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Abstract
Cell culture is a powerful technique for the investigation of molecular mechanisms fundamental to health and 
disease in a diverse array of organisms. Cell lines offer several advantages, namely their simplistic approach and 
high degree of reproducibility. One field where cell culture has proven particularly useful is the study of the 
microbiome, where cell culture has led to the illumination of microbial influences on host immunity, nutrition, and 
physiology. Thus far, researchers have focused cell culture work predominantly on humans, but the growing field of 
insect microbiome research stands to benefit greatly from its application. Insects constitute one of Earth’s most 
diverse and ancient life forms and, just as with humans, possess microbiomes with great significance to their 
health. Insects, which play critical roles in supporting food security and ecological stability, are facing increasing 
threats from agricultural intensification, climate change, and pesticide use. As the microbiome is closely tied to 
host health, gaining a more robust understanding is of increasing importance. In this review, we assert that the 
cultivation and utilization of insect gut cell lines in microbiome research will bridge critical knowledge gaps 
essential for informing insect management practices in a world under pressure.
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INTRODUCTION
Cell culture typically refers to the growth and maintenance of eukaryotic cells outside of their native 
environment under controlled laboratory conditions[1]. Cultured cells may be derived from humans, insects, 
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other animals, plants, and fungi. By breaking down the organism into discrete parts, cell culture models 
offer a high-resolution view of the current subject, free of in vivo confounders[1]. As well, the homogeneity of 
cell culture, with a singular cell type and a well-defined genetic profile, allows for exceptional 
reproducibility[1]. The application of cell culture has revolutionized in vitro research endeavors, especially in 
genetics, pathology, and microbiology.

In vivo animal models are a commonly used approach to scientific research, serving as valuable tools for 
confirming in vitro findings and investigating various biological processes, diseases, and potential 
treatments. These models allow researchers to study complex physiological and pathological phenomena in 
a controlled environment. Although insect animal models raise less ethical concerns and debate than 
vertebrate models, there are several limitations when completing in vivo research. Practical barriers, 
encompassing the acquisition and maintenance of these insects, can prove daunting for researchers. Such 
issues include obtaining administrative approval, securing sufficient space and equipment for rearing 
insects, or possessing the knowledge to supply the environmental conditions and nutritional needs required. 
Further, in studies that investigate microbe-host tissue interactions, researchers face the intricate task of 
mitigating confounding factors linked to the host. This involves addressing challenges like immunological 
response and the potential off-target effects of other microbes within the host. Creating germ-free insect 
models, a crucial step to limit these confounding factors, is labour-intensive and may induce detrimental 
changes to the form and function of the host. Another notable concern is the overwintering of insects in 
temperate or continental climates, which can impact research timelines and reproducibility. Recognizing 
these challenges, researchers are exploring alternative models, such as cell lines, for preliminary and 
mechanistic studies within controlled environments, offering a potential workaround to some of the 
obstacles inherent in using live insect models.

One field where cell culture models have proven to be uniquely powerful is in the study of the microbiome, 
which is the community of microorganisms (and their genetic potential, metabolites, structural elements, 
and environmental conditions) living within the intestinal tract of the host[2]. Cell culture of human 
epithelial cells, particularly of intestinal origin, has improved our understanding of how microbes (or 
microbial metabolites) impact intestinal transepithelial permeability[3], immune signaling[4], and cellular 
proliferation mechanisms relevant to cancer[5].

Despite great promise, researchers have not yet adopted this approach concerning the insect microbiome. 
Similar to the human gut microbiome, the insect gut microbiome serves as a critical intermediary between 
the environment and host health, aiding in digestion, detoxification, and combating pathogens[6,7], yet it 
remains poorly understood. Crucial to both ecosystem health and global food security, insects are facing 
rising threats of habitat destruction, pesticide use, and antimicrobials[8,9]. Given their importance and 
vulnerability, it is essential to understand the microbes so inextricably tied to their health. In order to study 
host-gut microbiome interactions in insects, tissue-specific intestinal cell lines must be obtained from insect 
hosts. Overall, cell lines can be separated into two major categories: primary and immortalized. Primary cell 
lines are obtained directly from insects and maintained under stringent laboratory conditions for short 
periods of time before they eventually die out. Immortalized lines are an asset because they allow for 
laboratory manipulation without the need for available live insect sources. Of the 1,500 immortalized insect 
cell lines openly available, a mere 0.012% represent midgut tissue[10]. Of this fraction, only 9 of the over 
1 million known insect species are represented[10,11]. In this review, we explore the characteristics of insect 
cell lines, their use in studying host-microbial interactions, and emerging techniques for the 
immortalization of novel insect gut cell lines.
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A BRIEF HISTORY OF INSECT CELL CULTURE
The roots of insect research at the cellular level can be traced back to 1912, when Glaser and Chapman
examined how wilt disease affected spongy moth (Lymantria dispar) hemocytes - key immune effector cells
of invertebrates that participate in phagocytosis, encapsulation, and clotting systems[12]. In the following
decades, insect cell culture techniques continued to advance, resulting in the successful establishment of
multiple primary cell lines[13]. Continuous cell lines, however, remained elusive during this early work, as
cell lines were unable to survive beyond 3 months[13]. This milestone is generally accepted to have been
finally achieved by Grace (1962) when he derived a continuous cell line from the ovarian tissue of emperor
gum moth (Opodipthera eucalypti) pupae[14]. Since this time, insect cell culture has blossomed along with
advancements in aseptic techniques and complex media formulations. A notable cell line, Sf-21, which was
produced by Vaughn et al. in 1977, is used in the mass production of baculovirus stocks and recombinant
proteins for human vaccine production to date[15,16]. Insect cells have also been used in infectious disease
research, pesticide screening, and “bio-bots” (small robots incorporating animal biomass), and have the
potential to be used as a food source[13,17,18]. At present, over 1,500 insect cell lines spanning 7 orders of
taxonomy are cataloged on Cellosaurus[11], displaying significant progress in the field over 80 years.

THE GROWTH REQUIREMENTS OF INSECT CELL LINES
Insect cell lines exhibit broad adaptability to culture conditions and many lines can be successfully 
cultivated in temperatures ranging from 22-34 °C, 0%-5% CO2, pH 6.0-6.8, and ambient humidity[15,19]. In 
contrast, mammalian cells typically require tight adherence to in vivo conditions during incubation, 
including a consistent temperature of 35-37 °C, 5% CO2, pH 7.0-7.3, and 95% relative humidity [Figure 1][15]. 
Thus, insect cell lines are less fastidious compared to mammalian lines, most notably lacking the 
requirement of a CO2 incubator. Insect cells also grow more rapidly, are less sensitive to changes in pH, and 
express significantly more protein than mammalian cells[15]. This versatility may be, at least in part, due to 
the exothermic nature of insects which requires them to tolerate a range of ambient temperatures.

Several types of media have been developed that satisfy the nutritional requirements and chemical 
conditions needed by insect cells[15,21]. In general, insect cells require essential amino acids, inorganic salts, 
sugars, and vitamins[21]. Additionally, media is often supplemented with growth-promoting substances, 
namely insect hemolymph or fetal bovine serum[21]. These conditions are similar to mammalian cells and are 
subject to modification depending on the cell line.

The control of pH in insect cell lines is primarily achieved with a phosphate buffer system, which does not 
require a CO2 incubator to function[15]. Mammalian cells, by contrast, commonly utilize either HEPES [4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid], a CO2-independent buffer system, or a bicarbonate buffer, 
which relies on regulated CO2 conditions to effectively control pH[22]. HEPES is not usually recommended 
for insect cell culture; however, some literature has reported its use, namely in AmE-711, a spontaneous cell 
line derived from embryonic western honey bee (Apis mellifera) tissue[15,19]. Insect cell lines display a 
markedly elevated rate of oxygen consumption and a decreased rate of lactate production in comparison to 
mammalian cells. This discrepancy may be exaggerated in cell culture, as a large proportion of mammalian 
cell lines are derived from cancerous tissue. A well-documented phenomenon, the Warburg effect, is the 
observation that cancerous tissue exhibits reduced oxygen consumption and heightened lactate production 
compared to healthy tissue[23,24]. Nonetheless, insect cells’ increased gas exchange (and therefore CO2 
accumulation) necessitates the introduction of base to increase pH[15]. The addition of base increases the 
osmolarity of the media and, in turn, increases the risk of osmotic shock in cell culture[15]. The degree to 
which low lactate production ameliorates the acidic effect of heightened CO2 production in insect cells is 
unknown and could be a promising area to explore in future studies.
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Figure 1. Venn diagram illustrating culture condition requirements of insect and mammalian cell lines. Insect and mammalian cell lines 
share many nutritional requirements, but differ in their environmental conditions, with insect cell lines notably requiring a lower 
resource demand. Created with BioRender.com[20].

ZOOMING IN: THE POTENTIAL OF INSECT GUT CELL LINES TO IMPROVE OUR 
UNDERSTANDING OF THE MICROBIOME
Cell lines have served as valuable tools in the understanding of host-microbe interactions in insects. The 
predominant focus of these studies, however, has been the investigation of host-pathogen relationships; 
nominal research has explored the impact of symbionts on the host and no research has studied microbial 
communities, including those of the gut. In this review, we separate the study of pathogens from the study 
of the microbiome and emphasize studies using cell lines to understand host-symbiont relationships and the 
impact of microbial communities on insect health. Studies have yet to explore the use of insect gut cell lines 
to understand host-microbial relationships, although several studies utilize other tissues for this purpose.

One study that utilized insect cell culture to investigate a symbiont-host interaction in mosquitos (Aedes 
fluviatilis) observed that cultured embryonic cells infected with the obligate endosymbiont Wolbachia 
pipientis displayed improved energy performance and innate immune system activation[25]. Other studies 
have employed cell lines to elucidate the molecular mechanisms of bacterial infiltration into host cells. For 
example, a study found that an unclassified Rickettsia sp., an endosymbiont of rice green leafhopper 
(Nephotettix cincticeps) sperm, could migrate to the nucleus of two larval cell lines belonging to different 
phylogenetic orders[26]. This work provides unique insight into endosymbiotic theory and the vertical 
transmission of microbes between hosts. Another avenue for the use of insect cell culture in microbiome 
research is in the culture of sensitive microorganisms that benefit from the presence of host tissue[27]. These 
cultured microbes may then be used to perform in vitro or in vivo assays. Several intracellular microbes, 
such as the previously mentioned W. pipientis, have been cultured in this manner[28]. This diverse array of 
uses underscores both the versatility and potential of insect cell lines in microbiome research.

The insect gut microbiome has evolved alongside its host over millions of years, forming an intimate and 
often life-sustaining bond[29,30]. Microbes provide insect hosts with essential nutrient provisioning, aid in 
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digestion, and confer resistance to pathogens[6,7]. Illustrating this, bacterial strains isolated from the gut of 
the bark beetle (Dendroctonus rhizophagus) have been shown to hydrolyze pectin, cellulose, xylan, starch, 
lipids, and esters - thereby allowing the host organism to derive nutrition from otherwise indigestible 
substrates[31]. By increasing metabolic capacity and diversity, the insect microbiome thus allows the 
exploitation of a wider variety of food sources. Further, bacterial metabolites isolated from the gut of the 
fruit fly (Drosophila melanogaster) have been shown to increase immune gene expression of pathways that 
promote the activity of Relish/NF-κB - a family of pleiotropic transcription factors that are highly conserved 
across Animalia[32,33]. As innate immunity is greatly conserved across flies and mammals, understanding the 
microbial modulation of these pathways in insects can also enrich our comprehension of immune signaling 
in diverse animal systems. Altogether, the simple growth requirements and efficiency of insect cell lines, as 
well as the applicability of many conserved cellular systems across insects and vertebrates, position insect 
cell culture as a powerful model system for studying host-microbe interactions relevant to a very wide range 
of host species.

Despite their applicability, a significant constraint in the use of insect cell lines for microbiome research is 
the limited availability of continuous cell lines derived from relevant insect gut tissue. Gut cell lines have 
been established for only nine insect species, and many of the most heavily studied insects, such as 
A. mellifera and D. melanogaster, are not represented[10]. This paucity of gut-relevant cell lines restricts the 
range of host-microbe dynamics that can be studied in vitro, while also limiting the study of tissue-specific 
interactions. Cell lines derived from embryos or non-gut tissue, for example, may not capture the full 
complexity of in vivo gut environments, including physical, chemical, and microbial interactions.

An additional factor to consider when investigating the microbiome using cell lines is how closely a cell line 
approximates the gut environment. Primary cell lines, derived from isolated tissue, retain most of their 
in vivo functionality and can include gut ultrastructure, but only survive for short periods in cell culture[34]. 
When considering immortalized cell lines, very little has been characterized in detail, whether derived from 
humans or insects[35]. The Caco-2 cell line derived from human tissue, which will be discussed in detail in 
this review, is one of the only cell lines characterized enough to determine a relative approximation of gut 
tissue conditions (i.e., polarized monolayer, forms tight junctions, expresses many receptors and enzymes 
associated with gut tissues)[36,37].

Recently, insect cell lines derived from various tissues have been subjected to detailed genome or 
transcriptome profiling to gain insights into characteristics important for recombinant protein 
expression[38-40]. However, when considering insect gut cell lines, genotypic and phenotypic characterization 
is lacking.

The RP-HzGUT-AW1 cell line, derived from Lepidoptera member Helicoverpa zea, is one of the first insect 
cell lines to be characterized via transcriptomics for expression of insect intestinal epithelial cell gene and 
intestinal stem cell markers and, therefore, is the most characterized in gut approximation[41]. 
RP-HzGUT-AW1 exhibits some, but not all, gene markers approximated for intestinal stem cell markers 
and differentiated epithelial cells, suggesting the cell line consists of progenitor cells, which form smooth 
muscle junctions between cells[41]. A mechanism to differentiate the progenitor cells further was not 
discussed[41]. Going forward, initial characterization of gut cell lines should be performed at the 
transcriptomic level so that the troubleshooting and development of other gut features, such as recreating 
structural organization and peritrophic membrane formation, can be attempted. Advanced bio-mimetic 
technologies such as organ-on-chip and organoid models have yet to be adapted to insect tissues, although 
they could be explored to address these issues.
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The lack of basic insect gut cell line characterization is a major hurdle in the development of biologically 
relevant cell lines that respond to stimuli (e.g., microbial metabolites, chemical treatments of interest) in a 
manner that is predictable and comparable to in vivo conditions. Thus, while current insect cell cultures 
offer unique insights, their limited representation of genuine, characterized gut tissues can constrain the 
depth and overall breadth of host-microbe interaction studies. Here, we highlight lessons learned from 
human gut-derived cell lines and describe several of the latest techniques that show promise for enabling 
targeted derivation of insect gut cell lines.

Caco-2 and the microbiome: an exemplar approach
Cell culture techniques have been effectively leveraged to gain insight into mammalian epithelial cell-
microbial relationships over the past several decades. The human cell line model of the gut epithelium most 
widely used for this purpose is likely the Caco-2 line, derived by Fogh in 1977 from a human colon 
adenocarcinoma biopsy. Despite their derivatization from the colon, these cells behave most similarly to 
small intestine epithelial tissue, both biochemically and morphologically[42]. Demonstrating their broad-
spectrum application, Caco-2 cells have been used in thousands of studies to illuminate the pathogenesis of 
deleterious microbes, probiotic formulations, and immune-microbe interactions[43-45]. For example, Caco-2 
cells have been employed to confirm both the invasiveness of, and the cytokine response to Fusobacterium 
nucleatum - a bacterium associated with colorectal cancer - in a relevant intestinal cell model[45,46]. 
Additionally, this cell line has been used to evaluate the potential beneficial properties of the yeast 
Kluyveromyces marxianus, strain B0299[44], where it was observed that the yeast dampened the release of 
pro-inflammatory cytokines by cells treated with lipopolysaccharide, an inflammatory stimulus, which 
ultimately led to the yeast being considered as a therapeutically useful probiotic[44].

A further aspect that extends the applicability of the Caco-2 cell model to biomedical science is that the cells 
can be co-cultured with other cell types and incorporated into several advanced biomimetic models. For 
instance, the co-culture of Caco-2 and Raji B cells, a lymphoblast-like cell line, facilitates the production of a 
model of specialized microfold epithelial cells, which overlay the gut-associated lymphoid tissues[47]. This 
model can subsequently be utilized to study the transport of microbial-derived micro- and nano-
compounds across this epithelial barrier cell type[47,48]. Caco-2 cells have also been integrated into organ-on-
chip models, which are micro-biomimetic systems that incorporate multiple cell types and provide a 
framework for cellular growth[49]. This model system more closely represents in vivo tissue, improving the 
efficacy of in vitro studies.

Considering the extensive insights gained from using mammalian cell lines such as Caco-2, similar 
methodologies should be applied to insect models. However, since spontaneously immortalized tissue is 
rare to identify in insects under natural circumstances, the pivotal challenge of deriving gut-specific cell 
types lies primarily in the isolation procedure rather than the general maintenance steps. The tailored 
methodologies that show the most promise for isolating gut-derived cell lines able to grow continuously 
(i.e., which exhibit immortalization) under laboratory conditions are discussed below.

PRODUCING IMMORTALIZED INSECT GUT CELL LINES
Cell types relevant to insect gut cell line development
Contrasting the human gut epithelium, the insect gut epithelium is relatively simple, consisting of two 
major cell types: columnar epithelial cells and endocrine cells [Figure 2][50]. Additionally, stem cells, goblet 
cells, and copper cells (responsible for acidification of the digestive tract) are often present [Figure 2][50,51]. 
Columnar epithelial cells closely resemble the stereotypical enterocytes found in humans and function 
similarly. We suggest that columnar epithelial cells, as the most prevalent cell type in the insect gut 
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Figure 2. Targeted zones to produce insect gut cell lines. Schematic representation of the insect digestion system, which can be broken 
down into three regions: the foregut, midgut, and hindgut. The midgut is the primary choice from which to derive cell lines on account of 
it playing a key role in shaping the gut microbiome and being the principal location of nutrient absorption, pathogen defense, and the 
production of signaling molecules[50]. The midgut has several cell types, including columnar epithelial cells (CC), endocrine cells (EC), 
goblet cells (GC), and stem cells (SC)[50]. Only the most relevant of the top five cell types are shown. Columnar epithelial cells are the 
most common, followed by endocrine cells and stem cells, making these cells the first selection for cell culture[50]. Created with 
BioRender.com[20].

epithelium, represent a good target for successful cultivation during cell line isolation procedures. It is 
important to note that non-target cell types, such as muscle cells, exist within the insect gut as well[50]. As a 
result, cell lines are not always composed of their target cell type and should be verified by, at minimum, 
microscopy prior to further experimentation.

Methods to attain immortalized insect gut cell lines
Cell lines are considered immortalized once they no longer possess the ability to respond to cell cycle 
controls. These controls, present at the G1 and G2 cell cycle checkpoints, limit cellular proliferation and, 
when required, lead to cellular senescence or apoptosis[52]. Bypassing these controls can, on rare occasions, 
occur naturally in a process known as spontaneous immortalization[50]. Alternatively, this can be achieved 
deliberately, for example, through the insertion of proto-oncogenes, pathogen invasion, Clustered Regularly 
Interspaced Short Palindromic Repeats (CRISPR)-Cas9, and exposure to carcinogenic chemicals or ionizing 
radiation[53-56]. Immortalization is particularly difficult to achieve in mature tissue, such as the gut 
epithelium, because of its limited replicative potential and greater likelihood of senescence[48]. 
Notwithstanding these difficulties, many insect cell lines have been successfully produced from mature 
tissue. Table 1 lists the currently available insect cell lines that have been immortalized. Several common 
techniques for the production of insect gut cell lines are relevant to discuss.

Spontaneous immortalization
Spontaneous immortalization occurs when a cell line is immortalized without exposure to carcinogens or 
direct genetic manipulation[50]. Continuous passaging of a primary cell line increases the likelihood of 
random epigenetic changes or chromosomal rearrangements[50]. Often, a mutation occurs in the p53 
pathway[50,65]. Although considered a rare event, spontaneous immortalization has led to the production of 
all currently existing insect gut cell lines[10]. Notably, midgut cell lines have been successfully produced in 
this manner, including CT/BCIRL-SfMG1-0611-E8-KZ (Fall armyworm midgut)[10].

�https://www.biorender.com/
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Table 1. Categorization of the 17 available immortalized insect gut cell lines

Cell line name(s) Species Age at isolation Suggested cell type Date 
published

Cellosaurus 
accession #(s)

BCIRL-HZ-MG8 Corn earworm 
moth 
(Helicoverpa zea)

Unspecified Unspecified 
(untested)

2003[57] CVCL_ZF01

BPH22 Painted 
grasshopper 
(Poekilocerus pictus)

Nymph Stem cells 
(differentiates into goblet and 
epithelial cells)

2010[58] CVCL_A2PR

BTI-Tn-MG1, 
MG1-ht33, 
MG1-ht35

Cabbage looper 
(Trichoplusia ni)

Fifth instar larva Unspecified, mixed morphology 1991[59] CVCL_Z093, 
CVCL_UF21, 
CVCL_UF22

CT/BCIRL-SfMG-
0617-KZ, 
CT/BCIRL-SfMG1-
0611-E7-KZ, 
CT/BCIRL-SfMG1-
0611-E8-KZ, 
CT/BCIRL-SfMG1-
0611-KZ

Fall armyworm 

(
Spodoptera 
frugiperda)

Fifth instar larval stage, 
sixth instar larva

Unspecified, mixed morphology 
(muscle and epithelial origin, has 
residual epithelial cells)

2019[60] CVCL_UZ18, 
CVCL_C2T6, 
CVCL_C2T7, 
CVCL_UZ19

FPMI-CF-200,  
FPMI-CF-203, 
FPMI-CF-204, 
FPMI-CF-205, 
IPRI-CF-1

Spruce budworm 
moth 

(
Choristoneura 
fumiferana)

Adult, neonate larva Unspecified, mixed morphology 1993[61] CVCL_WV83, 
CVCL_Z469, 
CVCL_WV85, 
CVCL_WV84, 
CVCL_Z473

HNU-Ha-MG1 Cotton bollworm 

(
Helicoverpa 
armigera)

Fourth instar larva Unspecified, mixed morphology 2015[62] CVCL_HF52

LSTM-AG-55 African malaria 
mosquito 

(
Anopheles 
gambiae)

First instar larva Epithelial-type cells 1972[63] CVCL_Z360

RPW-1 Red palm weevil 

(
Rhynchophorus 
ferrugineus)

Fifth instar larva Midgut epithelial cells 
(untested)

2013[64] CVCL_A2PS

Cell line characteristics were gathered from the Cellosaurus cell line catalog[10]. All cell lines were produced through spontaneous immortalization.

Malignant neoplasms
Neoplasia has been reported in various insect tissues, including hemolymph, epithelial tissue, and neural 
tissue[66-68]. Many human cell lines, including Caco-2, have been derived from a malignant neoplasm, but no 
insect gut cell lines have been established using this approach. This is particularly notable, as 
D. melanogaster is a model organism for the study of colon cancer due to its tractability and ease of genetic 
manipulation[66,69]. Samples of insect tumors could represent an untapped goldmine of undiscovered cell 
lines.

Insertion of proto-oncogenes
Proto-oncogenes play essential roles in the normal growth and development of cells, however, they can 
potentially create malignant neoplasms if excessive copies accumulate or mutations occur, creating an 
oncogene[70]. Proto-oncogenes can be introduced to cells through a method known as lipofection, which 
transfects DNA using a synthetic cationic lipid complex[71,72]. Lipofection of the human C-myc proto-
oncogene into embryonic A. mellifera cells successfully produced the MYN9 cell line[54]. Considered a 
master regulator, excessive C-myc can lead to immortalization by inciting reactive oxygen species 
production and promoting p53 phosphorylation, disrupting normal cell cycle function[71,73]. Another proto-
oncogene used in cell line production is ras, an important regulator of proliferation, growth, and survival[71]. 
Both the Ras[V12]-H1 and Ras[V12]-H7 D. melanogaster cell lines include mutations in the ras proto-
oncogene[74].
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Entomopathogens
Certain pathogens incite tumorigenesis or reduce apoptosis in the gut epithelial tissue of insects. In one 
study, the European spruce sawfly (Gilpinia hercyniae) developed multiple midgut tumors after exposure to 
a polyhedral virus[75]. Additionally, Nosema cerenae, a fungal pathogen of A. mellifera, reduces apoptosis of 
midgut epithelial cells by increasing the transcription of the inhibitor of apoptosis-2 gene[76]. The direct 
application of entomopathogens in insect cell line production has yet to be explored; however, this is not to 
suggest that pathogens may not have already played a critical role. Both existing A. mellifera cell lines 
(AmE-711 and MYN9) are known to be infected with deformed wing virus[77], which could have contributed 
to their immortalization.

CRISPR-Cas9
CRISPR-Cas9 allows for the targeted insertion and deletion of genes from a host genome. CRISPR-Cas9 
technology has recently been used to immortalize mature human prostate epithelial cells of the PrEC cell 
line[56]. In this cell line, the inactivation of CDKN2A at two loci induced immortalization, but also 
maintained the characteristics of normal cells, including a normal p53 response[56]. CRISPR-Cas9 has also 
been used to edit several existing insect cell lines, including insect cell lines Sf-21 and S2R+[78,79]. Despite 
great potential, CRISPR-Cas9 has not yet been employed to produce a novel insect cell line. Future research 
endeavors may benefit from editing genes that have been empirically linked to midgut tumorigenesis in 
D. melanogaster, a commonly used insect model of colon cancer[66,69]. Two of these genes are APC and ras, 
which control the activation of the Wnt signaling pathway and drive the proliferation and migration of cells, 
respectively[66]. These two genes could be key targets in future studies.

Radiation
Ionizing radiation (X-rays and Gamma-rays) induces direct DNA damage in the form of single- and 
double-stranded breaks and indirect DNA damage through the production of reactive oxygen species[80]. 
Following the theory of radiation hormesis, low-dose radiation is purported to improve cellular health, but 
high-dose radiation is extremely damaging and results in DNA breaks[81]. Radiation causes apoptosis in the 
majority of exposed cells, but has the potential to produce providential mutations, leading to 
immortalization in a subset of these cells. The KMST-6 human fibroblast cell line was produced in this way 
using Gamma radiation[53], illustrating the promise of this technique. Furthermore, literature from as early 
as 1928 has associated X-ray exposure with genetic mutation in insects, indicating promise for future work 
using radiation to deliberately transform insect cells to immortalize them[69].

INSECT GUT CELL LINES HAVE THE POTENTIAL TO ADDRESS MICROBIOME-RELATED 
KNOWLEDGE GAPS
Defining a “healthy” insect microbiome
A substantial knowledge gap that could be addressed by insect gut cell lines is the balance of microbes that 
constitutes a healthy, or “eubiotic,” gut microbiome[82]. Eubiosis in insects is poorly defined, as is the 
opposite state, dysbiosis. This, in large part, is due to the context-dependent nature and inherent subjectivity 
of the gut microbiome[83]. Additionally, very few insect species have well-studied microbiomes, furthering 
this lack of understanding.

One theory that attempts to define microbiome health in insects follows the Anna Karenina principle of 
“Happy families are all alike; every unhappy family is unhappy in its own way”[84,85]. According to this 
framework, once a eubiotic species balance is achieved, any deviation from this species balance will 
destabilize the system, leading to dysbiosis. This principle applies well to social insect species, which possess 
highly conserved and vertically transmitted microbiome compositions[86,87]. However, the theory fails to 
consider solitary insect microbiomes, which more often mimic the composition of their environment[6,88]. 
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Other researchers have argued that the level of connectedness determines the health of the microbiome, 
rather than the balance of species[84]. Just as for the human microbiome, it is unknown what truly constitutes 
a “healthy” insect microbiome, especially when the correct balance differs from species to species. Insect gut 
cell lines hold the potential to elucidate the roles of microbes and their contributions towards eubiosis or 
dysbiosis within the insect gut, and the animal as a whole.

Culturing the uncultured
For most animals, the gut houses the greatest number of microorganisms in the body, many of which 
remain uncultured[72,89], meaning culture cannot be achieved using traditional microbiological methods, 
likely because agars and broths utilized in laboratory settings do not replicate the complex physiological and 
chemical conditions of the gut environment[29]. One option to improve culture conditions is the 
employment of bioreactor models, which show great promise in cultivating entire gut-derived communities, 
but still lack the host cell component[90]. In future studies, bioreactors could be linked to cell culture through 
microbial metabolites. Cell-free supernatant from bioreactors is a source of microbial metabolites, which 
can be filter-sterilized and applied to insect cell lines to replicate host-microbial metabolite interactions. 
Since much of the interaction between a microbe and an animal cell is mediated through metabolite 
signaling, the use of metabolites alone helps preserve cell line integrity while understanding host-microbe 
interactions. This may be achieved by assessing cytokine release, localization within a host cell, and the up- 
or downregulation of host gene expression.

In addition, since cell culture replicates the gut tissue microenvironment, it allows for the cultivation and 
isolation of sensitive microbes that are strictly dependent on the presence of host cells[29]. For example, 
obligate intracellular microbes, which rely entirely on eukaryotic host cells, must be cultured in this 
manner[29], including the endosymbiont W. pipientis, which was first cultured and isolated utilizing the Aa23 
cell line, derived from the Asian tiger mosquito (Aedes albopictus)[28]. Through the use of insect gut cell 
lines, previously uncultured bacteria, archaea, and fungi can be isolated, enhancing our comprehension of 
insect pathogens, commensals, and symbionts. Further, undiscovered constituents of the insect microbiome 
may possess characteristics valuable to human industry and pharmaceuticals.

In highlighting the efficacy of cell lines for investigating facultative symbionts, the 2018 study by Chevignon 
et al. stands out as a notable example[91]. To explore the “unculturable” aphid symbiont Hamiltonella 
defensa, crucial for safeguarding its host against parasitoid wasps, Chevignon et al. leveraged the 
immortalized TN5 insect cell line[91]. The utilization of cell lines in cultivating H. defensa yielded a higher 
abundance of the symbiont compared to in vivo cultures[91]. This enhancement enabled the researchers to 
successfully generate the complete genomes for various H. defensa strains, thereby unraveling the genetic 
variance of strains and genome elements responsible for the protective abilities exhibited by H. defensa[91].

Understanding the microbiome’s toxin defense systems
The insect microbiome serves as a critical barrier between toxins and host tissue. The scientific literature has 
documented the ability of insect gut microbes to mitigate toxin exposure to the host through the breakdown 
of external compounds, such as insecticides, as well as host-secreted wastes[6]. The insect microbiome also 
exhibits a capacity to adapt to toxin exposure. Namely, microbes of the brown plant hopper (Nilaparvata 
lugens), an agricultural pest, displayed heightened expression of detoxifying genes, including NlCYP6ER1, 
after repeated exposure to insecticides[92]. Additionally, a commensal bacterial species of D. melanogaster, 
Lacticaseibacillus (formerly Lactobacillus) rhamnosus, reduced the absorption of organophosphate 
insecticides by the host[93]. Furthermore, several lactic acid bacteria strains, isolated from the gut of managed 
A. mellifera, had the ability to detoxify representative insecticides in cell line models[94]. While encouraging, 
it is important to note that none of the cell lines used (ovarian insect Sf-9, rat intestinal IEC-6, and human 
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intestinal Caco-2) were of A. mellifera origin and the detoxification abilities observed were contingent on 
the cell lines employed[94]. The relevance of cross-species studies is thus context-dependent, underscoring 
the importance of deriving and employing species-specific cell lines in insect-related research to ensure the 
accuracy of results.

Despite progress in the field, a significant knowledge gap remains regarding the impact of specific toxins on 
host tissue in isolation as well as in the presence of various resident and foreign microbes. This gap may be 
addressed by insect gut cell lines, which in turn could help to advance pest management strategies, and to 
shield vulnerable species from the noxious effects of toxin exposure.

Exploring specific symbiont-derived pathogen defense in host environment
The application of cell lines in the investigation of host-pathogen-symbiont interactions will promote a 
more comprehensive understanding of symbiont-derived defense and its impact on the host, while avoiding 
confounders associated with host models. These confounders include the inherent colonization of the host 
by other microbiome members, which could make any interaction studies non-specific, or would require 
the use of germ-free hosts (which often are not available). Few studies have used cell line models to look at 
such interactions. One study of note used a rotating wall vessel-derived (RWV) 3-D HT29 organotype 
model, composed of a human adenocarcinoma cell line with epithelial morphology (HT-29), to investigate 
the interactions between symbiont, human host, and pathogen during infection[95]. The RWV model was 
coinfected with commensal bacteria Lactobacillus reuteri and the pathogen Salmonella enterica, in order to 
determine the protective ability of L. reuteri and its impact on the host[95]. The study revealed that L. reuteri 
reduced pathogen growth and adhesion to HT-29 cells, leading to L. reuteri being considered a potential 
candidate for probiotic therapy against Salmonella infection[95]. This study highlights the potential of cell 
culture to elucidate mechanisms underlying symbiont-derived pathogen defense, as well as the 
repercussions for all cells involved.

A wider range of host-specific gut cell lines could improve insect work by creating an accurate environment 
to inoculate both pathogen and potential symbiont, resulting in more natural responses to what would 
happen within the specific host. With the use of insect gut cell lines, research of this nature could help to 
identify safe probiotic candidate bacteria against the most relevant “incurable” insect pathogens, such as 
Paenibacillus larvae in honeybees, gain insights on microbiome members important for host defense, and 
the impact of both pathogen and symbiont presence in host tissues[96].

LIMITATIONS
The key limitation associated with cell culture is its inability to fully recapitulate in vivo organ and tissue 
environments[1]. While the simplistic model of cell culture is efficacious in the study of isolated variables, it 
consequently cannot assess the impact of the same variables on complex systems, such as the reproductive 
and immune systems. This discrepancy could be addressed in the future through the production of 
co-culture and microfluidic systems. Another limitation of cell lines is that they cannot reproduce the 
dramatic gut remodeling that many insects undergo between life stages[50]. Additionally, immortalized cells 
tend to behave differently than the primary cells from which they were derived. This is due to changes in 
important regulatory genes necessary to prevent senescence. One notable difference between the currently 
available immortalized insect midgut cells and primary cells of the same origin is the lack of polarization, 
which limits studies on epithelial barrier function[97]. As a result of these limitations, it is important to 
understand cell culture as a tool for preliminary and mechanistic work, which must be validated with 
appropriate in vivo studies.
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CONCLUSION
Insect gut cell lines offer a high-resolution and relevant model for the exploration of the microbiome and its 
complex interactions with host nutrition, immunity, and toxicology. Despite decades of research in the 
fields of the insect microbiome and insect cell culture, limited integration has occurred between the two. 
This starkly contrasts the study of the human microbiome, which has utilized cell culture extensively. The 
time has come to explore novel ways to study host-microbiome relationships in insects in the laboratory, 
and cell lines represent an important tool to exploit. This is becoming more important as insects continue to 
face unrelenting threats as a result of human development and habitat encroachment.
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