix and inhibiting viral replication. In the second phase, the NF-κB-sensitive 
promoter regulates the level of soluble ACE2 and forestalls the excessive inflammatory state triggered by 
ACE2 downregulation in patients. Besides that, soluble ACE2 can act as a decoy receptor to competitively 
bind viruses and reduce viral loads[34] [Figure 1]. Owing to the low immunogenicity of EVs, they can be 
transferred without triggering an immune response. Therefore, the preparation of EV-liposome hybrids 
may be a suitable therapeutic option.
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Figure 1. MSC-EV-hybrid liposomes inhibit the SARS-CoV-2 intracellular pathway. MSC-EVs were hybridized with synthetic liposomes 
to create vectors expressing chimeric 8P9R-anti-peak peptides and soluble ACE2, and administered via inhalation. The 8P9R chimeric 
peptide specifically enters virus-infected cells by binding the virus via ACE2-mediated endocytosis, subsequently blocking H+ entry into 
the endosome, inhibiting acidification of the endosomal environment, and preventing viral escape into the cytoplasmic matrix for 
replication. Soluble ACE2 acts as a decoy receptor to capture extracellular viruses and reduce the viral load, thereby inhibiting the viral 
intracellular pathway.

Hypersensitivity
The immunomodulatory properties and anti-inflammatory effects of MSCs are mediated through 
intercellular contacts and soluble factors[35]. In mice, for example, prophylactic use of ovalbumin-enriched 
MSC-derived EVs modulated immune responses, significantly decreased IgE levels and IL-4 production, 
increased TGF-β levels, and suppressed allergic asthma induced by ovalbumin sensitization[36]. Song et al. 
pretreated human umbilical cord-derived MSCs (hUC-MSCs) with IL-1β, which upregulated the expression 
of anti-inflammatory miR-146a, thereby effectively enhancing their immunomodulatory properties[37]. 
HMSC-EVs inhibit the levels of group 2 innate lymphocytes by delivering miR-146a-5p, thereby reducing 
inflammatory cell infiltration, lung mucus production, and airway hyperresponsiveness. This alleviates 
group 2 innate lymphocyte-dominant allergic airway inflammation, suggesting that MSC-EVs represent a 
novel cell-free strategy for treating inflammatory diseases[38]. Administration of MSC-EVs can prevent 
adverse complications associated with cell transplantation, such as immune rejection[39]. For instance, hUC-
MSC-EVs can prevent life-threatening acute graft-versus-host disease (GVHD) in a mouse model of 
allogeneic hematopoietic stem cell transplantation[40]. MSC-EVs also improve survival in mouse models of 
chronic GVHD by inhibiting Th17 cells and inducing regulatory T cells (Treg)[41], representing a novel and 
alternative approach for treating GVHD.

MSC-EVS' REPAIR CAPABILITY TO TREAT TISSUE INJURIES
Stem cell-derived EVs can improve inflammation, prevent tissue damage, and promote healing, primarily 
through the action of RNA/miRNA[42]. For instance, miRNA within UC-MSC-EVs inhibits myofibroblast 
differentiation, ameliorates scarring resulting from myofibroblast aggregation, and promotes skin repair by 
inhibiting the transforming growth factor-β/SMAD2 pathway during wound healing[43]. UC-MSC-EVs, 
containing numerous growth factors such as CD63 and HSP70, when injected into the cochlea of mice with 
ototoxicity-induced hearing damage, lead to altered gene expression in the hair cells, increased remodeling 
of damaged neural tissues, decreased apoptosis, and neural damage repair[44,45].
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Heart disease
Heart disease has long been a category of diseases that are highly associated with death worldwide[46]. In the 
early stages of acute myocardial infarction (MI), a large number of cardiomyocytes die suddenly, 
accompanied by a robust inflammatory response. This results in serious clinical outcomes such as decreased 
cardiac function, ventricular remodeling, and heart failure[47]. Due to the multidirectional differentiation 
potential and anti-inflammatory effects of MSCs, it holds promise as a treatment for patients with acute 
MI[48]. The cardioprotective effects of MSCs are mainly mediated through their paracrine effects and the 
transfer of EVs rich in bioactive proteins, RNA, and lipids[49]. MiRNA-carrying EVs involved in the 
regulation of the inflammatory response and in the repair of myocardial fibrosis play important roles in 
myocardial infarction and injury[50] [Figure 2]. EV-lncRNAs derived from MSCs prevent cardiomyocyte 
apoptosis in vivo and play a key role in the development of heart disease as novel regulators of 
cardiovascular disease[51].

MIs are usually associated with angiogenic dysfunction. In this section, we will discuss the mechanisms by 
which MSC-EVs contribute to the recovery from myocardial ischemic injury. EVs from human-induced 
pluripotent stem cell-derived MSCs ameliorate MI injury by activating the Akt/Nrf2/HO-1 signaling 
pathway and increasing the expression of von Willebrand factor and vascular endothelial growth factor[52]. 
Hypoxia-inducible factor-1α overexpression by MSC-EVs increases the expression of pro-angiogenic factors 
in rats, reduces human umbilical vein endothelial cell (HUVEC) injury, promotes neointima formation, and 
inhibits fibrosis to maintain cardiac function in a rat MI model[53]. hUC-MSC-EVs increase miR-24-3p 
expression in macrophages, and miR-24-3p inhibits the activation of the NF-κB signaling pathway in 
inflammatory environments, thereby promoting M2 macrophage polarization and reducing MI injury[54]. 
MSC-EVs also regulate macrophage polarization to the M2 phenotype via miR-182 and attenuate 
myocardial ischemia-reperfusion injury[55]. In addition, heme-pretreated MSC-EVs (enriched with 
miR-183-5p) inhibited cardiomyocyte senescence by modulating the high mobility group box chromosomal 
protein 1/extracellular signal-regulated kinase pathway, and were superior to untreated MSC-EVs for the 
treatment of MI[56].

The most immediate physiologic change resulting from myocardial ischemia is hypoxia. Under hypoxic 
conditions, BMSC-EVs carrying miR-125b-5p may downregulate the expression of p53 and BAK1 in 
cardiomyocytes, ameliorate cardiomyocyte apoptosis, and promote ischemic heart repair. This ability of 
BMSC-EVs to transport under hypoxic conditions also gives them the opportunity to serve as a novel drug 
carrier in ischemic diseases[57]. GATA-4-containing EVs isolated from BMSCs induced the differentiation of 
BMSCs into cardiomyocyte-like cells, reduced hypoxia-induced apoptosis, and improved myocardial 
function. Concentroro-pretreated MSC-derived miR-1a-65p-containing EVs promote cardiac repair by 
targeting and reducing interleukin-1 receptor-associated kinase and inhibiting nuclear translocation of 
NF-κB p65, thereby protecting cells from hypoxic injury and providing superior therapeutic effects in 
anti-apoptosis and anti-inflammation[58].

MSC-EVs also have a protective effect against myocardial injury caused by external stimuli. Human heart-
resident mesenchymal progenitor cell EVs enriched with miR-146a-5p attenuate drug-induced oxidative 
stress in cardiomyocytes and their cardioprotective effects may be a novel approach for treating drug side 
effects[59]. Ischemia-pretreated MSCs target methyl CpG-binding protein 2 via miR-22-rich EVs to 
significantly reduce cardiac fibrosis, exert anti-apoptotic effects, and enhance stem cell protection for 
ischemic heart disease[60]. MSC-EVs also protect cardiomyocytes from adriamycin-induced cardiomyopathy 
by upregulating Survivin gene expression via the miR-199a-3p-Akt-specific protein 1/p53 signaling 
pathway[61]. MSC-EVs carrying cyclic RNATN4 interacted with miR-497-5p to upregulate MG53 expression 
in cardiomyocytes, significantly inhibited upregulated reactive oxygen species levels, reduced upregulated 
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Figure 2. MSC-Exos carry bioactive factors involved in the repair of myocardial injury. MSC-Exos contain bioactive miRNAs that 
mitigate cardiomyocyte injury by participating in anti-inflammatory, anti-apoptotic, anti-aging, and promoting M2-type macrophage 
differentiation. MSC-Exos carry HIF-1α to inhibit cardiomyocyte fibrosis and promote neovascularization, thereby repairing myocardial 
injury. p53: recombinant tumor protein p53; BAK1: Bcl2 Antagonist/Killer 1; miR: microRNA; PF: platelet factor; HIF-1α: hypoxia-
inducible Factor-1α; IRAK 1: interleukin-1 receptor-associated kinase 1; NF-κB: nuclear factor kappa-B; ERK: extracellular regulated 
protein kinases; HMGB: high-mobility group box; Mecp2: methyl CpG binding protein 2; TLR4: Toll-like receptor 4.

IL-1β, IL-6, and tumor necrosis factor-α levels, improved cell survival and inhibited apoptosis in 
cardiomyocytes, and attenuated sepsis-induced myocardial injury in rats with myocardial injury[62].

In addition, Modified MSC-EVs may be especially effective in the treatment of heart disease. For instance, 
exposing hMSCs to titanium-surface-nanostructure pretreatment elevates EV secretion and facilitates the 
internalization of the hMSC-EVs by HUVECs. This promotes the migration and differentiation of the 
HUVECs, stimulating endothelial cells and cellular activity in vitro and possibly improving angiogenesis 
in vivo[63]. Similarly, EVs derived from MSCs doped with iron oxide nanoparticles induce a shift from an 
early inflammatory phase to a repair phase, reduce apoptosis and fibrosis, and enhance angiogenesis and the 
recovery of cardiac function[64]. hUC-MSC-EVs encapsulated in functional peptide hydrogels improve 
myocardial function by reducing inflammation, fibrosis and apoptosis and promoting angiogenesis[65]. 
Modified EVs provide a practical and effective method to perform myocardial regeneration.

Kidney damage
In animal models, BMSC-EVs have been shown to promote recovery from kidney diseases such as chronic 
kidney disease and acute kidney injury (AKI)[66,67]. Thus, MSC-EVs may hold promise as therapeutic tools 
for kidney diseases. For instance, rats with unilateral ureteral obstruction represent a model of renal fibrosis 
in chronic kidney disease. Mechanical stress under unilateral ureteral obstruction induces nuclear 
expression of Yes-associated protein, which stimulates collagen deposition and interstitial fibrosis in the 
kidney. HUC-MSC-EVs ameliorate renal fibrosis by delivering casein kinase 1δ and E3 ubiquitin ligase β-
transducin repeat-containing proteins to promote Yes-associated protein ubiquitination and 
degradation[68]. HUC-MSC-EVs also inhibit renal tubular epithelial cell apoptosis and reduce renal fibrosis 
by inhibiting the reactive oxygen species-mediated activation of the p38 mitogen-activated protein 
kinase/extracellular signal-regulated kinase 1/2 pathway[69]. miR-186-5p in MSC-EVs binds to the 3'-UTR of 
Smad5 and thus down-regulates Smad5 expression, attenuating renal injury/fibrosis in a unilateral ureteral 
obstruction model by inhibiting ECM protein aggregation and epithelial-mesenchymal transition[70].
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Adipose tissue-derived MSC-EVs have a positive effect on AKI[71]. MSC-EV yields were increased in three-
dimensional culture compared to two-dimensional culture. The resulting MSC-EVs were also more 
efficiently absorbed by renal tubular epithelial cells, as evidenced by improved renal function, attenuated 
tubular pathological changes, reduced inflammatory factors, and suppressed T-cell and macrophage 
infiltration, significantly alleviating cisplatin-induced murine AKI[72]. Moreover, hUC-MSC-EVs reduce 
IL-1 receptor-associated kinase expression and inhibit NF-κB activity by upregulating miR-146b levels, 
thereby alleviating sepsis-associated AKI and improving survival in septic mice[73].

Osteoarthritis
In this section, we will discuss the regenerative repair capabilities of BMSC-EVs in orthopedic diseases. 
MSC-EVs improve the bone microenvironment and inhibit bone metastasis, representing a promising 
novel therapeutic for the prevention of bone and joint diseases and disease rehabilitation, with potential as a 
diagnostic and therapeutic tool for aging-related degenerative diseases[74,75]. MSC-derived EVs have 
successfully been used as cell-free therapies to guide cartilage differentiation in adipose-derived stem 
cells[76]. Transgenic MSCs overexpress bone morphogenetic protein 2, and their EVs can effectively function 
as growth factors to enhance specific bone regeneration in vivo[77]. In an ischemic limb mouse model, 
MSC-EVs enriched with VEGF protein enhance angiogenesis, perhaps by promoting high expression of 
VEGFR1 and VEGFR2 in endothelial cells. MSC-EVs activate receptors to affect angiogenesis and may play 
an important role in osteoarticular repair[78]. In addition, systemic administration of hucMSC-EVs highly 
enriched for the osteoprotegerin CLEC11A prevents bone loss and maintains bone strength in osteoporotic 
mice by enhancing bone formation, decreasing bone marrow fat accumulation, and reducing bone 
resorption[79]. MSC-EVs-CD73 may mediate cartilage repair and regeneration by activating adenosine 
through AKT and ERK signaling pathways, which in turn enhances cell proliferation, attenuates apoptosis, 
and modulates immune responses[80]. Moreover, MSC-EVs possessing the neutral endopeptidase CD10 
(enkephalinase) exhibit immunomodulatory properties, effectively mitigating inflammatory activation of 
synoviocytes and cartilage degradation, thereby preserving cartilage homeostasis[81]. Therefore, the various 
bioactive factors carried by MSC-EV have potential in orthopedic diseases.

MSC-derived EVs cultured in a three-dimensional environment have the potential to induce improved 
repair. For instance, bone repair can be induced via lyophilization of optimized BMSC-EVs immobilized in 
a layered scaffold through the Bmpr2/Acvr2b competitive receptor-activated Smad pathway[82]. 
Combinations of human-induced pluripotent MSC-EVs and tricalcium phosphate scaffolds significantly 
altered the expression of gene networks involved in the PI3K/Akt signaling pathway and enhanced the 
proliferation, migration, and osteogenic differentiation of hBMSCs[83].

In contrast, MSC-EVs carrying miRNA-128-3p from aged rats suppressed Smad5 and attenuated cellular 
osteogenic differentiation and fracture healing in vivo[84]. This suggests that MSC-EVs may also have an 
inhibitory role. Further research into these bioactive factors is needed.

MSC-EVS AS CARRIERS FOR TARGETING TUMORS
Colorectal cancer
Colorectal cancer (CRC), occurring in the colon and/or rectum, is a common cancer with a poor prognosis. 
There is growing evidence that EVs isolated from various MSC sources can have an inhibitory effect on 
CRC progression. For instance, the overexpression of miR-16-5p in BMSC-EVs inhibits CRC tumor cell 
progression through the downregulation of integrin α2[85].
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Intestinal inflammation leads to the abnormal secretion of growth and inflammatory cytokines that are 
closely associated with the onset and progression of CRC. EVs released from MSCs have anti-inflammatory 
effects and can repair tissue damage[86]. In a mouse model of dextran sodium sulfate-induced inflammatory 
bowel disease (IBD), hUC-MSC-EVs alleviated IBD by inhibiting neddylation through miR-326, 
suppressing the activation of the NF-κB signaling pathway, and reducing the production of inflammatory 
factors. The therapeutic effect of hUC-MSC-EVs with high miR-326 expression on IBD mice was 
significantly stronger than that of regular hUC-MSC-EVs[87]. In addition, hUC-MSC-EVs may function by 
regulating ubiquitin modification to restore the structural integrity of tissues in IBD mice[88]. Three-
dimensional culture-generated MSC-EVs enriched with miR-1246 inhibited Nfat5 expression to mediate 
Th17 cell polarization, restored Th17/Treg homeostasis in inflamed periodontal tissue, and attenuated 
IBD[89]. Therefore, the therapeutic effect of MSCs on CRC may be attributed to EVs, which are rich in 
tumor-suppressor miRNAs. The use of MSC-EVs containing suppressor miRNAs to treat patients with 
CRC may become an effective approach in future clinical practice.

Head and neck squamous cell carcinoma
Head and neck squamous cell carcinoma (HNSCC) is a general term for malignant tumors occurring in the 
squamous epithelial cells of the head and neck region. HNSCC is a common malignant tumor without 
clinically significant precancerous lesions; thus, most patients receive diagnoses at advanced stages[90]. 
Presently, HNSCC is managed through surgical procedures or radiation therapy, but the survival rates 
remain low, with high rates of cancer recurrence. Patients with recurrent and metastatic HNSCC face bleak 
prognoses, necessitating improved molecular diagnostics and effective treatments for better outcomes.

Dysregulated miRNAs are secreted within EVs and play a crucial role in the complex tumor 
microenvironment[91]. MSC-EVs recruited into the tumor microenvironment of oral squamous cell 
carcinoma significantly enhance HUVEC migration, invasion, and tube formation capacity by increasing 
matrix metalloproteinase 1 levels, thereby promoting tumor growth[92]. Thus, EVs provide a potential 
avenue for the treatment of HNSCC.

MSC-EVs can be employed as delivery vehicles to target tumors and surmount intra-tumor barriers. For 
example, MSC-EVs encapsulated with gold nanoparticles demonstrated the capability to penetrate and 
distribute throughout tumor tissues and cells in a model of head and neck cancer[93]. In HNSCC, miR-101-
3p-enriched human BMSC-EVs inhibit the proliferation and tumor growth of oral cancer cells in vitro and 
in vivo by targeting the collagen type X alpha 1 chain gene[94]. Transgenic dental pulp MSCs can secrete EVs 
rich in therapeutic miRNAs, making the application of EV-based gene delivery vectors feasible[95]. 
Genetically engineered MSCs were employed to generate EVs with high expression levels of CXC 
chemokine receptor type 4 as a vector for targeted gene-drug delivery. CXC chemokine receptor 4 
specifically binds stromal cell-derived factor 1 on the tumor surface. EVs carry small interfering ribonucleic 
acids (siRNA), which accumulate at the tumor site and enter the tumor cells to knock down the Survivin 
gene, thus inhibiting tumor growth in vivo[96] [Figure 3]. This gene-drug delivery system has the potential 
for clinical application, providing a new approach to drug therapy for tumors.

REGENERATIVE ROLE OF MSC-EVS IN NEUROLOGICAL DISEASES
The limited regenerative capacity of the nervous system constrains its ability to repair damage, necessitating 
the identification of novel treatments for neurological damage and the alleviation of neurodegenerative 
diseases. Stem cell EVs protect NSC-34 cells from oxidative damage and enhance cell viability, implying a 
potential role for stem cell EVs in motor neuron diseases[97]. MSC-EVs enhance rotational performance and 
attenuate neuropathology, encompassing Purkinje cell  loss, cerebellar myelin loss, and 
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Figure 3. MSC-Exos play different roles in the tumor microenvironment by carrying different biological factors. MSC-Exos recruited in 
the OSCC tumor microenvironment promotes tumor growth by increasing MMP1 levels and promoting HUVEC migration, invasion, and 
tube formation capabilities. Genetically engineered MSC-Exos with high expression levels of CXC chemokine receptor type 4 (CXCR 4) 
specifically bind to stromal cell-derived factor 1 (SDF-1) on the tumor surface. The Exos efficiently accumulate at tumor sites and 
release their small interfering RNA (siRNA) into the tumor cells, knocking down the Survivin gene in tumor cells to inhibit tumor growth.

neuroinflammation[98]. Thus, MSC-EVs offer promising applications for the treatment of neurological 
diseases.

This section discusses how MSC-EVs play a role in neurological injury. MSC-EVs promote normal myelin 
formation, increase mature oligodendrocyte and neuronal cell counts, and significantly enhance learning in 
preterm perinatal brain-injured animals[99]. MSCs mitigate ischemia-reperfusion injury in mouse brains by 
suppressing CDK6 expression through extracellular vesicle miR-26a-5p, inhibiting microglia apoptosis[100]. 
Cell-free preparations containing neuroprotective MSC-EVs can replace MSCs in the treatment of preterm 
infants with hypoxic-ischemic brain injury, thus avoiding the potential risks associated with the systemic 
administration of live cells[101]. Therefore, MSC-EVs may represent a novel strategy for the treatment of 
neurological sequelae following hypoxic-ischemic injury in preterm brains.

Modified EVs have demonstrated increased therapeutic effects to some extent. For example, gold 
nanoparticles (as markers of MSC-EVs) can selectively target pathologically relevant mouse model brain 
regions, where MSC-EVs are taken up by neuronal cells for therapeutic and targeted drug delivery[102]. Iron 
oxide nanoparticles can enhance angiogenesis and reduce inflammation and apoptosis in the damaged 
spinal cord, thereby improving spinal cord function during spinal cord injury treatment[103]. Additionally, 
exercise and BMSC-EVs exert synergistic effects on neuronal apoptosis and synaptic axonal remodeling in 
rats, inducing reductions in neuronal apoptosis, cerebral infarct volume, synapse formation, axonal 
regeneration, and significant recovery of neurological function[104]. Future studies aimed at maximizing the 
positive effects of MSC-EVs in the repair of nervous system pathologies are warranted.

Alzheimer's disease
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive decline in cognitive 
function. MSC-EVs contain various miRNAs that exert beneficial effects by mediating various factors/
molecules and activating signaling cascades to regulate multiple genes, thus reducing neuropathological 
changes in neurological diseases[105,106]. MSC-EVs also carry neurotrophic factors and signaling modulators 
that may serve as potential therapeutic agents for neurodegenerative diseases[107,108]. The utilization of EVs 
represents a new direction for identifying novel therapeutic targets for AD.
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Intranasally administered MSC-EVs improved AD-like phenotypes in a clinical mouse model[109]. Therefore, 
cell-free MSC-EV-based therapy stands as a promising therapeutic strategy for AD. BMSC-EVs reduced Aβ 
deposition and promoted cognitive recovery in AD mice by enhancing the expression of sphingosine 
kinase 1 and sphingosine 1-phosphate 1, thereby improving spatial learning and memory in mice[110,111]. 
Additionally, GDF-15-containing BMSC-EVs upregulated enkephalinase and insulin-degrading enzyme 
expression through the AKT/GSK-3β/β-catenin axis, attenuated Aβ42-induced apoptosis and inflammation 
in SH-SY5Y cells, and enhanced cell viability[112].

Moreover, the presence of brain amyloid-β (Aβ) and specific tau proteome aggregates in the nervous system 
constitutes an important feature in patients with AD. Reducing Aβ accumulation may represent a potential 
treatment mechanism for AD[113]. EVs appear to have the ability to reduce Aβ accumulation and tau 
hyperphosphorylation, as well as transfer neuroprotective substances between neuronal cells[114]. For 
instance, UC-MSCs-EVs reduce neuronal apoptosis and promote neurological recovery in rats by inhibiting 
the activation of microglia and astrocytes[115]. EVs derived from human amniotic fluid MSCs attenuate 
microglia-induced inflammatory damage, thereby significantly reducing neurotoxicity and slowing AD 
progression[116]. Therefore, MSCs -EVs hold promise for the treatment of AD.

Parkinson's disease
Parkinson's disease (PD) is a progressive degenerative neurological disorder characterized by the loss of 
melanin-containing neurons in the substantia nigra and other pigmented nuclei of the brainstem. MSCs can 
differentiate into dopaminergic neurons and produce neurotrophic substances, making MSCs and their EVs 
potential candidates for PD treatment[117]. hUC-MSC-EVs traverse the blood-brain barrier to reach the 
substantia nigra, alleviate apomorphine-induced asymmetric rotation, reduce nigrostriatal dopaminergic 
neuronal loss and apoptosis, upregulate dopamine levels in the striatum, stimulate SH-SY5Y cell 
proliferation, and inhibit apoptosis by inducing autophagy for repair in PD models[118]. Therapeutic 
peroxidase mRNA delivery from EVs designed with the EVtic device attenuates neurotoxicity and 
neuroinflammation in a PD model[119]. This suggests that MSC-EVs offer a novel approach for the treatment 
of PD.

CONCLUSION
Despite the theoretical ability of MSCs to differentiate into multiple human cell types, in fact, most cell types 
are difficult to generate. Even though some differentiated cells are functionally comparable to normal 
human cells, uncertainty remains about their orientation. Additionally, MSCs are difficult to isolate and 
obtain, and their sources are constrained by ethical concerns. The direct injection of stem cells into hosts is 
associated with significant risks, including teratoma and tumor formation, massive graft cell death, vascular 
blockage, and immune responses. In contrast, EV treatment is promising and may be free from these risks. 
MSC-EV can not only achieve the therapeutic effects of MSCs but are also free from ethical issues and 
possess advantages such as weak immunogenicity and reduced risks of tumorigenic effects. While EVs have 
short half-lives and require repeated treatments, they also circumvent the risks of necrosis associated with 
graft death, which can lead to inflammation and vascular obstruction.

This report summarizes the utility of MSC-EVs. In brief, MSC-EVs have anti-inflammatory capabilities for 
treating rheumatoid arthritis, liver injury, COVID-19, and immune system disorders. They employ tissue-
repairing capabilities for treating heart disease, kidney injury, and osteoarticular disorders. They serve as 
carriers to deliver tumor-suppressing factors to target tumor cells in colorectal and head and neck 
squamous cell carcinomas. Furthermore, they possess regenerative effects for the treatment of 
neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease.
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Moreover, the role of MSC-EV in many other intractable diseases is under constant experimentation. In 
immune dysregulation diseases, topical application of MSC-EV inhibits complement activation in the 
stratum corneum, thereby reducing neutrophil aggregation and its release of IL-17 and relieving psoriatic-
like inflammation[120]. MSCs-EV-mediated miRNA-125b is used to attenuate desiccation syndrome in a rat 
model by targeting PRDM1 and inhibiting plasma cells, reducing inflammatory infiltration and restoring 
salivary secretion from salivary glands[121]. Additionally, MSC-EV promotes follicular development and 
improved ovarian activity in a rat model of premature ovarian failure[122]. The miR-369-3p carried by human 
amniotic fluid MSC-EV could inhibit the apoptosis of ovarian granulosa cells and exert therapeutic effects 
on premature ovarian failure[123]. MSC-EV-siRNA may alleviate the developmental progression of 
atherosclerosis and coronary heart disease by promoting cholesterol efflux and inhibiting intracellular lipid 
accumulation[124]. The stage of pancreatic cancer was significantly correlated with the low expression levels 
of miRNA-1231 in the peripheral blood extracellular vesicles. By injection of BM-MSC EV-miR-1231, 
tumor cell proliferation, migration, invasion, and adhesion were inhibited in mice. These results suggest 
that EV-miR-1231 could be a potential drug and diagnostic indicator for cancer therapy[125]. MSC-EV also 
has applications in other neurological disorders. MSC-EV improves a rat model of cavernous nerve injury 
by alleviating cavernous smooth muscle apoptosis[126]. In the experimental rat model, thermosensitive 
hydrogels containing adipose MSC-EVs were injected into the damaged tissues. The experimental results 
showed that EVs were retained and slowly released in the target tissue, effectively treating erectile disorders 
caused by cavernous nerve injury accompanied by radical pelvic surgery[127]. In addition, Intranasal 
administration of MSCs-EV holds promise for improving symptoms in autism-like mice. This finding 
provides new ideas and methods for the clinical treatment of such diseases[128,129]. In a mouse psoriasis 
model, topical application of MSC-EVs suppresses C5b9 complement complex through CD59 and reduces 
IL-17 secreted by neutrophils, thereby alleviating psoriatic skin inflammation[130]. In a sepsis mouse model, 
EVs produced by MSC by significant upregulation of IL-10 generation, inhibit the entry of cytokines into 
the systemic circulation and reduce the infiltration of neutrophils and monocytes, showing an anti-sepsis 
effect[131]. MSC-EVs contribute to regenerating muscle fibers to enhance myogenesis and hold promise for 
treating muscle diseases such as muscular dystrophy[132]. Intrathecal injection of MSC-EVs may alleviate 
suprapubic mechanical anomalous pain and urinary frequency in rats with interstitial cystitis by inhibiting 
the activation of NLRP3 inflammatory vesicles and TLR4/NF-κB signaling pathway, suppressing the 
activation of neuroglia and attenuating neuroinflammation in the dorsal horn of the spinal cord[133]. The 
potential application of MSC-EV in more intractable diseases is ongoing.

MSC-EV-based therapies hold promise, but several challenges remain[134]. First, the safety and efficacy of 
extracellular vesicles remain to be validated, and not all EVs exert positive effects. For example, bone 
regeneration was reduced in type 1 diabetes-derived extracellular vesicles compared to normal rat 
BMSC-EVs[135]. Therefore, selecting EVs that perform the correct function is a major challenge. Second, due 
to their relatively novel nature and limited technological advancements, EVs are difficult to extract. 
Extracted EVs often have low yields, function monofunctionally, possess short effective maintenance times, 
and are challenging to store and transport, limiting their clinical translation. Again, most of the current 
studies on EVs are in the preclinical animal testing stage, and there is still a considerable distance from the 
real clinical application, and the relevance of the relevant mechanisms remains to be verified. Moreover, 
while human embryonic MSC-derived conditioned media could rescue kidney function in rats with 
diagnosed chronic kidney disease, MSC-conditioned medium-derived EVs tested in the same experimental 
setting showed no protective effects on the kidney[136]. MSC-EV antigen CD73 did not exert extracellular 5'-
nucleotidase activity in a mouse model of aGVHD and failed to ameliorate disease symptoms. EVs did not 
show the immunomodulatory potency of MSCs[137]. Consequently, whether the role of MSCs is realized 
through EVs remains somewhat controversial. In addition, it has been reported that EV-carried miRNAs 
have difficulty in fusing with cell membranes to deliver their cargoes, resulting in a failure to induce 
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functional changes in target cells. This suggests that it is controversial whether EV-carried miRNAs act as 
effectors for intercellular communication[138]. Therefore, in clinical treatment, the advantages and 
disadvantages of EV therapy should be reasonably evaluated and integrated with the actual situation of 
individual patients.

With the continuous development of stem cell-related research and technologies, EVs could become a 
crucial therapeutic tool. However, preclinical experiments are not effective in determining clinical 
outcomes. In the face of many challenges, more research is urgently needed to promote the clinical 
application of EVs[139]. Large-scale mass production of EVs is a problem, which requires us to develop new 
techniques to optimize the culture conditions and increase the production volume. Secondly, it is worth 
studying how to separate the target EVs correctly. We need to explore a method that is both simple and 
efficient and maintains the integrity of EV biological efficacy. Targeted delivery of EVs to specific cells 
remains a problem. The discovery of specific receptors may contribute to improving EV targeting. The most 
important thing is to ensure the safety of EVs, which requires extensive clinical trials and long-term studies.

In addition, the biological characterization of the MSC-EV product during clinical translation must be 
reproducible and meet the requirements of the potency assay[5]. The results of existing studies show that the 
properties and potency of MSC-EV products depend on the MSC source and culture conditions: for 
example, 2 D and 3 D MSC culture types, etc. These different manufacturing parameters produce MSC-EVs 
with different therapeutic effects for different diseases. Therefore, it is critical to optimize the manufacturing 
process of human MSC-EV products with the desired properties to ensure quality control, reproducibility, 
and potency assays before clinical application for the expected disease targets. At the same time, measures 
should be taken to mitigate the impact of tissue source and donor on the reproducibility of biological 
activity and therapeutic efficacy of MSC-EV formulations. However, there is considerable uncertainty about 
this effect. Many clinical trials have shown that effective MSCs will produce therapeutically effective MSC-
EVs. The composition of EVs released from transplanted MSCs in vivo may be different from that of EVs 
released from the same cells in vitro. Therefore, how to select therapeutically effective MSCs still needs 
further research. In addition, the very complex mechanism of action of MSC-EVs carrying different 
biological factors in the treatment of diseases is related to their spatiotemporal biodistribution, which 
requires the exploration of sensitive and specific markers to track their spatiotemporal biodistribution. In 
addition, the dose, route of administration, carrier molecule, and site of action of MSC-EVs are also related 
to the mechanism by which MSC-EVs work, and thus longer testing and technological advances are needed.
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