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Abstract
In this work, we developed three methods to map crystallographic variants of samples at the nanoscale by 
analyzing precession electron diffraction data using a high-temperature shape memory alloy and a VO2 thin film on 
sapphire as the model systems. The three methods are (I) a user-selecting-reference pattern approach, (II) an 
algorithm-selecting-reference-pattern approach, and (III) a k-means approach. In the first two approaches, 
Euclidean distance, Cosine, and Structural Similarity (SSIM) algorithms were assessed for the diffraction pattern 
similarity quantification. We demonstrated that the Euclidean distance and SSIM methods outperform the Cosine 
algorithm. We further revealed that the random noise in the diffraction data can dramatically affect similarity 
quantification. Denoising processes could improve the crystallographic mapping quality. With the three methods 
mentioned above, we were able to map the crystallographic variants in different materials systems, thus enabling 
fast variant number quantification and clear variant distribution visualization. The advantages and disadvantages of 
each approach are also discussed. We expect these methods to benefit researchers who work on martensitic 
materials, in which the variant information is critical to understand their properties and functionalities.

Keywords: Crystallographic variant mapping, precession electron diffraction (PED), image similarity quantification, 
k-means
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INTRODUCTION
The martensitic transformation is an important phenomenon, which is widely observed in many metals 
[e.g., steels, shape memory alloys (SMAs), etc.][1-5] and ceramics (e.g., ZrO2, VO2, etc.)[6-8]. During a 
martensitic transformation, the martensite grains exhibit a well-defined crystallographic orientation 
relationship with the parent austenite grains. For example, in Ni36.5Ti48.5Hf15 SMAs, the orientation 
relationship between the B2 austenite and B19′ martensite is described as [100]B2//[100]B19′ and 
(001)B2//(011)B19′[9]. Moreover, although the number of martensite grains in the same prior austenite grain 
can be numerous, the martensite variant number is limited. Theoretical predictions based on the lattice 
correspondences of B2 and B19 showed that 12 martensite variants are permitted[10]. Note that not all 12 
martensite variants will show up due to self-accommodation constraints[10]. For example, only four 
martensite variants were observed in a solution-treated Ni50.3Ti29.7Hf20 SMA, and there are well-defined 
orientation relationships between the martensite variants[11].

The transformation behavior and properties of solid-state phase change materials are dictated by their 
structure and substructure (e.g., martensite size, variant numbers, orientation relationship, the presence/
absence of internal twins, etc.). However, martensite characterization, in particular identifying the 
martensite variant number and orientation relationship, has posed a challenge using conventional 
microscopy techniques. Traditional transmission electron microscopy (TEM) imaging can reveal the size of 
martensite grains but provides no information on the number of martensite variants and their 
distribution[12,13]. Electron backscatter diffraction (EBSD) can be used to map martensite variants, but the 
orientation maps are generally very noisy, with low indexing rates[14]. Because of its limited resolution, EBSD 
also fails to capture the crystallographic information if the martensite grains are small (e.g., plates or laths 
< 150 nm in width)[14]. Hence, there is a demand for techniques that can efficiently reveal martensite variant 
information with high spatial resolution.

Precession electron diffraction (PED) is a powerful characterization technique to reveal the crystal structure 
and orientation information at the nanoscale[15-22]. The electron beam in TEM is converged to a small probe 
(~ 1-3 nm) and rastered on the specimen. Precession (typically 0.3-0.8o) is applied to excite higher-order 
reflections and to reduce the dynamical effect[15,23]. The experimentally acquired diffraction patterns from 
each pixel are compared to the simulated diffraction patterns in a database to determine the crystal structure 
and orientation. The information is then used to create phase (crystal structure) and orientation maps. 
Naturally, the PED should be the ideal technique to obtain the martensite variant information in various 
materials. Unfortunately, there are several associated challenges. First, many martensite grains contain high-
density twins, which leads to additional spots (and streaking) in diffraction patterns[11]. The simulated 
diffraction patterns in the database assume single crystals. Thus, the experimentally acquired diffraction 
patterns that contain both diffraction spots from the matrix and the twin cannot find a good match in the 
database and are considered bad indexing. Second, orientation indexing is generally poor for low-symmetry 
crystals (monoclinic, triclinic, etc.) in PED because the small differences between different sets of lattice 
planes cannot be easily distinguished by the orientation indexing software. The confusion leads to noisy 
orientation maps (an example, see Figure 1).

In this work, by taking advantage of the superior spatial resolution and the diffraction information from 
each pixel in PED, we developed three methods to create “crystallographic variant maps”. All methods 
identify the crystallographic variants by comparing the diffraction patterns in the PED data, with the first 
approach more manual and the second and third more automatic. The advantages and disadvantages of 
each approach are described. Different methods to quantify the similarity between diffraction patterns, as 
well as their influence on the final crystallographic variant maps, are also discussed. These new semi-
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Figure 1. (A) VBF, (B) index, (C) reliability, and (D) orientation maps of the SMA sample. (E) VBF, (F) index, (G) reliability, and (H) 
orientation maps of the VO2 on sapphire sample. Note the reliability and orientation maps are noisy in both samples.

automatic crystallographic mapping methods are open-source, easy to use, and less prone to human errors 
and can be useful tools for researchers who work on martensitic material systems.

MATERIALS AND METHODS
The two model systems we use in this study to develop the crystallographic variant mapping methods are 
(1) a Ni50.3Ti29.7Hf20 SMA and (2) a VO2 thin film deposited on a c-cut monocrystalline sapphire substrate. 
Both samples are martensitic at room temperature. The Ni50.3Ti29.7Hf20 SMA has a monoclinic crystal 
structure, with a = 3.052 Å, b = 4.089 Å, c = 4.887 Å, and β= 102.91o. The VO2 also has a monoclnic crystal 
structure, with a = 5.752 Å, b = 4.538 Å, c = 5.383 Å, and β = 122.65o[12]. The b-axis of VO2 is parallel to the c-
axis of sapphire (hexagonal crystal structure, a = 4.760 Å and c = 12.994 Å)[24]. The detailed processing 
information of these samples can be found in our previous work[11,25]. SMAs are known for their shape 
memory effect and super-elastic behavior, which make them widely used in mechanical, aerospace, and 
biomedical applications[4,26]. VO2 undergoes an insulator-to-metal transition when heated up above the 
phase transformation temperature and is a promising material for neuromorphic computing[27,28]. The SMA 
sample was aged at 550 oC for 10 h to grow nanoscale precipitates. The diffraction patterns were obtained 
with a 200 kV FEI Tecnai F20 ST TEM equipped with a NanoMEGAS ASTAR system with a Stingray CCD 
camera to acquire the PED data. The diffraction pattern acquisition rate is approximately 0.06 s per pixel. 
The precession angle is 0.3o, and the electron beam spot size is approximately 3 nm. The 0.3o precession 
angle was selected because it offers a good combination of reduction in the dynamical effect and retaining a 
decent beam spot size. While larger precession angles can further reduce the dynamical effect, they result in 
larger beam spot sizes and, consequently, poorer spatial resolution for mapping. The SMA map is 285 × 285 
pixels. The diffraction patterns were acquired with a 144 × 144 pixel resolution. The VO2 on the sapphire 
map is 150 × 100 pixels. The diffraction patterns were acquired with a 580 × 580 pixel resolution to evaluate 
the effect of noise and denoise on the final crystallographic variant maps. The denoise was achieved by 
applying a 5-pixel radius Gaussian filter.

For the PED data reading and then processing, the “.blo” file is loaded and read using Hyperspy, which 
converts the file into a usable 4D array[29]. Hyperspy is an open-source Python library that provides tools to 
analyze multi-dimensional data, such as a function to read “.blo” files.
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Regarding crystallographic variant mapping, three methods were developed. Both the first and second
methods rely on comparing the diffraction patterns of each pixel to the reference patterns from the same
PED dataset. The first method is more manual in that it requires the user to first choose the reference
patterns. For each diffraction pattern in the dataset, the highest similarity value between all the reference
patterns is used to determine which crystallographic variant it is most similar to. A crystallographic variant
map is then generated based on the highest similarity values at each location in the data. The second
method is more automatic, in which the algorithm will create new references when the similarity values
between the test pattern and the existing reference patterns are lower than a threshold. In the first two
methods, the Euclidean distance, Cosine, and Structural Similarity (SSIM) algorithms were used to quantify
the similarity values between the diffraction patterns of each pixel to references.

The Euclidean distance algorithm[30] flattens the 2D image arrays to create 1D number arrays. The 1D
number arrays can be viewed as vectors. For 144 × 144 pixel resolution diffraction patterns, the i value is
20,736 (i.e., 1442). Hence the 1D number arrays correspond to vectors in 20,736 dimensions. The Euclidean
distance, d(u, v), between the test diffraction pattern and the reference pattern is calculated as the distance

between the two vectors in 20,736 dimensions, which is expressed as d(u, v) = , where u and v
are intensity values of each pixel in the test and reference diffraction patterns, respectively. In PED, the
diffraction patterns are stored as 8-bit images with the values of u and v ranging from 0 to 255. To turn the
Euclidean distances into similarity values that range from 0 to 1, we describe Euclidean similarity (SEuclidean) as
SEuclidean = , where |u| and |v| are the magnitudes of the vectors corresponding to the test and reference

patterns, respectively. The magnitude is calculated as |u| =         . The same applies to v in the reference
pattern. A SEuclidean value of 1 indicates that the test and reference diffraction patterns are identical. For
diffraction patterns acquired with 580 × 580 pixel resolution, the i value is 336,400 (i.e., 5802), and the
vectors are 336,400 dimensional. The Euclidean distances and the similarities are calculated in the same way
as described above.

The Cosine image comparison method[31] is similar to the Euclidean distance algorithm. The 2D image
arrays are also transformed into 1D arrays (i.e., vectors at high dimensions). The Cosine method uses the
angle between the two high-dimensional vectors describing the test and reference patterns. If the cosine
angle between the arrays is low, the two images are similar. The Cosine similarity (SCosine) is calculated as

SCosine =               , where u·v is the dot product between the test (u) and reference (v) diffraction patterns.
The SCosine value also ranges between 0 and 1, and a value of 1 means that the two images are the same and
the angle between the corresponding two vectors is 0.

The SSIM image comparison method measures the structural similarity between two images (the reference
and test diffraction patterns in this work), taking into account luminance, contrast, and structure[32].

Luminance (l) measures the brightness difference between the two images and is defined as l(x,y) = ,
where µx and µy are the pixel intensity means of two images x and y, and c1 is a constant. Contrast (c)

captures the variation of brightness in the images and is defined as c(x,y) = , where σx and σy are the
pixel intensity variances of two images x and y, and c2 is also a constant. The structure (s) captures the

patterns and texture in the image and is defined as s(x,y) = , where σxy is the pixel intensity covariance
of images x and y, and c3 is also a constant. The SSIM similarity combines the above measurements and is
defined as SSIM(x,y) = l(x,y)·c(x,y)·s(x,y). Similar to SEuclidean and SCosine, SSIM(x,y) also ranges from 0 to 1, and
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a value of 1 indicates that the two compared images are identical.

In the third crystallographic variant mapping method, the k-means method[33] was used to cluster the 
diffraction patterns into different groups, with each group representing one crystallographic variant. The 
algorithm uses the VGG16 Keras model (a pre-trained deep learning model that consists of 16 convolutional 
layers and three fully connected layers used for feature extraction) to reduce all diffraction patterns in a 
dataset into feature vectors[34]. The feature vectors capture key characteristics of each diffraction pattern, 
including structure and orientation. Next, the feature vectors are reduced from 4,096 to 100 components, 
each using kernel principal component analysis (kernel PCA) to lower the amount of data processed in the 
next step while retaining key information. Kernel PCA is a dimensionality reduction technique that uses 
kernel methods to transform nonlinear data[35]. These vectors are input into a k-means++ algorithm (an 
extension of conventional k-means but with much better with centroid initialization)[36]. The algorithm then 
sorts the vectors into k clusters, which are mapped to create a similarity map. For each k-value, the inertia 
(the sum of the squared distances of samples to their closest cluster centroid) is also calculated and shown in 
an “elbow graph” that can be used to manually determine an optimal k-value.

RESULTS AND DISCUSSION
Conventional PED characterization of the model systems
Figure 1 shows the virtual bright-field (VBF), index, reliability, and orientation maps of the SMA and VO2 
on sapphire, which are the model systems of this study. The VBF images are formed using the intensity of 
the direct beam in diffraction patterns and are similar to the conventional bright-field TEM micrographs 
but with less dynamical effect due to the beam precession. The index map is similar to the band contrast 
map in EBSD, in which brighter pixels indicate better matches between the experimentally acquired 
diffraction pattern and the simulated pattern. The reliability map is obtained by calculating the ratio of 
similarities between the best and second-best matches obtained through template matching. Brighter pixels 
in the reliability map indicate a higher level of confidence and reduced ambiguity between the best and 
second-best matches in orientation indexing. The concept of “reliability” will serve as a metric to assess the 
quality of our crystallographic mapping in subsequent sections of this work.

The SMA sample (B19’, monoclinic crystal structure) shows a typical martensitic microstructure where the 
martensite grains are plate-like [Figure 1A]. The martensite plate thickness varies from tens to hundreds of 
nanometers. The corresponding index, reliability, and orientation maps [Figure 1B-D] show that multiple 
martensite variants exist in the sample, but the result is noisy. A VO2 (monoclinic crystal structure at room 
temperature) thin film grows epitaxially on c-cut sapphire[37], which exhibits three crystallographic 
variants[38]. The VBF in Figure 1E shows that the VO2 film is approximately 50-100 nm thick. The 
corresponding index, reliability, and orientation maps [Figure 1F-H] are extremely noisy, and the variants 
of VO2 cannot be identified at all. The poor indexing of the martensitic SMA and VO2 may be caused by the 
low symmetry nature of their monoclinic crystal structure, where the spacing and angles of different lattice 
planes are close to each other, leading to confusion when the software does the diffraction pattern indexing. 
Consequently, there is a demand for new methods to better illustrate the distribution of crystallographic 
variants in this wide group of materials.

Method 1: user-selecting-reference-pattern approach
In this method, the user will first peruse the dataset to identify how many crystallographic variants are 
present in the dataset and then select a reference pattern from each variant. We observed no apparent 
variation in the diffraction patterns among pixels within each crystallographic variant. This allows high 
flexibility in selecting the reference pattern for each variant by the user. Next, the diffraction pattern from 
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each pixel will be compared to all reference patterns, and the one with the highest similarity value will be 
used for the variant assignment of pixels. Each variant is represented by a color in the map. Before going 
into the detailed mapping results using the first method, we will briefly discuss similarity quantification 
using Euclidian distance, Cosine, and SSIM algorithms.

Figure 2 shows the VBF of the SMA sample (same as Figure 1A but with some brightness and contrast 
adjustment) and diffraction patterns from various martensite grains. One of the diffraction patterns was 
selected as the reference, whereas the others were compared to the reference. By visual inspection, it can be 
seen that the Ref and B patterns are from the same crystallographic variant, while each of the other patterns 
represents unique variants. Hence, we expect Ref and B patterns to display the highest similarity. The 
similarity results, calculated by Euclidian distance, Cosine, and SSIM algorithms, are shown in Table 1. Each 
comparison method returns a normalized similarity value ranging from 0 to 1. A 0 means the compared 
images are completely dissimilar, and a 1 means that they are exactly the same. As expected, diffraction 
pattern B has the highest similarity with the reference pattern for all three similarity methods. A major 
difference between the different methods is the overall spread in the similarity values between the patterns. 
Euclidean has a similarity value range of 0.081, Cosine has a small range of 0.026, and SSIM has the largest 
range of 0.137. We further examine the similarity comparison quality by calculating the reliability values. 
The reliability is calculated by dividing the highest similarity by the second highest similarity. Larger values 
indicate higher reliability. The reliability of the Euclidean, Cosine, and SSIM methods are 1.044, 1.006, and 
1.083, respectively. The small range and low reliability for the Cosine algorithm may lead to inconclusive 
results when the two diffraction patterns are similar, which will be demonstrated shortly.

Figure 3 shows the crystallographic variant maps generated via the Euclidean distance [Figure 3A], Cosine 
[Figure 3B], and SSIM [Figure 3C] algorithms, along with a manually drawn map [Figure 3D]. The 
manually drawn map is created by a person inspecting the dataset to determine the variant regions and is 
treated as the baseline. Both the Euclidean and SSIM maps are exceptionally close to the manually drawn 
map. The four predominant variants (red, yellow, green, and cyan in color) and two minor variants (blue 
and magenta in color) are clearly revealed. Note that the Euclidean map is a bit noisy in the upper right 
region, while the SSIM maps provide a cleaner map. Unfortunately, the Cosine algorithm produced poor 
results. The map is noisy, and the large cyan variant in the center is split into three separate variants. This 
may be due to the varying diffraction pattern intensity along the variant. When generating the 
crystallographic maps using our methods [Figure 3A-C], the colors are selected on a hue saturation value 
(HSV) color wheel and spaced equally apart based on the number of reference points to distinguish them 
from each other. The colors were adjusted manually for clarity as needed. Generating the above maps 
[Figure 3A-C] only took tens of seconds or a few minutes using a computer with an Intel i7 13700K CPU 
and Nvidia RTX 3080 GPU, but it took a student several hours to generate the manually drawn map 
[Figure 3D].

To investigate the effect of noise of the diffraction patterns on the similarity quantification and the resultant 
crystallographic orientation maps, we used the VO2 thin film deposited on a c-cut monocrystalline sapphire. 
The diffraction patterns were acquired with 580 × 580 resolution. The 144 × 144 diffraction pattern 
resolution in the previous SMA example was a result of binning the 580 × 580 original data by the 
NanoMEGAS commercial software during the data acquisition. Hence, the 580 × 580 resolution diffraction 
patterns in this case study are much noisier. Figure 4 shows the VBF of the VO2 thin film on the sapphire 
substrate with diffraction patterns taken from different pixels. A diffraction pattern from the sapphire 
substrate was selected as the reference pattern. The diffraction patterns from pixels A, B, C, and D are from 
sapphire, VO2 variant 1, VO2 variant 2, and vacuum, respectively. Since diffraction pattern A was also taken 
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Table 1. Euclidean distance, Cosine, and SSIM similarity values compared to the reference pattern, along with the reliability values, 
in the SMA sample

Diffraction pattern Similarity method
Euclidean Cosine SSIM

A 0.904 0.971 0.834

B 0.964 0.997 0.903

C 0.918 0.986 0.777

D 0.883 0.986 0.766

E 0.923 0.991 0.820

Reliability 1.044 1.006 1.083

Figure 2. VBF image of the SMA sample (left) and the selected diffraction patterns (right) for similarity quantification.

Figure 3. Crystallographic variant maps of the SMA sample generated using the (A) Euclidean distance, (B) Cosine, and (C) SSIM 
algorithms. (D) A mannually drawn crystallographic variant map of the same area serving as a baseline.
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Figure 4. VBF image of VO2 thin film on sapphire (left) and the selected diffraction patterns (right) for similarity quantification.

from the sapphire substrate, it is expected to have the highest similarity with the reference pattern. 
Diffraction pattern D was taken from the vacuum, in which there is only a direct beam without a diffracted 
beam; it is expected to have the least similarity with the reference pattern. Table 2 summarizes similarity 
values calculated between the selected diffraction patterns compared to the reference pattern using the 
Euclidean distance, Cosine, and SSIM algorithms. The Euclidean similarity shows the highest value for A 
and the lowest for D, as expected. The Cosine algorithm produced a similar distribution as the highest value 
for A and lowest for D while switching the order for B and C. In contrast, the SSIM method comparison had 
low overall similarity values and ranked pattern B higher than A. We also note that all the similarity values 
calculated here are generally lower than the binned case (the SMA example). This observation has two 
important implications. First, the presence of noise decreases the similarity values, although the two 
diffraction patterns are visually similar. Second, the presence of noise, though not significant to human eyes, 
can assign higher similarity values even to the visually dissimilar diffraction patterns.

As expected, the generated similarity maps generally display poor quality [Figure 5]. The Euclidean distance 
map [Figure 5A] is the best out of the three algorithms. The vacuum (black), sapphire substrate (red), and 
two variants of VO2 (blue and green) were identified, but small parts VO2 thin film were wrongly identified 
as the sapphire substrate. Note that there should be three variants of VO2 on c-cut sapphire. Only two were 
captured in the figure due to the small mapping area. In the Cosine map [Figure 5B], large parts of the VO2 
thin film were mistakably identified as the sapphire substrate. The SSIM algorithm [Figure 5C] performed 
the worst, in which the film and substrate were not distinguished, albeit the two different variants in the 
VO2 thin film. These observations suggest that the Euclidean distance method is most noise-tolerant when 
computing the similarity between two images. The accuracy of the SSIM method can be dramatically 
affected by noise in the diffraction patterns.

Removing the noise can dramatically improve the accuracy of diffraction pattern similarity quantification, 
which subsequently helps generate much improved crystallographic variant maps. One common way to 
denoise is by binning. For example, the NanoMEGAS commercial software can do binning that reduces the 
diffraction patterns from 580 × 580 to 144 × 144 resolution (an example see the SMA example in this work). 
Another common method is to apply a Gaussian filter[39]. Here, we explore the effect of denoise on the 
similarity quantification and crystallographic variant mapping accuracy using a Gaussian filter. Figure 6 
shows the data similar to Figure 4, but a Gaussian filter (radius = 5) was applied to all diffraction patterns in 
Figure 6. With the Gaussian filter, the overall noise in each diffraction pattern is reduced. The Gaussian 
filter improved the similarity values for all methods by increasing the range and more accurately identifying 
the most similar diffraction patterns [Table 3]. The Euclidean similarity between patterns A and Ref is 0.910 
after filtering compared to 0.707 using the raw data. The filtered diffraction patterns from the two VO2 
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Table 2. Euclidean, Cosine, and SSIM similarity values compared to the reference pattern, along with the reliability values, in the VO2 

on sapphire sample

Diffraction pattern Similarity method
Euclidean Cosine SSIM

A 0.707 0.841 0.045

B 0.632 0.807 0.046

C 0.678 0.804 0.033

D 0.421 0.771 0.035

Reliability 1.043 1.042 1.022

Table 3. Euclidean, Cosine, and SSIM similarity values compared to the reference pattern, along with the reliability values, in the VO2 

on sapphire sample denoised with a Gaussian filter applied (radius = 5)

Diffraction pattern Similarity method
Euclidean Cosine SSIM

A 0.910 0.919 0.846

B 0.600 0.907 0.666

C 0.723 0.903 0.718

D 0.412 0.284 0.276

Reliability 1.259 1.013 1.178

Figure 5. Crystallographic variant maps of the VO2 thin film on sapphire sample generated using the (A) Euclidean distance, (B) Cosine, 
and (C) SSIM algorithms.

Figure 6. VBF image of VO2 thin film on sapphire (left) and the selected diffraction patterns (right) after Gaussian filtering (radius = 5) 
for similarity quantification.

variants are very different from the Ref pattern (similarity values are 0.600 and 0.723). The difference is the 
largest when comparing the vacuum diffraction pattern with the Ref pattern, which yields a similarity value 
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of only 0.412. The Cosine method correctly identified that pattern A has the highest similarity value (0.919), 
but the ones from the two VO2 variants also showed high similarity values (0.907 and 0.903), which may 
lead to crystallographic variant misidentification. Among the three algorithms, the Cosine method yields the 
lowest reliability value. This shortcoming of the Cosine method is consistent with the observation made in 
the SMA samples [Table 1]. The SSIM algorithm yields a similar trend to the Euclidean distance approach 
but shows low similarity values in absolute numbers. Taken together, reducing noise with a Gaussian filter 
significantly improved the similarity quantification across the three algorithms.

Reducing noise also improved the crystallographic variant mapping. Figure 7 shows the crystallographic 
variant maps generated using the Euclidean distance, Cosine, and SSIM algorithms. All methods produced 
good results where the sapphire substrate (red), VO2 variants (blue and green), and vacuum (black) are 
clearly resolved. A manually drawn baseline map is not provided here because the interface between the two 
VO2 variants is curved and difficult to draw. A careful examination of the diffraction patterns in this dataset 
confirmed that the maps shown in Figure 7 are indeed correct.

Method 2: algorithm-selecting-reference-pattern approach
The previous method, though powerful and efficient in generating the crystallographic variant maps, 
requires user input to select all known crystallographic variants. In some cases, the number and location of 
the crystallographic variants are unknown. Here, we describe a new method that is built upon the user-
selecting-reference-pattern approach (Method 1) but uses the algorithm to select reference patterns to 
generate crystallographic variant maps.

This method starts at a pixel in the PED data (0, 0) by default or a pixel position chosen by the user. The 
diffraction pattern corresponding to the pixel is treated as the first reference and is added to a list that will 
contain reference patterns in the dataset. Each reference pattern in the list represents a unique 
crystallographic variant. The diffraction patterns from the following pixels will be compared to the reference 
pattern, and the similarity values (using Euclidean distance, Cosine, or SSIM) will be calculated. The starting 
pixel will be compared to all other pixels, and the minimum similarity value will be used as the initial cut-off 
value. If the calculated similarity value of the pixel is greater than the cut-off value, the algorithm treats the 
pixel the same as the reference pattern variant. If the calculated similarity value is less than the cut-off value, 
the algorithm will save the diffraction pattern of the pixel as a new reference. The diffraction patterns from 
the following pixels will be compared to the two references to determine which variant they belong to. This 
process iterates. If a pixel has one or more similarity values greater than the cut-off, the variant is 
determined by the one with the highest similarity. If a pixel has all similarity values less than the cut-off, the 
pixel itself will be added to the reference list and serve as a new variant. This process repeats for all pixels. 
Once all the pixels have been compared, the cut-off value increases by a step; by default, there are 20 steps 
between the initial minimum similarity and the maximum similarity values. The process repeats using the 
increased cut-off value and starting with the list of unique crystallographic variants from the previous 
iteration.

The above-mentioned mapping method was first used on the SMA dataset to produce a series of similarity 
maps at varying cut-off values. In the SMA dataset, the (0, 0) point is located at a boundary between two 
variants that may skew the variant identification. A user-selected point in the middle of a large variant, 
(116, 168), was used, and the corresponding diffraction pattern serves as the first reference pattern. Figure 
shows the SSIM similarity maps with various cut-off values ranging from 0.705 to 0.787. The optional initial 
point and comparison method are the only user inputs using this method. Note the small cut-off range 
generates very different crystallographic maps. With low cut-off values, such as 0.705, the four predominant 
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Figure 7. Crystallographic variant maps of the VO2 thin film on sapphire sample generated using the (A) Euclidean distance, (B) Cosine, 
and (C) SSIM algorithms. The diffraction patterns in the PED data were filtered with a Gaussian filter (radius = 5) before generating the 
maps.

variants merged into only two “variants”. With increasing cut-off values, new variants emerge [Figure 8A]. 
With the cut-off value at 0.769 [Figure 8D], the crystallographic variant map agrees very well with the 
baseline map in Figure 3D, where both maps contain four predominant and two minor variants 
[Figure 8D]. Further Increasing the similarity threshold splits variants into two or more pseudo-variants 
that are differentiated by small differences. For example, with the cut-off value of 0.787, a new dark green 
variant was generated from the yellow variant, and the magenta variant split from the cyan variant 
[Figure 8F]. The analysis and crystallographic variant mapping of this dataset took approximately 1 hour to 
complete.

This algorithm was also applied to the Gaussian-filtered VO2 using the Euclidean similarity method. For this 
sample, the point (22, 13) in one of the VO2 variants was selected as the initial point. Figure 9 shows the 
generated crystallographic variant maps with the cut-off increasing from 0.627 to 0.816. Again, such a 
relatively narrow range of cut-offs led to drastically different crystallographic variant maps. With a low cut-
off value of 0.627, only the sample and vacuum were identified, but with low accuracy [Figure 9A]. Part of 
the VO2 thin film was mistakably identified as vacuum. The sapphire substrate and two VO2 variants were 
not resolved. The crystallographic variant identification improves as the cut-off value increases. At the cut-
off value of 0.735, the most accurate map was generated [Figure 9C]. Further increasing the cut-off results in 
the variants splitting into pseudo-variants, as shown in Figure 9D and E. The analysis and crystallographic 
variant mapping of this dataset took approximately 20 min to complete.

The algorithm-selecting-reference-pattern approach can be a useful tool to accurately identify and map 
similar crystallographic variants in a dataset with minimal user input. Some user input is still needed to 
select the optional first point and to review the generated similarity maps to determine the ideal similarity 
cut-off threshold. However, this method is primarily automated and takes much less human effort than the 
user-selecting-reference-pattern approach (Method 1). Based on the observations made in the above two 
case studies, it can be seen that small changes in the cut-off value can result in large differences in the final 
crystallographic variant map output. Lower similarity cut-off values underestimate crystallographic variants, 
and higher similarity cut-off values overestimate them. User analysis is required to review the generated 
similarity maps to determine the optimal cut-off value for variant mapping. The computational time varies 
depending on the size of the dataset, the comparison method used, and the number of variants in the 
dataset. Typically, it is expected to take between 0.5 and 2 h to generate the similarity maps for a dataset.

Method 3: k-means approach
Unsupervised learning is widely used in image segmentation to group different regions in an image based 
on the pixel intensities and other features[21,22,40,41]. Martineau et al. and Bergh et al. successfully applied 
unsupervised learning techniques (e.g., non-negative matrix factorization and fuzzy clustering) to learn 
significant microstructural features in the PED data to achieve dimensionality reduction and overlapping 
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Figure 8. Crystallographic variant maps generated using the SMA dataset and the SSIM comparison method with (A) 0.705, (B) 0.732, 
(C) 0.751, (D) 0.769, (E) 0.778, and (F) 0.787 cut-off values.

Figure 9. Crystallographic variant maps generated using the Gaussian-filtered VO2 on sapphire dataset and the Euclidean comparison 
method with (A) 0.627, (B) 0.707, (C) 0.735, (D) 0.762, (E) 0.789, and (F) 0.816 cut-off values.

pattern unmixing[21,22]. Here, we employed k-means (a common unsupervised learning algorithm) in an 
approach that is different from the previous two reference pattern-based methods. The advantage of this 
unsupervised clustering algorithm lies in its ability to partition unlabeled data. After loading the data with 
HyperSpy, each diffraction pattern is processed into a feature vector using the VGG16 model from Keras[34]. 
The dimensionality of each feature vector is then reduced with kernel PCA. In the user interface, the “elbow 
graph” is generated, allowing the user to determine an optimal k-value (the number of crystallographic 
variants in the data set) and input it into the k-means algorithm to create a crystallographic orientation 
map.
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The elbow graph and the crystallographic variant maps for the SMA and Gaussian-filtered VO2 on sapphire 
datasets with different k-values are shown in Figure 10. The SMA elbow graph [Figure 10A] has a rapidly 
dropping inertia from k = 1 to 3, after which the slope begins to flatten out. This indicates an optimal k-
value of 3 or 4, as both the inertia and k at those points are minimized. From the previous discussion, the 
mapped region shows four predominant and two minor variants. Hence, the optimal k-value from k-means 
underestimates the variant numbers. Figure 10B shows crystallographic variant maps for k = 3, 4, and 5. In 
k = 4, the four predominant martensite variants were identified, but the two minor variants were lost. When 
k increased to 5, the minor variants were not revealed. Instead, a high level of noise was observed in the 
martensite plates. The k-means analysis took roughly 7 h on the SMA dataset. Similar observations were 
made in the Gaussian-filtered VO2 on sapphire datasets. The elbow graph in Figure 10C indicates an 
optimal k-value of 2 or 3. From the previous discussion, the dataset should contain four crystallographic 
variants (sapphire, two VO2 variants, and vacuum). Again, the optimal k-value tends to underestimate the 
variant numbers. Figure 10D shows crystallographic variant maps for k = 3, 4, and 5. In the map with k = 3, 
the sapphire substrate, VO2 film, and vacuum were identified. However, part of the VO2 film was 
erroneously marked as vacuum, as indicated by the arrows. In k = 4, the vacuum and thin film regions 
remain the same, but the sapphire substrate split into two pseudo-variants. In k = 5, the substrate region 
remains split, and the vacuum and thin film regions are accurately revealed, with the second VO2 variant 
now showing. The k-means analysis took roughly 40 min on the cropped VO2 on the sapphire dataset 
(100 × 100 pixels). Based on the above observations, the k-means method can provide general information 
on the crystallographic variants in the materials with minimal user input but can fail to capture minor 
variants and may falsely split variants into pseudo-variants.

It should be noted that while the k-means algorithm is well-suited for identifying similar-sized spherical 
clusters, it may not be the ideal choice for the SMA and VO2 model systems. For example, in the case of the 
VO2 on the sapphire dataset, sapphire, two variants of VO2, and vacuum exhibit significant differences in 
data sizes, which can potentially lead to misidentifications when using k = 3 or 4. To address this challenge, 
alternative unsupervised machine learning techniques, such as density-based spatial clustering of 
applications with noise (DBSCAN), mean shift, and Gaussian mixture models (GMM), could be considered 
in future studies for more effective identification of crystallographic variants using the PED data[42]. 
Nevertheless, the use of k-means serves as a baseline for comparing the performance of other unsupervised 
learning techniques in future applications.

Method comparison
Each approach described above has ideal use cases along with advantages and disadvantages. The user-
selecting-reference-pattern approach (Method 1) is best suited when the number and location of 
crystallographic variants in the sample are known. A region can be mislabeled if a reference point for the 
diffraction pattern is not selected. Inversely, if more than one reference point is selected for a pattern, a 
variant region can be divided between the selected points. Hence, if the user is not familiar with the 
material, this method can be prone to human errors. When all the variants are selected correctly, this 
approach can produce the most accurate similarity maps with the lowest computational cost (generally a 
few minutes). Among the diffraction pattern similarity quantification algorithms, both the Euclidean and 
SSIM methods outperform the Cosine method in generating more accurate crystallographic variant maps.

The algorithmic-selecting-reference pattern approach (Method 2) omits the need for the user to select the 
reference pattern of each variant. This approach can generate similarity maps automatically with only user 
input to select the ideal cut-off threshold based on the generated maps. The cut-off values in each map 
govern the new variant generation. Too high of a value will capture the small differences of diffraction 
patterns within the same variant, thus splitting one variant into two or more pseudo-variants. Too low of a 
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Figure 10. (A) Inertia vs. k-value elbow graph and (B) crystallographic variant maps with k = 3, k = 4, and k = 5 generated using the 
k-means clustering method on the SMA dataset. (C) Inertia vs. k-value elbow graph and (D) crystallographic variant maps with k = 3, 
k = 4, and k = 5 generated using the k-means clustering method on a portion of the Gaussian-filtered VO2 on the sapphire dataset.

value will merge variants with different but similar diffraction patterns. Another challenge is that a small 
change of the cut-off value can lead to drastically different crystallographic variant maps. Generating the 
similarity maps with this method usually takes up to an hour on average.

The k-means approach (Method 3) can process the dataset and produce similarity maps automatically at 
various k-values. The only user input is the k-value (the crystallographic variant number of the mapped 
area). This number is more intuitive than the cut-off value in the previous method. Moreover, only one 
round of computation is required to generate the crystallographic orientation maps with various k-values. 
Changing the k-value and corresponding similarity map for a dataset is near instantaneous, allowing the 
user to quickly compare maps with varying numbers of diffraction pattern clusters. Unfortunately, the k-
means approach tends to generate variant maps with the lowest quality. The generated similarity maps lack 
fine details, and noise and the number of pseudo-variants increase as the k-value increases. Additionally, the 
k-means approach is the slowest to compute, as it generally takes several hours to complete the analysis. 
This approach has room for improvement by experimenting with other unsupervised machine learning 
models.

These approaches can also be combined to help mitigate the shortcomings of a particular method. For 
example, in an unknown sample, the algorithm-assisted (Method 2) or the k-means method (Method 3) can 
be used to determine the approximate variant number and location, which can then be input into the user-
assisted algorithm (Method 1), with a manual review, to create an accurate similarity map. It is also worth 
mentioning that although the methods developed in this work were designed to analyze PED datasets, the 
same approach can also be applied to the four-dimensional scanning transmission electron microscopy 
(4D-STEM) datasets, in which the diffraction patterns of each pixel are formed via convergent-beam 
electron diffraction[43], to determine the crystallographic variants.

It is also worth noting that creating TEM specimens with generally uniform thickness is imperative for all 
algorithms to correctly identify the crystallographic variants. Uneven specimen thickness can significantly 
impact the diffraction patterns of individual pixels. For example, within a single variant, regions with 



Page 15 of Hansen et al. Microstructures 2023;3:2023029 https://dx.doi.org/10.20517/microstructures.2023.17 17

greater thickness will exhibit decreased diffraction spot intensity and increased background noise[44]. Thick 
regions also limit the reduction of the dynamical effect, even with the application of precession[45]. These 
factors ultimately affect similarity comparisons and can result in poor crystallographic variant mapping.

CONCLUSIONS
In this work, we developed new crystallographic mapping methods to quantify the variant numbers and 
reveal the variant distribution by analyzing PED data. An SMA sample and a VO2 thin film on sapphire 
sample were used as the model systems. Here are some key take-away messages.

Three methods were developed to map the crystallographic variants of materials using PED data. These 
methods are (I) a user-selecting-reference-pattern approach; (II) an algorithm-selecting-reference-pattern 
approach; and (III) a k-means approach.

When applying the first two approaches, Euclidean, Cosine, and SSIM were used to calculate the similarities 
between diffraction patterns. The Euclidean and SSIM algorithms outperform the Cosine method and can 
generate reliable similarity values for crystallographic variant mapping.

Background noise in diffraction patterns is detrimental to the similarity quantification. Denoising, either via 
binning or applying a filter (e.g., Gaussian filter), can dramatically improve the crystallographic variant 
mapping quality.

In the first approach, the user will select the reference patterns, and each reference represents a unique 
crystallographic variant. All diffraction patterns in the dataset will then be compared to the reference 
patterns. The one with the highest similarity will be used for assigning the crystallographic variant. This 
approach is fast and accurate when using the Euclidean and SSIM similarities, but it requires the user to 
have a good understanding of the sample to correctly select the reference patterns for accurate 
crystallographic variant map generation.

The second approach is similar to the first one, but the algorithm, instead of the user, selects the reference 
patterns. When scanning through the dataset, a new reference (representing a new variant) will be created 
whenever the new diffraction patterns are dissimilar, based on a cut-off value, to the reference patterns 
stored in the list. Hence, it is a dynamic process. This approach is moderately fast and can generate high-
quality crystallographic variant maps. However, the map quality is sensitive to the cut-off value used.

In the third approach, the algorithm uses the k-means to cluster similar diffraction patterns into different 
categories (variants). The only input is the k-value (variant number). Unfortunately, this approach is 
computationally expensive, and the crystallographic variant maps are of low quality. Nevertheless, this 
approach can still provide some information on the general variant number and distribution, which can be 
helpful if the user is not familiar with the material system.
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