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Abstract
Epidermal electrodes can be directly attached to the human skin for high-fidelity electrophysiological monitoring 
owing to their preponderance in thinness, lightweight, conformability, biocompatibility, self-adhesiveness, 
mechanical flexibility, gas-permeability, etc. These devices have attracted immense attention due to their emerging 
applications in personalized health care, human/brain-machine interfaces, and soft robotics. This Perspective 
focuses on the most recent significant progress in this area, especially materials, properties, and applications. 
Challenges and prospects are summarized to underscore the unexploited areas and future directions toward digital 
health and on-skin digitalization.

Keywords: Epidermal electrodes, ultrathinness, ultra-conformability, electrophysiology, digital health, on-skin 
digitalization

INTRODUCTION
Epidermal electrodes have seen tremendous developments in the last two decades, both in materials and 
structures and prominent applications, such as health monitoring, diagnosis and therapy, human/brain-
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MATERIALS
Some pioneering work has been done in epidermal electrodes by introducing structural engineering on 
metal and polymeric films[14,15]. Structure engineering is an effective strategy to endow rigid electronic 
devices that are conformable and stretchable for skin applicability. Another significant strategy is to design 
and utilize intrinsically stretchable materials[16,17]. To achieve high conductivity for epidermal electrodes, a 
variety of electrical materials have been employed, such as conducting polymers, ionic liquids, liquid metals, 
low-dimensional nanomaterials (e.g., carbon/metallic-based nanomaterials and MXenes), and hydrogels 
[Figure 1A-E][18-22]. Figure 1A demonstrates the utilization of ionic liquid, bis(trifluoromethane) sulfonimide 
lithium salt (LiTFSI), integrated with poly(ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) 
and ethylene glycol for the fabrication of dermal electrodes[18]. In Figure 1B, micromeshes made of gallium 
liquid metals are created onto elastomer sponges for EMG electrodes[19]. A solvent-free supramolecular 
ion-conductive elastomer has been developed as an ionic tattoo for various electrophysiological monitoring 
applications [Figure 1C][20]. Figure 1D shows a sweat-stable EMG electrode made of MXene[21]. Besides 
MXene, other prevailing low-dimensional nanomaterials for epidermal electrodes include silver 
nanowires[23], gold nanowires[24], graphene[25], and carbon nanotubes[26]. Figure 1E presents bioadhesive 
hydrogel materials for rapid, robust, conformal, and electrically conductive integration between 
bioelectronic devices and various wet dynamic tissues[22]. It is worth noting that among them, conducting 
polymers[27,28], liquid metal, low-dimensional nanomaterials[29], and their hybrid[30] have been widely 
exploited for both dry and wet epidermal electrodes[31-34]. Wet electrodes refer to the use of conductive 
hydrogels or paste materials, such as the commercialized Ag/AgCl, which have good biocompatibility, skin 
adhesion, mechanical softness, and low skin impedance. Therefore, wet electrodes generally can provide 
high-fidelity and low-noise signals. On-skin dry electrodes are fabricated by carbon and metal-based 
materials and composites. Unlike wet electrodes, dry electrodes rely on external forces or van der Waal 
forces to achieve high skin contact, normally with high skin impedance and high-noise signals. However, 
their electrical and electromechanical properties can be tailored by various materials and structures[35,36]. Due 
to their versatile tunability on electrical and mechanical properties, hydrogels have emerged as 
advantageous materials for the development of epidermal electrodes, both as conductive materials and 
polymeric substrates[37,38]. Other representative polymeric substrate materials include PDMS[39,40] and 
polymeric electrospun nanofibers[41-43].

machine interfaces (HMIs/BMIs), prosthetics, robotics, and augmented reality (AR) and virtual reality (VR) 
communications[1-5]. In particular, for health monitoring, epidermal electrodes have attracted intensive 
attention for non-invasive electrophysiological recording, such as electromyogram (EMG) (amplitude 
between 50 and 5,000 µV, frequency between 5 and 500 Hz), electrocardiogram (ECG) (amplitude between 
50 and 5,000 µV, frequency between 0.5 and 100 Hz), electrooculogram (EOG) (amplitude between 10 and 
3,500 µV, frequency between 0.1 and 30 Hz), and electroencephalogram (EEG) (amplitude less than 100 µV, 
frequency between 0.5 and 100 Hz)[6-9]. Owing to their ultrathinness, lightweight, high conductivity, low 
skin-contact impedance, and skin-like mechanical properties, epidermal electrodes can pick up delicate 
ionic conduction signals on the epidermis induced by brain, muscle, eyeball, and heart activities[10,11]. 
Different types of electrophysiological signals provide valuable insights into the functioning of various 
tissues and organs. Together with the capability of electrostimulation, epidermal electrodes play a crucial 
role in sleep monitoring, wound healing, fatigue alerts, neurofeedback training, muscle and neurological 
disorder theranostic, HMIs, BMIs, etc.[12,13]. Besides digital health, epidermal electrodes are emerging devices 
to the realization of on-skin digitalization that aims to create a seamless interface between humans and 
devices and enable remote health monitoring and human-cyber interactions[7].
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Figure 1. Recent representative examples of advanced epidermal electrodes (2017-2023). Material examples: (A) conductive polymer 
and ionic liquids[18]; (B) liquid metals[19]; (C) supramolecular elastomer[20]; (D) low dimensional nanomaterials[21]; and (E) hydrogels[22]. 
Property examples: (F) ultrathinness and gas- permeability[50]; (G) biocompatibility and stretchability[53]; (H) self- adhesiveness[44]; (I) 
ultra- conformability[13]; and (J) biodegradability[62]. Application examples: (K) HMIs[55]; (L) wireless health monitoring[18]; (M) HMIs[70]; 
(N) adaptable wearable system[71]; and (O) muscle theranostic[21]. Figure 1A adapted with permission from ref.[18]. Copyright 2023 
Elsevier; Figure 1B adapted with permission from ref.[19]. Copyright 2022 American Chemical Society; Figure 1C adapted with permission 
from ref.[20]. Copyright 2023 John Wiley and Sons; Figure 1D adapted with permission from ref.[21]. Copyright 2022 American Chemical 
Society; Figure 1E adapted with permission from ref.[22]. Copyright 2022 Springer Nature; Figure 1F adapted with permission from ref.[50]. 
Copyright 2017 Springer Nature; Figure 1G adapted with permission from ref.[53]. Copyright 2021 Springer Nature; Figure 1H adapted with 
permission from ref.[44]. Copyright 2021 National Academy of Sciences; Figure 1I adapted with permission from ref.[13]. Copyright 2020 
Springer Nature; Figure 1J adapted with permission from ref.[62]. Copyright 2023 John Wiley and Sons; Figure 1K adapted with permission 
from ref.[55]. Copyright 2022 American Association for the Advancement of Science; Figure 1L adapted with permission from ref.[18]. 
Copyright 2023 Elsevier; Figure 1M adapted with permission from ref.[70]. Copyright 2020 John Wiley and Sons; Figure 1N adapted with 
permission from ref.[71]. Copyright 2023 American Chemical Society; Figure 1O adapted with permission from ref.[21]. Copyright 2022 
American Chemical Society. EG: Ethylene glycol; HMIs: human-machine interfaces; LiTFSI: bis(trifluoromethane) sulfonimide lithium 
salt; PEDOT: poly(ethylenedioxythiophene); PSS: poly(styrenesulfonate).

PROPERTIES
Depending on the target applications, different materials and structures are chosen to obtain the desired 
properties. Regardless of the type of application, the basic requirements of epidermal electrodes comprise 
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biocompatibility, stretchability, sufficient thinness, and mechanical durability. Notably, the epidermal 
electrode with a compliant and comfortable interface guarantees high-quality bioelectrical signals where a 
low skin impedance can be attained. According to the flexural rigidity equation, flexural rigidity can be 

 
respectively, of a thin film[44]. Therefore, reducing thickness is the most effective approach to decrease 
flexural rigidity, thus leading to higher skin compliance[45,46]. Towards this end, lots of electronic tattoo 
electrodes have been developed based on conducting polymers and two-dimensional nanomaterials[10,37,47,48]. 
Besides reducing thickness to obtain high skin compliance, dry electrodes should also be mechanically 
stretchable and durable to secure continuous attachment on the human skin[49].

With the introduction of electrospun nanomeshes, skin electronics have evolved from a thin-film form 
factor to a gas-permeable, biocompatible ultrathinness form factor[50-52] [Figure 1F]. Ma et al. reported 
biocompatible and permeable ECG electrodes using a liquid-metal fiber mat with a stretchability of over 
1,800% strain [Figure 1G][53]. A self-adhesive electrode has been developed by reducing thickness to 165 nm 
employing Au-coated PDMS nanofilm [Figure 1H][44]. Another efficacious strategy to improve adhesiveness 
is to directly paint/draw inks/gels on the human skin [Figure 1I][13,54]. A recent example is a paintable 
epidermal electrode from thermal-controlled phase change gelatin-based hydrogels, which overcomes the 
limited conformability on hairy areas such as the scalp[55]. Taking advantage of the adhesive properties of 
hydrogels, many researchers have been working on simultaneously improving their gas-permeability for 
long-term skin applicability. There are two typical approaches: (1) ultrathin enough (a few µm-thick) to be 
permeable[20,56] and (2) macroscopic porous structure to be permeable[57,58].

Most existing wearable electronics are not decomposable and can lead to serious electronic waste (e-waste) 
and burden to Mother Earth[59]. To this end, biodegradable materials have been utilized to develop transient 
epidermal electrodes with zero waste footprint[60,61]. Lately, Ye et al. developed a fully biodegradable and 
biocompatible ionotronic skin that was made by carboxylated chitosan (CCS) and sulfobetaine methacrylate 
(SBMA) polymerized in glycerol and water followed by cross-linking with hydrogen bonds and electrostatic 
attraction[62]. As shown in Figure 1J, the developed ionic epidermal electrodes can accurately record action 
potentials and fully degrade in only three days without any residue. Other properties, such as washability[63], 
waterproof[64], self-healing[65], and antibacterial characteristics[66], have also been implemented for specific 
application scenarios.

APPLICATIONS
It should be noted that a significant application of epidermal electrodes is continuous and long-term 
electrophysical monitoring due to its critical role in early disease prevention, screening, diagnosis, and 
treatment[28,67]. Generally speaking, the capability of continuous, long-term monitoring requires a 
combination of various properties, such as low skin impedance, high conformability, gas-permeability, 
robust skin-electrode interface, and mechanical durability. Owing to the advancement of ever-fast materials, 
a plethora of such epidermal electrodes have been realized for long-term ECG and EEG 
acquirement[44,55,68,69]. Furtherly, the collected high-fidelity electrophysiological signals can be adopted for 
BMIs[55], wireless health monitoring[18], HMIs[70], adaptable wearable systems[71], prosthetics[72], and muscle 
theranostics[21] [Figure 1K-O]. As high-fidelity EMG and EEG acquirement is significant for non-invasive 
high-precision HMIs/BMIs[12,72], it is highly demanding to develop high-performance epidermal electrodes. 
Additionally, to enable epidermal electrodes with unsacrificed functionality under extreme conditions, such 
as aqueous environments and polar regions, adaptable epidermal electrodes have attracted intensive 
attention over the last decade[73-75]. For instance, Wan et al. reported an all-in-one flexible system capable of 
working under intense motion, heavy sweating, and varied surface morphology, conducting in situ injection 
and photonic curing of a biocompatible and biodegradable light-curable conductive ink[71].

calculated as D = 12(1-v2), where E, t, and ν represent Young’s modulus, thickness, and Poisson’s ratio,
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A closed-loop platform consisting of monitoring and therapy takes personalized healthcare to the next level. 
In interesting research, Song et al. developed an all-in-one, bioderived, air-permeable, and sweat-stable 
MXene electrode that can simultaneously record EMG signals and achieve electrostimulation and 
electrothermal therapy for muscle theranostics[21]. Specifically, the as-prepared MXene electrodes exhibit 
high breathability, are ultralightweight (~0.25 mg/cm3), and have a low and stable electrode-skin interfacial 
impedance in various environments, enabling the long-term reliable monitoring of electrophysiology.

SUMMARY
In this work, we highlight recent key developments of epidermal electrodes. Materials, properties, and 
applications have been discussed individually. Remarkable progress has been made in this area due to the 
enormous efforts devoted by researchers worldwide. It is believed that epidermal electrodes have 
contributed a significant part to digital health and on-skin digitalization. However, there are some 
remaining issues waiting to be addressed before these devices can be seamlessly integrated into our daily 
lives.

Concurrent realization of combined promising properties, such as low skin impedance, robust electronic 
bonding, high skin compliance, mechanical durability, and gas-permeability[49]. It requires the development 
of advanced materials and fabrication techniques and an in-depth understanding of the soft-rigid interface 
interactions during constant dynamic skin motions. For example, it is important to develop unconventional 
gas-permeable materials to overcome the intrinsic tradeoff between mechanical durability and thinness 
geometry. To solve this issue, lots of efforts have been devoted to developing fiber-based or fiber-reinforced 
ultrathin, gas-permeable electronics[51]. Another approach in materials development is to design bulky 
gas-permeable gels that have high bioadhesive properties. In this case, delicate cross-linking networks 
should be considered to maintain excellent long-term stability, such as anti-drying and mechanical 
robustness.

System intelligence. Skin sensor-artificial intelligence (AI) networks are paramount to the development of 
both digital health and on-skin digitalization. The AI algorithms enable epidermal electrodes not only to 
detect the health status for health management in real-time[76] but also to enhance the interactions between 
humans and machines[77]. A recent work by Ouyang et al. demonstrated a system-on-a-chip with Bluetooth 
Low Energy for data transmission and a compressed deep-learning module for autonomous operation[78]. 
The system achieved applications in studies of sleep-wake regulation and for the programmable closed-loop 
pharmacological suppression of epileptic seizures in mice via feedback from EEG recording. Besides the 
incorporation of data management technologies, other issues, such as processing capacity, long-term 
stability, and data security, should also be taken into consideration.

Multichannel and multifaceted operation. Multichannel bioelectrical sensing is vital to achieve 
comprehensive electrophysiology information for high-precision diagnosis and treatment and precision 
control for HMIs/BMIs[7,11,79-81]. For example, Tian et al. reported a large area bioelectronic interface for 
electrophysiological recordings that enable coverage of the full scalp and the full circumference of the 
forearm[79]. The large-area sensing arrays enabled multifunctional control of a transhumeral prosthesis by 
patients who have undergone targeted muscle-reinnervation surgery, in long-term EEG, and in 
simultaneous EEG and structural and functional magnetic resonance imaging. Additionally, the fusion of 
multifaceted functionalities, such as biophysical and biochemical monitoring and self-powering, is 
appealing to realize a full-fledged epidermal electrode system.
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To mitigate the aforementioned concerns, an intimate collaboration between researchers from 
interdisciplinary backgrounds is a must, not only between engineers and clinicians but also between 
engineers, biologists, and informaticians[82]. The combined efforts can promote setting the criteria of 
electrodes and sensing performance and the transformation from laboratory prototypes to commercial 
products.
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