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Abstract
Photocatalysis (PC) and photoelectric catalysis (PEC) are environmental protection technologies that use sunlight 
capacity and environmental governance, and they have a wide range of applications in hydrogen production, 
carbon dioxide reduction, organic degradation, and other fields. When the light is irradiated on the material, part of 
the light energy will be converted into heat energy, and the combination of this part of the heat energy with PC and 
PEC will become an important way to improve optical performance. Compared with traditional technology, the 
synergistic effect of light and heat can obtain higher catalytic performance and improve energy utilization 
efficiency. This review begins with an overview of the principle of photoheat generation, which produces heat 
energy in a non-radiative process through photo-induced instability of electrons. The principle of thermal effect on 
the performance improvement of PC/PEC is analyzed from the dynamics and thermodynamics of photoreaction 
and electric reaction. On this basis, several materials widely used at present are listed, such as oxides, plasmas, 
conductive polymers, carbon materials, and other typical photothermal materials. The specific applications of 
photothermal materials in PC and PEC processes, such as hydrogen production by oxidation, carbon dioxide 
reduction, organic matter reduction, and seawater desalination, were discussed. Finally, the challenges to PC/PEC 
from the introduction of thermal effects are further discussed to provide a clean and sustainable way to build a 
carbon-neutral society.

Keywords: Photothermal effect, photocatalysis, photoelectric catalysis, hydrogen production, carbon dioxide 
reduction
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INTRODUCTION
With the development of the world economy and the increase of population density, the world is facing two 
major crises: one is energy demand, and the other is environmental pollution[1-3]. To develop sustainable 
green energy instead of traditional fossil energy becomes an effective way to solve the energy crisis[4-6]. At the 
same time, reducing carbon dioxide emissions through efficient and energy-saving ways can also effectively 
mitigate environmental pollution[7,8]. Solar energy is the most abundant renewable energy on earth. The 
utilization of solar energy by photosynthesis in nature provides a solution for us. A shift from fossil fuels to 
clean energy, such as hydrogen, could significantly reduce carbon dioxide emissions[9,10]. In 1972, Fujishima 
and Honda first proposed to use TiO2 as photoanodes for water splitting[11]. Using the energy level transition 
of semiconductors under sunlight to decompose aquatic hydrogen or reduce carbon dioxide has become an 
efficient means of solar energy conversion. Common semiconductor materials include TiO2

[12], WO2
[13], 

BiVO4
[14], Fe2O3

[15], Cu2O[16], ZnO[17], etc. All of them have different performance characteristics in 
photocatalysis (PC)/photoelectric catalysis (PEC).

The process of photocatalytic reactions is to excite electrons from the valence band (VB) to the conduction 
band (CB) by using the excitation of light on the semiconductor material to form an electron-hole pair[18]. 
On this basis, PC promotes the separation of electrons and holes through applied voltage[19]. The activity of 
photogenerated charge carriers is largely determined by the thermodynamics and kinetics of semiconductor 
materials[20]. In thermodynamics, the photoexcitation makes the chemical potential of the electron system 
higher than that of the hole system, making ΔG negative, thus generating the photovoltage[21-23]. In terms of 
dynamics, defects and doped atoms in semiconductor materials can act as charge transfer carriers to 
accelerate electron transport and may also act as charge aggregation centers to affect the recombination rate 
of electron holes[24-26]. The current modification techniques mainly focus on the structure of the material 
itself, including band gap doping[27], building nanostructures[28], loading cocatalysts[29], building composite 
heterostructures[30], and other strategies. The principle of its modification is to accelerate the reaction 
kinetics and reduce the thermodynamic electromotive force, thus inhibiting the surface recombination of 
electrons and holes, forming a higher photogenerated current, accelerating the catalytic reaction process, 
and improving the stability of the catalyst[31,32].

However, the improvement of the material performance through structural modification alone has its 
limitations. Therefore, the researchers use other systems to enhance the catalytic performance[33]. Several 
common systems reported today include dual electrodes[34], photovoltaic photoelectrochemical (PV-PEC) 
systems[35], and semiconductor-based physical  effects  such as photothermal[36], pyroelectric[37], 
ferroelectric[38], and piezoelectric[39] effects. Using the physical effects of the material itself is a more refined 
approach than other electrochemical water decomposition systems. In catalytic reactions, reducing and 
utilizing the heat loss of the reaction can better improve the utilization rate of the reaction, so the 
photothermal effect has become an important direction of research[40-42].

Photothermal effects mean that after the material is irradiated by light, the photon energy interacts with the 
lattice, making the vibration intensified, thus increasing temperature[43]. Under the photothermal effect, the 
semiconductor absorbs and concentrates heat from the photons, and the thermal energy generated by the 
photoexcitation can heat the local lattice and enhance the vibration of the phonons. Theoretically, raising 
the temperature will increase the collision probability of the active molecules, promoting the dynamic 
process of the thermodynamic uphill reaction[44-46].
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This paper reviews the application of photothermal effects in PC/PEC systems. Firstly, the principle of 
photothermal effects improving photocatalytic performance is discussed, along with an examination of 
various photothermal materials. Then, the paper separately explores the applications of photothermal 
materials in photocatalytic and photocatalytic systems. Figure 1 shows the review process of the research 
progress of photothermal materials in this paper.

PRINCIPLE OF PHOTOTHERMAL EFFECT
The thermodynamics of PEC processes determine whether the reaction can proceed. The process of 
hydrogen production by PEC cracking water is to carry out redox reactions between the photogenic carrier 
generated by solar radiation on the catalyst surface or the active site of the catalyst and the solution to 
achieve hydrogen and oxygen production [Figure 2A][47,48]. In the research system of photoreaction, 
ultraviolet (UV) light is the main band of sunlight that acts on the photoexcitation of semiconductors. 
However, UV light accounts for only about 5% of the solar spectrum, and extending light absorption to the 
longer wavelength visible or even infrared light region can effectively use the energy of the spectrum. The 
visible light to infrared light region brings stronger photothermal effects in the process of PC[49,50]. High 
utilization rates of light and good photothermal effects have become the consensus of improving energy 
conversion efficiency, but there are many different theories on the mechanism of photothermal effects on 
photocatalytic performance[51].

As shown in Figure 2B, the principle of photothermal effects can be analyzed from the molecular point of 
view. Photothermal materials make electrons enter the excited state by absorbing photons. In the excited 
state, electrons are unstable and undergo a series of deexcitation processes. In these processes, part of the 
non-radiative process will be converted into heat energy and emitted, that is, ultimately manifested as the 
process of converting light energy into heat energy[52-54].

Effect of temperature on equilibrium and rate of chemical reaction
Water splitting as the content of photocatalytic reactions is analyzed. One molecule of H2O can be 
converted to H2 and 1/2 O2 in the following reaction:

Therefore, PC is a typical energy uphill reaction, which needs to absorb heat. Based on the analysis of the 
basic physicochemical mechanism, the temperature adjustment can facilitate the equilibrium movement of 
chemical reactions, thus regulating the water decomposition performance of PEC[55-57].

In 1884, Van't Hoff proposed the relationship between the equilibrium constant K of a chemical reaction 
and the change of temperature T in the Van't Hoff equation[58]:

(K is the equilibrium constant, ΔH is the enthalpy change, R is the gas constant, and T is the temperature).
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Figure 1. Current research progress of photothermal materials.

Figure 2. (A) The illustration of PEC water splitting using a photoanode[53]. Copyright 2022, Elsevier Ltd. (B) The main recombination 
paths of semiconductor photogenerated holes and electrons[57]. Copyright 2013, Royal Society of Chemistry. (C) TAS decay traces of 
the photohole in α-Fe2O3 photoanodes at different temperatures fitted to single-exponential functions. (D) Arrhenius plots of the hole 
decay on α-Fe2O3 photoanodes under various applied biases[63]. Copyright 2011, American Chemical Society.

It can be seen from the equation that for endothermic reactions, with the increase of temperature, PEC 
reactions will move in the positive direction, thus producing more hydrogen and oxygen.

In several reaction steps of PC processes, the oxygen evolution reaction (OER) is the slowest and rate-
determining step (RDS) in the water splitting reaction[59,60]. From the relationship between the most basic 
chemical reaction rate and temperature, it can be inferred that temperature improves the catalytic reaction 
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process. The Arrhenius formula shows the relationship between the chemical reaction rate constant and 
temperature[61]:

(k is the rate constant, R is the molar gas constant, T is the thermodynamic temperature, Ea is the apparent 
activation energy, and A is the pre-factor).

It can be seen from the equation that the pre-factor A determines whether the molecules collide in the right 
direction and only decides whether the reaction can proceed. The index  determines the speed of the 
chemical reaction under the conditions under which the reaction occurs. With the increase of temperature, 
the reaction rate of OER processes is enhanced, and the performance of PEC is further improved[62].

Cowan et al. used transient absorption spectroscopy (TAS) to investigate the temperature-dependent decay 
of photoluminescence holes in α-Fe2O3 during PEC[63]. As shown in Figure 2C, the photogenerated hole 
decay rate of α-Fe2O3 increases with rising temperature. The decay rate of photoluminescence holes is 
positively correlated with temperature under different bias pressures [Figure 2D].

Influence of thermal effects on electrochemical processes
A PEC process is characterized by light-electrochemistry interactions under an applied light that generates 
electron excitation following charge transfer from photoexcited materials. Therefore, it can be used as an 
electrochemical reaction, and its reaction process can be analyzed by an electrochemical reaction 
equation[64]. The Nernst equation is used to describe the quantitative relationship between the electromotive 
force (E) electrolyte concentration of a battery. For the electrochemical process of water decomposition, the 
Nernst's equation can be written as[65]:

From ΔG0 = 237.2 kJ mol-1 of the water splitting reaction, the corresponding PEC initial potential (Ecell) 
should be -1.23 V according to the Nernst equation[55]. When the temperature of the reaction system 
increases, the initial potential of PEC decreases. Under the same light and bias conditions, it is more 
conducive to the movement of charge and promotes the catalytic reaction[66,67].

The paper of Ye analyzed the effect of temperature on the PEC performance of α - Fe2O3 photoanodes in 
water[68]. As shown in Figure 3A, the dark current density of α - Fe2O3 photoanode shifts at different 
temperatures. Figure 3B shows the temperature dependence of the starting potential of the electrode under 
light, and the starting potential is anodized with increasing temperature and decreasing doping level.

Temperature effect of band gap width of semiconductor materials
At present, the widely used photocatalysts are essentially semiconductors. Semiconductor materials have a 
fixed band gap energy (Eg), and the band gap energy width is determined by the energy level of the VB and 
the CB, that is, the energy difference between the lowest point of the CB and the highest point of the VB[69]. 
In order to achieve water splitting to produce hydrogen and oxygen through PEC, the lowest potential of 
CB should be lower than the reduction potential of hydrogen (≤ 0.0 V vs. RHE), and the highest potential of 
VB should be higher than the oxidation potential of oxygen (≥ 1.23V vs. RHE)[70,71]. When a specific 
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Figure 3. (A) The dark current density of hematite photoanodes with different temperatures. (B) Onset potential of a hematite 
photoanode as a function of the illuminated light intensity[68]. Copyright 2016, Stanford University (C) Temperature-dependent band 
gap energy diagram of a TiO2 photoelectrode[69]. Copyright 2023, Springer Nature.

wavelength of light is irradiated on the catalyst, the absorption capacity of the PEC material is equal to or 
greater than the band gap energy of the semiconductor comprising the photoelectrode, which excites the 
electrons in VB to migrate to CB, correspondingly leaving a hole in VB to produce an electron-hole pair[67].

The Varshni's equation can describe the band gap change of a semiconductor with temperature, and its 
equation form is as follows[72]:

(Eg(T) is the band gap at temperature T, and α and β are the property constants of semiconductor materials).

According to the equation theory, the basic trend of material band gap with temperature change is as 
follows: as temperature increases, the band gap width of the material narrows[73]. Figure 3C shows the 
spectrum diagram of the TiO2 band gap width changing with temperature. As temperature increases, the 
band gap energy decreases[69].

Combined with literature analysis, the reasons for the band gap change of a semiconductor with 
temperature can be analyzed from two aspects: first, the increase of temperature and the expansion of the 
lattice inside the material. The second is that the temperature increases and the lattice vibration intensifies, 
resulting in a stronger interaction between the phonons and electrons in the semiconductor[74-76].
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Temperature increases the carrier concentration in the semiconductor
The performance of photocatalysts is determined by three aspects: light absorption capacity, carrier 
separation efficiency, and carrier migration to the electrolyte/electrode interface. The carrier concentration 
plays an important role in increasing the rate of PC[77-79]. It can be seen in Figure 4A and B that when the 
temperature increases, the band gap width of the semiconductor becomes smaller, and the photoelectrode 
can generate more intrinsic carriers under the same photoexcitation condition. In addition, the increase in 
temperature can also benefit the charge transport efficiency in the electrode and promote the separation of 
electron-hole pairs[80-82]. In common photocatalysts, such as TiO2, BiVO4, WO3, and Fe2O3, the minority 
carriers are usually small polarons that are easily trapped, and an appropriate increase in temperature can 
activate the minority carrier transition of the semiconductor[Figure 4C][83].

In their study on the temperature characteristics of BiVO4 photoanodes, Zhou et al. conducted 
electrochemical impedance spectroscopy (EIS) to investigate the interfacial charge transfer kinetics at 
different temperatures[84]. As shown in Figure 4D, the Nyquist diagram at various temperatures shows the 
correlation between the imaginary part (ImZ(f)) and the real part (ReZ(f)). From 23 °C to 35 °C, Rs 
decreased by more than 40%, indicating that the electronic conductivity of BiVO4 increases with increasing 
temperature. At higher temperatures, the small polaron transition of BiVO4 is activated, and more intrinsic 
carriers are generated, which promotes the increase of photocurrent.

CLASSIFICATION OF MATERIALS FOR PHOTOTHERMAL EFFECTS
Many materials exhibit photothermal effects, and currently, five common categories of photothermal 
materials are applied to PC/PEC. One is metal oxides, which include a range of spinel-structured materials. 
The second is metal sulfides, of which the selenides within the same family also demonstrate similar 
photothermal properties. Third, there are metal point materials, most of which manifest plasma effects. The 
fourth category comprises conductive polymers, mainly polyaniline (PANI) and polypyrrole. Fifth, all kinds 
of carbon-based materials, such as carbon quantum dots (CQDs), graphene, carbon nanotubes (CNTs), and 
so on, are included. In this section, the above five photothermal materials currently applied to PC/PEC are 
introduced as follows. Figure 5 shows the main classification of photothermal materials.

Metal oxide
TiO2, BiVO4, and Fe2O3, which are commonly used as photocatalytic semiconductors in current research, 
have certain photothermal effects. Wang et al. synthesize a unique core-amorphous shell structure 
(TiO2@TiO2- x) by an aluminum reduction method, which improves visible and infrared light absorption 
through light collecting effects[85]. After 60 s of simulated sunlight irradiation, the temperature of Black 
TiO2-X rose to 37 °C compared to 28 °C for the original TiO2. The accelerated heating rate of Black TiO2-X is 
due to increased absorption of solar energy, increased electron excitation and relaxation, and enhanced 
thermal emission.

Figure 6A and B lists the study of Zhou et al. on the relationship between the BiVO4 photoanode and 
temperature[84]. The enhancement of its photothermal effect can be attributed to two factors. First, 
concerning the reversible aspect, small polarons in BiVO4 are activated to promote the separation and 
transport of electron holes. Second, in terms of irreversibility, at high temperatures, the BiVO4 photoanode 
interacts with a hole scavenger to form a stepped amorphous layer on the surface, which improves the 
separation of charge carriers.

Dias et al. find that the initial potential of Si-mixed Fe2O3 changes with the increase of temperature, and the 
optimal initial potential is reached at 45 °C[86]. Ye et al. studied the effect of temperature on Ti-mixed 
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Figure 4. (A) Thermally improved doping efficiency. (B) Thermally activated bound polaron hopping[83]. Copyright 2022, John Wiley & 
Sons, Inc. (C) A schematic illustration of the relationship between minority carrier diffusion length (LD) and particle size (LP) as a 
function of temperature[82]. Copyright 2016, Royal Society of Chemistry. (D) Nyquist plot of BiVO4 measured at 1.2 VRHE at different 
temperatures[84]. Copyright 2021, American Chemical Society.

Fe2O3
[87]. When the temperature increases, the required potential to reach saturation photocurrent decreases 

[Figure 6C][87].

In addition to the photothermal effect of the photocatalyst itself, cobalt oxide can make the temperature rise 
rapidly under infrared irradiation in the loaded mixed metal oxide. He et al. place the photothermal 
material Co3O4 as a sandwich between the BiVO4 photoanode film and the FeOOH/NiOOH electrocatalyst 
sheet[88]. When irradiated by 808 nm near-infrared light, the temperature of Co3O4 rapidly rose from 
296.15 K to 333.15 K within 60 s, showing a strong photothermal effect. Zhang et al. use scanning 
photoelectrochemical microscopy (SPECM) to analyze the photoluminescence of BiVO4/CoOx 
[Figure 7A][89]. Under light, as the substrate temperature increased, the probe current showed a positive 
correlation [Figure 7B], during which temporal holes accumulated on the surface of the photoanode and 
participated in the oxidation process [Figure 7C].

Some metal oxides with spinel structures also have photothermal properties and are used in photocatalytic 
hybrid materials. He et al. studied spinel-type MCo2O4 oxide (M = Ni, Mn, Zn, Cu, and Fe) materials and 
designed NiCo2O4 (NCO)/BiVO4 photoanodes[90]. With the help of photothermal effects, the photocurrent 
density of the photoanode was 6.20 mA cm-2 at 1.23 V reversible hydrogen electrodes. The oxides of spinel 
structures absorb light and heat energy under infrared irradiation by virtue of their photothermal 
properties. The band bending at the interface between photothermal catalysts and photocatalysts is 
increased, which is conducive to the transfer of holes to MCo2O4.
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Figure 5. Main classification of photothermal materials.

Figure 6. (A) Schematic diagram of improvement of charge transfer with temperature increase. (B) The change of photocurrent density 
of BiVO4 with temperature[84]. Copyright 2021, American Chemical Society. (C) Photocurrent density-voltage (J-V) characteristics of 
Si-doped α-Fe2O3 photoelectrodes at different temperatures[86]. Copyright 2014, Elsevier Ltd.

Huang et al. use spinel oxide NCO as a photothermal material to assist TiO2 photoanodes to enhance their 
PEC performance[91]. NCO/TiO2 obtained a photocurrent of 2.34 mA cm-2 at 1.23 VRHE. The dynamic 
oxidation of Ni2+ in NCO catalysts was tracked by cyclic voltammetry (CV). As shown in Figure 7D, the 
oxidation peak of Ni2+ to Ni3+ transformation is between 1.3-1.4 V, and under the irradiation of near-
infrared light, the oxidation peak potential continues to move downward. The results indicate that the 
photothermal conversion can promote the pre-oxidation of Ni2+, which is conducive to the subsequent 
formation and catalytic reaction of Ni-OOH. In addition, as analyzed by EIS, NCO showed an earlier 
transition peak at a lower potential of 1.45 VRHE under near-infrared light, which may be due to the 
photothermal effect that promotes faster deprotonation of *OOH [Figure 7E and F].
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Figure 7. (A) Principle of the SPECM setup. (B) Probe current curve with temperature. (C) Rate constants (Keff) of composite 
photoanodes at different temperatures[89]. Copyright 2021, Academic Press Inc Elsevier Sci. (D) The change of CV curves for the NCO 
electrode under NIR on and NIR off conditions. (E) EIS-derived Bode plots of NCO. (F) EIS-derived Bode plots of NCO- NIR[91]. Copyright 
2023, Elsevier Sci.

Hu et al. deposit ZnFe2O4 nanoparticles (NPs) on the surface of Fe2O3 and the charged small poles generated 
by the photothermal effect of ZnFe2O4 combined with the positively charged oxygen vacancy[92]. The 
synergistic effect between the photothermal effect and the oxygen vacancy improved the performance of 
PEC.

As the first reported photothermal material in PEC, the current research mainly focuses on the oxides 
containing Co and Fe elements, whose advantages are relatively low price, and as a semiconductor material 
itself, it can improve the performance of PEC even without heating.

Metal sulfide and metal selenide
Sulfides also have a certain photothermal effect, and the most common sulfides are mainly Cu2S, Bi2S3, 
MoS2, and so on[93]. Zhang et al. constructed Cu2S/Fe2O3 heterojunction photocatalysts and improved their 
PEC performance by utilizing the heterojunction and photothermal effects[94]. The formation of S-O bonds 
at the heterogeneous interface of Cu2S and Fe2O3 makes contact tighter and reduces the interface contact 
resistance, thus promoting charge transfer and improving stability. In addition, Cu2S itself has high 
photothermal properties, and its photothermal effect makes the heterojunction electrode reach a local high 
temperature under light, which is conducive to accelerating the OER rate[95].

Zhao et al. deposit the narrow band gap semiconductor Bi2S3 on the surface of WO3 nanosheets[96]. Using the 
photothermal conversion characteristics of Bi2S3, the photocurrent density of Bi2S3/WO3 composite 
photoanodes to the reversible reference electrode reaches 4.05 mA cm-2 at 1.23 V (VRHE). An EIS Nyquist test 
was performed on the material to analyze its photothermal effect. The fitting values extracted from the 
Nyquist diagram are listed in Table 1. The Rbulk value of PI-WO3/Bi2S3 (25.97 Ω) is smaller than that of 
WO3/Bi2S3 (43.61 Ω), and the surface photothermal effect enhances charge transfer.

In addition, some ternary sulfides, CdSeS, ZnInS, and ZnCdS, which have similar spinel structures, have 
also been applied to photothermal PEC processes[97-99].
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Table 1. Fitting results of Rs, Rbulk, and Rint for different samples by ZVIEW[96]

Photoanodes Rs (Ω) Rbulk (Ω) Rint (Ω)

WO3 25.60 57.58 5,713

PI- WO3 25.36 53.68 4,890

Bi2S3/WO3 25.62 43.61 2,905

PI- Bi2S3/WO3 25.20 25.97 1,898

As a congener of sulfides, selenides have similar properties, but there is currently limited research on metal 
selenides used in photothermal applications. Li et al. prepared MoSe2-CDs-ZnO (M2CZ2), in which MoSe2 
nanosheets strongly absorb light at the full spectrum (from UV to near-infrared) and can be used as the 
main photothermal materials[100]. The hydrogen production of M2CZ2 was investigated under the condition 
of a water bath. After heating for 4 h, the H2 precipitation of M2CZ2 reached 158.6 μmol cm-2. As shown in 
Figure 8A, after 2 min irradiation, M2CZ2 increased by about 32 °C, indicating a significant temperature 
rise, while the control group only increased by 15 °C. Figure 8B shows the temperature changes of different 
electrodes in electrolytes under the irradiation of 300 W Xe lamps. M2CZ2 increases by 20 °C, which proves 
that it can also significantly increase temperature in PEC systems. The reaction hydrogen production 
process and thermal imaging diagram are shown in Figure 8C and D.

As S and Se are in the same family as O, the properties of sulfides and selenides themselves have many 
similarities with oxides. However, due to the fact that the synthesis of sulfide (selenide) itself produces toxic 
gases, such as hydrogen sulfide, and the cost is relatively higher, there are few literature studies on these two 
types of materials.

Metal nanodots
Among many photothermal materials, metal nanodot materials have their unique photothermal properties, 
that is, the local surface plasmon resonance effect (LSPR) of metal NPs[101,102]. The size of the metal NPs is 
smaller than the wavelength of the incident light, and the free electrons on the surface of the conductive 
material are excited and oscillate[103]. When the electron vibration frequency matches the incident light 
frequency, the metal NPs will produce strong absorption of the photon energy, resulting in resonance 
effects, which will stimulate the production of hot electrons [Figure 9][103-105].

Plasma materials require good chemical stability and high stability. Among them, Au NPs, as plasma 
materials, have been widely studied for PEC[106,107]. Tang et al. deposited NiCoOx electrocatalytic layers on 
the surface of Au NPs[108]. Due to the LSPR and photothermal effect of plasma Au NPs, the current density 
of NiCoOx/Au anode increased by 7.01 mA cm-2 under light. Figure 10A and B shows optical simulations of 
Au NPs and NiCoOx separated Au NPs at an excitation wavelength of 550 nm. The edge of the Au NPs in 
the two images forms a strong spatial non-uniform oscillating electric field, which is a characteristic of the 
LSPR effect. Agarwal et al. use a silicon material as the inner core of the Au-loaded plasma film (Au-coated 
Si nanowire)[109]. The use of a semiconductor metal nanowire cavity to enhance the plasma properties of the 
Au NPs results in the resonance of intense heat [Figure 10C]. Under light conditions, the temperature in the 
nanowire cavity reaches ~1,000 K, which increases the H2 formation rate of ethanol photoreforming 
reactions by about 40%. Zhang et al. deposited 20 nm Au NPs on the nanotube array of TiO2 and used the 
hot electrons generated by the LSPR effect of Au to inject the conduction band of TiO2, resulting in a 
photocurrent density of about 150 μA cm-2 under visible light[106].
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Figure 8. (A) Photocatalytic hydrogen production at a photoelectrode with water bath heating at 0 V (vs. Ag/AgCl). (B) Photocatalytic 
hydrogen production at a photoelectrode without water bath heating at 0 V (vs. Ag/AgCl). (C) H2 generation on Pt counter electrodes 
with light irradiation. (D) Infrared thermal images of the CdS-ZnO-Au-PWE (a-d) and M2CZ2 (e-h) under different irradiation times of 
300 W Xe lamps[100]. Copyright 2021, Elsevier Ltd.

Figure 9. Four energy transfer mechanisms from a plasmonic NP to an n-type semiconductor to drive water oxidation: (A) light 
scattering, (B) hot electron injection, (C) light concentration, and (D) plasmon-induced resonance energy transfer (PIRET)[104]. 
Copyright 2015, American Chemical Society.
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Figure 10. (A) Spatial normalized distribution of electric fields of gold nanoparticles (top) and NiCoOx-separated gold nanoparticles 
(bottom). (B) Spatial distribution of electric field intensity inside the cavity under TM excitation for 10 nm Au-coated Si nanowire at 
532 nm [108]. Copyright 2023, John Wiley & Sons, Inc. (C) Temperature versus laser power for Au-coated and bare Si nanowires under 
TM polarization at 659.4 nm excitation[109]. Copyright 2017, American Chemical Society. (D) Infrared images taken under both full-
spectrum, UV light, and λ ≥ 450 nm after irradiation for 30 mins of the TiO2, Cu/ TiO2, and Cu/TiO2-after reactions (Cu/TiO2- R)[114]. 
Copyright 2020, John Wiley & Sons, Inc.

The cost of Au is expensive, and metals Ag, Cu, Fe, Ni, Bi, and other NPs are also used as cost-effective 
materials[110-113]. Song et al. prepare Cu/TiO2 NPs, and the introduction of 3-6 nm Cu NPs significantly 
improved the photocatalytic hydrogen production rate of TiO2

[114]. The photothermal effect of Cu NPs 
causes the local temperature of the catalyst surface to increase, which significantly reduces the activation 
energy of the reaction and improves the charge separation efficiency [Figure 10D]. Li et al. use a chemical 
reduction method to hybridize Cu NPs with TiO2 in situ[115]. Under the display of an infrared thermal 
imager, the temperature of Cu/TiO2 composites can reach about 80 °C after 2 min of illumination, while the 
temperature rise of TiO2 is not obvious. In the test of hydrogen production, the hydrogen production of 
Cu/TiO2 gradually rises with the increase of temperature, and the hydrogen production rate is as high as 
24,160.69 μmol g-1 h-1 at 100 °C. This provides a low-cost and high-efficiency preparation method of noble-
free photocatalysts for constructing photocatalytic materials. Subramanyam et al. add Bi NPs to the 
C3N4/Bi2S3 photoanode by a drip method, and the photocurrent density of the composite can reach 
7.11 mA cm-2[116]. The surface plasmon resonance (SPR) characteristics of Bi NPs improve the light 
absorption and charge carrier density, which is conducive to improving the PEC performance.

The photothermal effect of metal nanodots is largely derived from the plasmon resonance effect. At present, 
the application reports of metal nanodots are mainly concentrated in the field of PC. Among them, the 
photothermal effect of Au and Ag is better, but the corresponding cost and synthesis conditions are also 
elevated. At present, the research of Cu nanodots is more popular, and the investigation of other common 
metal nanodots needs to be further explored.



Page 14 of 31 Zhang et al. Microstructures 2024;4:2024008 https://dx.doi.org/10.20517/microstructures.2023.51

Conductive polymer
As an organic conductive material, conductive polymers are mainly based on hole transport, and it has been 
proved by experiments that they also have photothermal conversion effects, which can be applied in 
photothermal PEC[117].

Zhao et al. constructed Co-Pi/PANI/BiVO4 composite photoanodes with PANI and cobalt phosphate 
(Co-Pi) as cocatalysts[118]. On the one hand, as a hole carrier, PANI and BiVO4 form p-n heterojunction to 
enhance charge separation. On the other hand, the photothermal effect of PANI causes the temperature of 
the reaction electrode to rise, activates the minority carrier transition, and further improves the charge 
separation efficiency. A significant water oxidation photocurrent of 4.05 mA cm-2 was obtained at 1.23 VRHE, 
which is more than 300% higher than the original BiVO4 photoanode [Figure 11A and B].

Xu et al. propose to use the conjugated polymer polypyridine (PPy) with high conductivity and good 
photothermal effects as a multifunctional surface modifier for the photoelectrochemical (PEC) water 
decomposition of terene metal sulfides (CdIn2S4, CIS)[119]. The principle of near-infrared photoanodes 
applied to PEC water cracking is shown in Figure 11C. The introduction of Ni further accelerates the 
surface reaction kinetics, including the reduction of charge transfer resistance and the negative 
displacement of the plane band potential. In addition, PPy exhibits photothermal properties under near-
infrared radiation, which can be targeted to improve the surface temperature of the photoanode material.

At present, the research literature on photothermal materials of conductive polymers is the scarcest 
compared with other types of materials, and the main field is focused on PEC. Conductive polymers 
inherently possess good electrical conductivity and light absorption effects, but the challenge lies in 
effectively combining conductive polymers with photoelectric materials. Therefore, they hold substantial 
development prospects in the future development of photothermal materials.

Carbon-based materials
In many studies, carbon-based materials are often used as carriers of electrocatalysts because of their large 
surface area and excellent charge mobility. The carbon-based material itself has a darker color, and it also 
has a good application prospect in the light absorption of photothermal conversion[120-122].

CQDs, as typical carbon-based photothermal materials, can effectively convert the energy of near-infrared 
light into local heat and are the most widely used photothermal materials in carbon-based materials[123]. 
Hu et al. prepared Co-Pi/CQDs/Fe2O3/TiO2 photoelectrodes using Fe2O3/TiO2 as the main photocatalyst 
material by combining CQDs and other materials[124]. Under the irradiation of 808 nm near-infrared light, 
the platform temperature of Co-Pi/CQDs/Fe2O3/TiO2 can reach 42 °C, indicating that CQDs have high 
photothermal conversion efficiency. At 1.23 VRHE, the current density greatly increased as the electrolyte 
temperature rose, confirming the possibility of elevating the electrode operating temperature to improve the 
activity of the α-Fe2O3 photoanode.

Cai et al. prepare (Ti, Zn) -Fe2O3@Ti -Fe2O3@C&Co-Pi by means of heteroatomic mixing, in which CQDs 
are attached to Fe2O3 rods in the form of anchor points[125]. CQDs produce local thermal effects under near-
infrared irradiation; the photocurrent density increases to 1.02 mA cm2, and the initial potential shifts by 
0.87 V. The photothermal effect increases the contact potential difference and band bending at the 
semiconductor-electrolyte interface [Figure 12].
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Figure 11. (A) Temperature-dependent photocurrent-voltage curves of the BiVO4 photoanode. (B) Temperature-time plots of BiVO4 
and PANI/BiVO4 with NIR light[118]. Copyright 2020, Royal Society of Chemistry. (C) Schematic illustration of the band energy 
alignment of CIS/Ni-PPy + NIR photoanodes[119]. Copyright 2022, John Wiley & Sons, Inc.

Figure 12. (A) The structure diagram of (Ti, Zn) -Fe2O3@Ti -Fe2O3@C&Co-Pi. (B) The temperature variation of the sample under 10 W 
illumination. (C) The band alignment of the sample under AM 1.5 and NIR illumination[125]. Copyright 2023, Elsevier Ltd.

As a two-dimensional conductive material, the excellent electrical properties of graphene find frequent 
applications in photoelectric material composites[126]. Wu et al. synthesize rGO/Na2Ti3O7 nanospheres by a 
hydrothermal method [Figure 13A][127]. The coupling of layered Na2Ti3O7 and rGO significantly improved 
the PEC properties under visible light irradiation. Under light irradiation, the rGO/Na2Ti3O7 microsphere 
can act as a microheater, and the local temperature is significantly increased, making it much higher than 
the average solution temperature. This local thermal effect can effectively absorb the reactants and 
significantly accelerate the reaction kinetics. In addition, the electrons on the rGO sheet can gain extra 
energy to move quickly, inhibiting the recombination of electron holes.

In Figure 13B and C, Fang et al. synthesize g-C3N4 materials by a hard template method and study the 
hydrogen production rate of g-C3N4 under three ways of photothermal catalysis, PC, and thermal 
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Figure 13. (A) Schematic diagram of the growth mechanism of Na2Ti3O7 and rGO/Na2Ti3O7 microspheres[127]. Copyright 2020, 
American Chemical Society. (B) Hydrogen evolution rate over melamine (M-CN) via the TPC (80 °C), PC and TC (80 °C) pathways. 
(C) Hydrogen evolution rate over cyanamide (C-CN) via the TPC, PC and TC pathways[128]. Copyright 2023, Elsevier Ltd.

catalysis[128]. At 60 °C, the photothermal synergistic hydrogen production rate reaches 1,932.9 μmol g-1 h-1, 
which is much higher than that of thermal catalysis or PC alone. With the increase of temperature, the 
thermal catalytic performance of C3N4 is improved more obviously, which shows that C3N4 has a good 
photothermal conversion performance.

In addition, the photothermal properties of carbon hemispheres, three-dimensional CNTs, and carbonized 
melamine foam (C-MF) have also been reported [129,130].

Other photothermal materials
In recent years, a variety of photothermal materials have appeared, such as organic matter, MXenes, 
elemental S, etc., which can improve the photocatalytic performance by increasing the temperature of the 
photoelectrode.

As two-dimensional metal carbide materials, MXenes have many similarities with graphene in structures 
and properties. Under infrared irradiation, MXene materials can generate a lot of heat and increase the 
surface temperature of the photoanode. Xie et al. graft MXene nanosheets as surface modifiers onto ZnO 
nanorods[131]. Under light, the temperature of MXene nanosheets rapidly increased from 17.8 °C to 35.7 °C 
[Figure 14A].

Zhang et al. constructed sulfur-mixed iron nickel-metal hydride oxide (S-NiFeOxHy/CC) on carbon 
cloth[132]. As shown in Figure 14B, UPS tests show that the valence band of S-NiFeOxHy/CC shifts towards 
Fermi level when sulfur is mixed, which makes S-NiFeOxHy/CC have stronger light absorption performance 
for the full spectrum of sunlight. The surface temperature of S-NiFeOxHy/CC increases rapidly under light, 
up to 82.6 °C [Figure 14C].
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Figure 14. (A) Time-dependent temperature curves of the electrolyte ZnO/MXene nanorod arrays irradiated by 808 nm NIR light[131]. 
Copyright 2022, American Chemical Society. (B) The UPS spectra of NiFeOxHy/CC and S-NiFeOxHy/CC. (C) The UV-vis-NIR 
absorption spectrum of S-NiFeOxHy /CC[132]. Copyright 2023, Elsevier Ltd.

In addition, there are also researchers to develop various types of photothermal materials to harness 
synergistic effects.

Zhang et al.  prepare a snowflake Cu2S/MoS2/Pt material by a hydrothermal method and 
electrodeposition[133]. Under infrared induction, the photothermal effect of MoS2 can generate a larger 
photocurrent by increasing the electron transfer speed and interface electrochemical reaction, and the LSPR 
effect of Pt NPs further stabilizes the photothermal properties of the material. At the same time, due to the 
special geometric and electronic structure of Cu2S, it has a positive effect on hydrogen production by PEC.

Cao et al. constructed CQDs/Au/TiO2 nanorod array composite photoanodes[134]. The electric field of 
CQDs/Au/TiO2 photoanodes was simulated by a finite element method. Due to the SPR effect, the electric 
field near Au is obviously enhanced. The coupling between Au and TiO2 promotes the transfer of hot 
electrons to the semiconductor through the metal-semiconductor interface. The electric field inside CQDs is 
the smallest in the whole region, which plays the role of hole heat collection. The synergistic effect of Au 
and CQDs not only stimulates the small polaron transport activity of semiconductor TiO2 but also 
accelerates the charge transfer and surface reaction from the aspects of kinetics and thermodynamics. The 
H2 precipitation rate of CQDs/Au/TiO2 photoanodes is five times that of blank TiO2.

By electrodeposition and CV, Zhao et al. load Au NPs and rGO onto TiO2 nanotube arrays, respectively, to 
prepare Au/rGO/TiO2 photoelectrodes[135]. COMSOL is used to simulate the temperature field of the 
photoelectrode. As shown in Figure 15A and B, due to the high thermal conductivity of rGO, the heat 
transfer of Au NPs to TiO2 can be accelerated, so Au-rGO/TiO2 can more fully transfer heat from the top of 
the nanoring to the nanotube. The synergistic effect between the thermal plasma effect of Au NPs and the 
excellent heat transfer performance of graphene oxide was confirmed.

APPLICATION OF PHOTOTHERMAL MATERIALS
The research of photothermal materials is not only limited to the mechanism of photothermal generation of 
the material itself but also fully applied to its photothermal properties in all directions. Through the 
combination of PC, solar cells, etc., the performance of photothermal materials can be realized[136-138]. The 
energy utilization rate can be improved, and the product conversion rate can be improved. Figure 16 shows 
the application areas of different photothermal materials.

PC and photothermal effect
Photothermal catalytic water decomposition
For photocatalytic water decomposition, the thermal energy converted by the full spectrum of sunlight can 



Page 18 of 31 Zhang et al. Microstructures 2024;4:2024008 https://dx.doi.org/10.20517/microstructures.2023.51

Figure 15. (A) Thermal imaging of TiO2-based photoelectrodes under AM 1.5 irradiation change over time. (B) Steady-state 
temperature simulation of Au NPs as nano-heat sources (COMSOL)[135]. Copyright 2023, Elsevier Ltd.

Figure 16. Application direction of photothermal materials.

effectively improve the catalytic performance. For photocatalytic water decomposition, the thermal energy 
converted by the full spectrum of sunlight can effectively improve the catalytic performance. Table 2 lists 
the hydrogen production performance of TiO2 supported by different photothermal materials at elevated 
temperatures.
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Table 2. Hydrogen production rate of photothermal catalytic hydrogen evolution material under thermal effect

Photoanodes Temperature 
(°C)

H2 evolution rate 
(mol g-1 h-1) Reference

Ni2P/TiO2 90 6,600 [139]

rGO/TiO2 70 7,820 [140]

Cu/TiO2 90 8,120 [114]

SiO2/Ag@TiO2 100 13,300 [141]

Cu2O-rGO/TiO2 90 17,800 [142]

Hu et al. prepared rGO-modified Cu2O-supported TiO2 photocatalysts and applied them to photothermal 
synergistic catalytic hydrogen production[142]. Under the condition of PC, the hydrogen production rate 
reached 178 μmol·h-1 at 90 °C, which is about 4.7 times the sum of photocatalytic and thermocatalytic 
hydrogen evolution activities (38 μmol·h-1) at 25 °C. It can be seen that the amount of hydrogen evolution 
under photothermal coupling catalysis is much higher than that under PC or thermocatalysis. According to 
the analysis of solar spectral light absorption, TiO2, Cu2O, and rGO in the composite material represent the 
utilization of UV light, visible light, and infrared light, respectively, achieving gradient utilization. The 
photothermal effect produced by graphene between semiconductors can accelerate the rate of electron and 
hole transfer on the catalyst surface.

Zhang et al. also use the gradient absorption of solar energy to co-modify In2O3 with transition metals Fe 
and Cu[143]. Fe doping widens the radiation response range of the intrinsic part of the semiconductor, while 
Cu doping is beneficial to the absorption of visible infrared light and produces photothermal synergies. As 
shown in Figure 17A, the photo-driven photothermal catalytic reaction system (PDS) is built with quartz, 
and the system energy uses full-spectrum xenon lamps. The catalyst film was placed on the quartz scaffold, 
and the reaction temperature was maintained by the thermal effect generated by the light catalyst film. The 
DFT calculation of the reaction process is also carried out, and the results show that the increase of 
temperature can directly affect the chemical reaction by reducing the energy barrier of RDS.

Ding et al. coated CIZS@Ru photocatalysts on the surface of a C-MF net[144]. In the photocatalyst, C-MF 
absorbs vision-infrared light, while the photocatalyst captures UV-visible light. A spatially separated 
photothermal coupling photocatalytic reaction system was designed. The whole device can float on the 
water surface, reducing the refraction loss of light through the water and the transmission resistance of 
hydrogen [Figure 17B and C]. The distribution of the photocatalyst on the surface of the photothermal 
material reduces the local heating distance and helps to improve the influence of local heat on the 
photocatalytic activity. Driven by the photothermal effect, the hydrogen evolution performance of the 
material reached 603 mmol h-1 m-2.

Photocatalysis and water vapor
For the water decomposition process, the increase in temperature will promote the conversion of water into 
water vapor, increasing the catalytic contact surface.

Han et al. prepare the g-C3N4 (CW-HCN) system by growing spherical g-C3N4 (HCN) on carbonized wood 
(CW) by hydrothermal methods[145]. The H2 precipitation rate reached 2,700.18 μmol m-2 h-1 under sunlight. 
As shown in Figure 18A, CW acts as the growth base for the g-C3N4 photocatalyst and also acts as a steam 
generator. The carbonization layer uses visible and near-infrared light in the solar spectrum to produce 
steam, while the UV light and part of the visible light are absorbed by g-C3N4 to produce electron-hole pairs 
for the decomposition of water. The combination of photoheat and PC greatly expands the utilization of 
solar photons.
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Figure 17. (A) Schematic diagram of a photo-driven photothermal catalytic reaction system (PDS)[143]. Copyright 2023, American 
Chemical Society. (B) Physical images of C-MF at different locations in solution. (C) Schematic diagram and thermographic image of C-
MF/CIZS@Ru in solution illuminated at different positions for 1 h[144]. Copyright 2022, American Chemical Society.

Figure 18. (A) Photo of the photothermal-photocatalytic H2 evolution system[145]. Copyright 2023, Academic Press Inc Elsevier Sci. (B) 
The Schematic of the utilization of sunlight and water splitting performance in liquid-solid and gas-solid systems with different catalyst 
dispersion states under high light intensity[146]. Copyright 2023, John Wiley & Sons, Inc. (C) Schematic diagram of a thermocouple-
controlled photocatalytic CO2 reduction device[147]. Copyright 2021, American Chemical Society.

Li et al. design K-SrTiO3 catalysts loaded with TiN silica wool at the water-air interface[146]. The thermal 
effect is used to convert liquid water into water vapor, thereby reducing the reaction-free energy of the 
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catalyst and improving the permeability of the catalytic product. The photothermal catalytic hydrogen 
production efficiency can reach 275.46 mmol m-2 h-1, which is more than twice the decomposition efficiency 
of liquid water [Figure 18B].

Photothermal catalysis and CO2 reduction
Photothermal catalysis is used to reduce CO2 and convert CO2 into fuel through photothermal catalysis. 
Wu et al. load Nb2C and Ti3C2 onto Ni NPs[147]. Nb2C and Ti3C2 are two typical MXene materials with 
photothermal effects, which can improve the photothermal catalytic activity of Ni NPs. In the catalytic 
reduction process, the temperature of the reaction system was increased by adding strong light. The activity 
of Nb2C/Ni was increased with the increase of light intensity, and the CO2 conversion rate of Nb2C/Ni NPs 
reached 8.50 mol·gNi

-1·h-1. In order to explore the effect of its thermal effect on temperature, a reactor was 
built, as shown in Figure 18C. The temperature of the reactor was controlled by a self-made heating device, 
and the thermocouple was placed under the catalyst film to explore the CO2 conversion rate through 
temperature control.

Photothermal catalysis and organic degradation
PC is a common method used in organic matter degradation, and the efficiency of photocatalytic pollution 
degradation can be further improved by using the photothermal effect[148,149]. Huang et al. introduced oxygen 
vacancies into BiOI nanosheets (named BiOI-8) with low concentration nitric acids and applied them to 
photocatalytic degradation of formaldehyde[150]. As shown in Figure 19A, the photocatalytic performance of 
BiOI-8 nanosheets improved with the increase of temperature. The catalytic activity of BiOI-8 nanosheets at 
60 °C was 20% higher than that at room temperature. The BiOI-8 nanosheets were tested in an industrial-
grade photocatalytic unit [Figure 19B]. Huang et al. prepared CeO2/CeN photocatalysts[151]. The prepared 
CeO2/CeN composites showed higher photothermal catalytic performance than the original CeO2 in 
removing organic pollutants. The enhancement of photothermal catalytic activity is due to the formation of 
the phase interface boundary of effective photothermal catalytic degradation due to the introduction of CeN 
[Figure 19C and D].

PEC and photothermal effect
PEC and photothermal effect
In the application of photothermal materials in PEC water decomposition, there are more reports on the 
enhancement of photothermal effects by applying infrared radiation. As shown in Table 3, the photocurrent 
density of PEC of different materials is significantly improved with its addition.

Xiong et al. built CoCr2O4/g-C3N4 and used the strong absorption of CoCr2O4 NPs in the near-infrared 
region to improve the temperature of the reaction center to improve the performance of PEC[152]. The simple 
CoCr2O4 NPs did not show photocatalytic activity of PEC hydrogen production, but the average hydrogen 
production rate under UV-vis-IR was as high as 1,525.1 μmol g-1 h-1, which was four times higher than that 
of pure g-C3N4.

Lin et al. load NCO nanomedles with nickel foam (NF) to promote their OER properties through infrared 
thermal effects[153]. The local thermal effect of infrared radiation on the catalyst increases the surface 
temperature of NCO, which proves that the decrease of electrochemical activation energy caused by 
infrared thermal effects is the reason for the increase of OER activity. It can be seen from the linear sweep 
volt (LSV) curve [Figure 20A] that NF/NCO exhibits significantly enhanced OER activity under continuous 
infrared irradiation. After infrared irradiation, the surface temperature of NF/NCO rose sharply and 
reached 48.1 °C within 15 s. The nanoneedle arrays of NCO further improve infrared absorption by 
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Table 3. Compare the performance of PEC with or without NIR

Photoanode Photothermal effector 
materials

Photocurrent density 
(1.23 VRHE)

Photocurrent density with NIR 
(1.23 VRHE) Reference

Au/Ni/ITO/BiVO4@CoPi Ni 3.28 mA cm-2 5.19 mA cm-2 [83]

NiOOH/FeOOH/Co3O4
/BiVO4

Co3O4 4.49 mA cm-2 6.34 mA cm-2 [88]

Bi2S3/WO3 Bi2S3 3.60 mA cm-2 4.60 mA cm-2 [96]

PANI/BiVO4 PANI 3.01 mA cm-2 4.05 mA cm-2 [118]

CIS/Ni-PPy PPy 3.75 mA cm-2 6.07 mA cm-2 [119]

Co-Pi/CQDs/Fe2O3/TiO2 CQDs 1.65 mA cm-2 3.00 mA cm-2 [124]

Figure 19. (A) Photocatalytic degradation of HCHO at different temperatures at 45 min. (B) Photograph of large-scale photocatalytic 
devices[150]. Copyright 2018, Elsevier Inc. (C) Photo-thermocatalytic performance of pollutant degradation. (D) Representation of the 
formation of CeO2/CeN nanorods[151]. Copyright 2018, Royal Society of Chemistry.

Figure 20. (A) LSV curves obtained on the NF/NiCo2O 4. (B) Structure of jacketed glass electrochemical cell for PEC performance 
measurement. (C) NiCo2O4 (NF/NiCo2O4) electrodes supported by nickel foam with and without NIR[153]. Copyright 2023, Academic 
Press Inc Elsevier Sci.
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providing a larger specific surface area and reduced infrared diffuse reflection. The reaction devices are 
shown in Figure 20B and C.

Dong et al. design a co-modified N,Ni-BVO/N-TNA photoanode with N and Ni double-point defects on 
the basis of BiVO4/TiO2 heterojunction photocatalysts[154]. Through co-doping, oxygen vacancies are 
formed, greatly improving the photothermal effect of the infrared drive, which makes the maximum 
temperature of the lifting solution rise to 48.6 °C. The increase of solution temperature also decreases the 
interfacial resistance of the heterojunction, leading to faster electron transport.

Thermal effect of PEC combined with perovskite batteries
Perovskite is one of the most widely used materials in solar cells. PEC can be realized by its effect of light 
absorption and light heat transfer[155].

Tang et al. design a composite photoelectrode (Au/Ni/ITO/BiVO4@CoPi) with both photothermal and 
photoelectric conversion[83]. As shown in Figure 21A, bismuth vanadate and perovskite cells absorb sunlight 
in the bands of 300-505 nm and 505-850 nm to generate sufficient water decomposition photovoltage and 
photocurrent. The 850-2,000 nm (infrared light region) nanometer metal nickel layer is used to generate 
heat to promote the photogenic charge collection process and water decomposition reaction rate of the 
electrode. The system can increase the electrolyte temperature from 293.15 K to 328.15 K by self-drive and 
achieve 4.28 mA cm-2 light-driven water and light decomposition current. The photothermal substrate 
(Au/Ni/ITO) was tested by an infrared imager at a temperature of 62.0 °C under infrared irradiation for 
only 8 min, which verified the significant photothermal conversion effect of the material.

Wang et al. deposit NiFe layer double hydroxide (NiFe LDH) on a three-dimensional CNT scaffold[129]. A 
water decomposition system was constructed by connecting a CNTs@NiFe LDH//Pt/C electrochemical cell 
(EC) with a semitransparent perovskite solar cell (ST-PSC) micromodule in series [Figure 21B]. Infrared 
radiation can pass through the translucent PSCs, introducing a photothermal effect on the EC electrode, 
thus making better use of the full solar spectrum. With the aid of the photothermal effect, the STH 
efficiency of the tandem system is improved by 12%. The reaction device is shown in Figure 21C.

Photothermal effect of PEC and seawater desalination
In the earth's water resources, the effective use of seawater can effectively achieve environmental energy 
saving and water resource regeneration[156].

Cai et al. use the photovoltaic and photothermal coupling effects of GeSe-based photoelectrodes to be 
applied in solar desalination[157]. When combined under the irradiation of AM 1.5 G, it was found that the 
temperature of the GeSe system was significantly higher than that of the solution (up to 323 K) because 
GeSe converted part of the absorbed visible light into heat. Therefore, thermoelectric devices (TD) with 
GeSe bases can be introduced to make full use of the full spectrum of solar energy. As shown in Figure 21D, 
the TD-GeSe-based solar desalination battery is integrated and coupled with the GeSe-based photocathode 
to form a TD-GeSe-based solar desalination battery and placed between the desalination chamber and the 
cooling chamber to achieve sustainable and efficient seawater desalination. This method effectively converts 
natural seawater to seawater close to fresh water, reducing the total dissolved solid solution and salinity of 
the original solution from 29 g L-1 and 27 ppm to about 1.0 g L-1 and 0.7 ppm, respectively.

Photothermal effect and bionic structure of PEC
The research of PEC is nothing more than an artificial way to achieve biological photosynthesis, and the 
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Figure 21. (A) L-type photothermal PEC-PV device schematic[83]. Copyright 2022, John Wiley & Sons, Inc. (B) Cross-section SEM 
image of the semitransparent PSC. (C) The integrated ST-PSC+EC system for water splitting[129]. Copyright 2023, Elsevier Sci. (D) 
Structure and schematic diagram of the solar desalination system[157]. Copyright 2023, Elsevier Sci.

construction of biomimetic structure materials applied to PEC can effectively improve its photoelectric 
catalytic and photothermal catalytic performance[158].

Inspired by the photosynthesis of plant leaves, Zhou et al. load the photothermal MoS2/FeCoNiS nanotubes 
onto porous NF (PNF)[159]. As shown in Figure 22A, PNF and MoS2/FeCoNiS resemble the structure and 
epidermis of leaf tissue, respectively. The stomatal structure of PNF promotes bubble transport in OER, 
while MoS2/FeCoNiS increases light absorption and photothermal conversion. As the electrolyte 
temperature increases from 25 °C to 55 °C, the OER performance of MoS2/FeCoNiS-NT@PNF improves 
significantly. With the help of bionic structures and photothermal effect, the MoS2/FeCoNiS-NT@PNF 
electrode achieves a current density of 50 mA cm-2 at 1.44 V (vs. RHE).

Zhang et al. prepare a MoS2/Ni3S2-coated carbon nanowires (CA) composite (MoS2/Ni3S2@CA) by tracking 
the sun to raise the temperature from a natural sunflower head[160]. MoS2/Ni3S2@CA has a honeycomb 
structure similar to the microstructure of sunflower petals. The carbon nanowire substrate with three-
dimensional multistage pore structures can increase the active sites of catalyst nanosheets and accelerate the 
transfer process of bubbles and electrolytes. The biomimetic sunflower micro-nanostructures are able to 
better capture sunlight and efficiently and quickly convert light into heat. The current density of 
MoS2/Ni3S2@CA is 10 mA cm-2 at 1.51 V [Figure 22B].

CONCLUSIONS
In this paper, the basic principle of the photothermal effect is briefly introduced, and several kinds of 
photothermal materials widely reported at present are reviewed. The reason why the photothermal effect 
improves the photocatalytic performance is analyzed from the perspective of physical models and principle 
analysis. The introduction of thermal effects can improve the thermodynamic and kinetic effects of the 
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Figure 22. (A) Photothermal conversion and reflection of incident photons (hν) at electrolyte/bubble interface[159]. Copyright 2023, 
John Wiley & Sons, Inc. (B) Thermal images of Ni3S2/MoS2@CC at different constant temperatures[160]. Copyright 2023, John Wiley & 
Sons, Inc.

catalytic reaction itself. At the same time, most photothermal materials themselves produce more excitons 
due to the increase of temperature. The characteristics of different types of photothermal materials are 
reviewed, and their respective advantages are analyzed. Finally, the application of photothermal effects in 
PC and PEC in reduction, oxidation, and other specific fields is summarized. Whether it is photothermal 
catalysis or photothermoelectric catalysis, it is an innovation of traditional photocatalytic technology. The 
addition of thermal effects is not a simple one-plus-one process but rather a coordination of the two effects 
from the mechanism to achieve improvement. From the perspective of long-term development, it is a 
feasible industrial practice to improve energy utilization and reduce losses through a variety of energy 
cooperative coupling.

Although the development of PC/PEC photothermal materials is expected in the future, there are still some 
challenges:

1. Photothermal catalysts: currently, precious metal-supported photothermal catalysts are the most widely 
used in current research because of their high catalytic activity. However, their high cost limits their 
application and promotion. In addition, challenges related to poor light absorption and conversion ability, 
low activity, and low stability of photothermal materials persist as fundamental issues in the research and 
development of photothermal materials. In summary, the development of low-cost and high-activity 
materials is the main direction of further research.

2. Combination of photothermal materials and photocatalytic materials: in the current reports on the 
application of photothermal materials to PC, most of the photothermal materials and photocatalysts are 
composites with a layered structure. The way of their mutual connection and action is generally through 
physical connection or hydrogen bond connection, and the combination degree of the two needs to be 
further improved. If photothermal and photocatalytic materials can be combined at the nanoscale, it will 
help to improve the energy and electron conduction between these materials so as to achieve higher 
conversion efficiency.

3. Photothermal reactor: the current photothermal reaction system will build more devices through external 
connections to achieve higher conversion efficiency. However, this approach seems to go against the 
original intention of PC itself to achieve energy conversion in a clean and efficient way. Therefore, for future 
photothermal reactors, it is recommended to utilize sunlight as the only light source and harness its energy 
to achieve catalytic effects.
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4. Development of the photothermal materials industry: many factors influence the performance of 
photothermal catalysis at present, and its effectiveness is determined by different conditions, such as light 
intensity, light band, bias pressure, and reactor temperature. However, the current research field has yet to 
establish a standardized evaluation system for this series of photocatalysts, hindering the development of an 
industrial evaluation framework. In addition, the monitoring and control of various parameters of the 
reaction process have not been able to determine clear process parameters. There is still a long way to go for 
the large-scale industrial promotion of photothermal materials.
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